G302 In-Class Exercise
 Unit Algebra / Equation Problem Set

c:wou:g302::unit_alg_ex.doc

Part 1 - Unit Conversion

Here are some common conversion factors that you will need to solve the problems:
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~kg}=1000 \mathrm{~g}$
$1 \mathrm{~m}=3.28 \mathrm{ft}$
$1 \mathrm{yr}=365$ day $1 \mathrm{~min}=60 \mathrm{sec}$
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{~km}=0.62 \mathrm{mi}$
1 day $=24 \mathrm{hr}$
$1 \mathrm{~g}=1000 \mathrm{mg} 1 \mathrm{in}=2.54 \mathrm{~cm} 1 \mathrm{mi}=5280 \mathrm{ft}$
$1 \mathrm{hr}=60 \mathrm{~min}$ speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

Using the attached metric and English measurement unit conversion tables, complete the following conversions.

SHOW ALL OF YOUR MATH WORK AND UNIT ALGEBRA IN THE SPACE PROVIDED.

$2.05 \mathrm{~m}=$ \qquad cm
$1.50 \mathrm{~m}=\quad$
$5.4 \mathrm{~g}=\quad \mathrm{m}$ mm
\qquad
$6.8 \times 10^{12} \mathrm{~cm}=$ \qquad mi
4214.6 cm
$321.5 \mathrm{~g}=$ \qquad m
\qquad kg
5.3 in $=$ \qquad cm
$109.4 \mathrm{~m}=$ \qquad ft
$1 \mathrm{mi}=$ \qquad km
$123.4 \mathrm{mi}=$ \qquad km
$1234 \mathrm{~km}=$ \qquad mi
$1054 \mathrm{lb}=$ \qquad kg
2×10^{5} in $=$ \qquad mi

$$
2 \times 10^{9} \mathrm{ft}=\quad \mathrm{mi}
$$

$$
126,765,000 \mathrm{ft}=
$$

\qquad km

$$
72^{\circ} \mathrm{C}=\quad{ }^{\circ} \mathrm{F}
$$

$8^{0} \mathrm{~F}=$ \qquad ${ }^{0} \mathrm{C}$
$0^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$
$212^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$

$$
5.7 \times 10^{45} \mathrm{sec}=
$$

\qquad years

$$
9.8 \times 10^{20} \text { days }=
$$

\qquad years
$2.0 \times 10^{31} \mathrm{in}=$ \qquad km

If 1 inch equals 2000 ft on a map; points A and B are 7.8 inches apart on the map. How far apart are points A and B on the ground in feet? Now how about in miles?

If 1 light-year is the distance traveled in 1 earth year at the speed of light, how many kilometers would you travel at the speed of light in 3.2 years? How many miles?

Part 2. Solving Equations

A. The density of a substance is defined by it's mass divided by it's volume. The equation has the following form:

$$
\mathrm{D}=\mathrm{M} / \mathrm{V}
$$

where D is density in $\mathrm{gm} / \mathrm{cm}^{3}, \mathrm{M}=$ mass in grams, and V is volume in cm^{3}

1. You measure the mass of a substance as 2356 gm . It's volume is $534 \mathrm{~cm}^{3}$, calculate it's density in $\mathrm{gm} / \mathrm{cm}^{3}$. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!
2. The density of a substance is $9.8 \mathrm{gm} / \mathrm{cm}^{3}$. If you had a volume of $3.8 \mathrm{~cm}^{3}$ of the substance, what would be the corresponding mass in grams? Hint: Rearrange the density equation to solve for mass. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!
3. The density of a substance is $2.5 \mathrm{gm} / \mathrm{cm}^{3}$ and you possess 15.3 grams of that material. What will be it's corresponding volume in cm^{3}. Hint: Rearrange the density equation to solve for mass. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!
B. The velocity of moving objects (for example your car while driving) is measure as a rate of motion, according to the following equation:

$$
\mathrm{V}=\mathrm{d} / \mathrm{t}
$$

where V is velocity ($\mathrm{m} / \mathrm{sec}$), d is distance (m), and t is time (sec).
4. You drive your car between two cities that are 123 miles apart. It takes you 4 hours to get there. Calculate your average velocity in mi/hr. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!
5. Using the velocity you caculated in 4 above, what was your velocity in $\mathrm{m} / \mathrm{sec}$? Hint: you will have to use a distance and time conversion factor. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!
6. You are driving a car at a velocity of $10 \mathrm{~m} / \mathrm{sec}$ for a distance of 12 km . How long did it take you to get there? Answer in hours. SHOW THE FORMULA AND ALL OF YOUR MATH WORK!

A rock is rolling down the road, the following distance and time data was collected. Plot the data on the graph below, draw a best fit line, and determine the equation of the line.

Dist_m	Time_sec
0	0
10	1.2
20	2.4
30	3.6
40	4.8
50	6
60	7.2
70	8.4
80	9.6
90	10.8
100	12

