G302 - Basics Review of Math and Algebra

I. MATHEMATICS REVIEW

A. Decimal Fractions, basics and definitions

1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as $100,1000,10000$, etc.
$8 / 10=0.8 \quad 79 / 100=0.79 \quad 183 / 1000=0.83$
5925/10000 $=0.5925$
1st place to right of decimal = tenths
2nd place to right of decimal = hundredths
3rd place to right of decimal = thousandths
4th place to right of decimal $=10$ thousandths
5th place to right of decimal = 100 thousandths
6th place to right of decimal $=$ millionths

Number Powers of $10 \quad$| Exponential |
| :---: |
| Form |

B. THE METRIC SYSTEM AND CONVERSION

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.
2. S.I./metric system involves measurements of length (meter), mass or weight (kilogram), temperature (celsius), time (second), and volume (litre).
3. Metric system based on powers of 10 and a decimal approach with prefixes attached to the basic units of measurment to indicate the power of 10 in question.

Greek prefixes > 1 base unit, Latin prefixes < 1 base unit

Peta $=10^{15}$	P	
Tera $=10^{12}$	T	
Giga $=10^{9}$	G	e.g. 1 megameter $=1 \times 10^{6}$ meter
Mega $=10^{6}$	M	1 kilometer $=1 \times 10^{3}$ meters
Kilo $=10^{3}$	k	1 Hectometer $=1 \times 10^{2}$ meters
Hecto $=10^{2}$	h	1 Dekameter $=1 \times 10^{1}$ meters
Deka $=10^{1}$	da	1 meter $=1 \times 10^{0}$ meters
Base unit $=10^{0}$		
Deci $=10^{-1}$	d	and so on
7. Centi $=10^{-2}$	c	
8. Milli $=10^{-3}$	m	
9. Micro $=10^{-6}$	μ	
10. Nanno $=10^{-9}$	n	
11. Pica $=10^{-12}$	p	

In-Class Problem: A mini-van sells for 33,220 dollars, express it's prices in kilodollars and Megadollars.

The movement of the decimal point to the left or right of the given quantity of a unit is all that is needed to change a given type of unit to the next higher or lower unit:
e.g. $1 \mathrm{~m}=10 \mathrm{dm}=100 \mathrm{~cm}=1000 \mathrm{~mm}=1,000,000 \mathrm{um}$
$1 \mathrm{~m}=0.1 \mathrm{Dam}=0.01 \mathrm{Hm}=0.001 \mathrm{Km}=0.0000001 \mathrm{Mm}$

4. METRIC MEASUREMENT OF DISTANCE

a. Based on the meter (analogous to the yard in English system)
$1 \mathrm{Km}=1000 \mathrm{~m}, 1 \mathrm{Hm}=100 \mathrm{~m}, 1 \mathrm{Dam}=10 \mathrm{~m}, 1 \mathrm{~m}=1 \mathrm{~m}$, $1 \mathrm{dm}=0.1 \mathrm{~m}, 1 \mathrm{~cm}=0.01 \mathrm{~m}, 1 \mathrm{~mm}=0.001 \mathrm{~m}, 1 \mathrm{um}=$ 0.000001 m
b. Conversion of One metric unit to another
e.g. convert 8.9 km to $\mathrm{m}: 8.9 \mathrm{~km} \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=8900 \mathrm{~m}$
e.g. convert 1230 m to $\mathrm{km}: 1230 \mathrm{~m} 1 \mathrm{~km}=1.23 \mathrm{~km}$ 1000 m
5. METRICATION OF AREA (length x length)
a. SI units: $\mathrm{km}^{2}, \mathrm{~m}^{2}, \mathrm{~cm}^{2}$, etc.
b. Metric equivalent of Acre $=\operatorname{Hectare}(\mathrm{Ha})=100 \mathrm{~m} \times 100 \mathrm{~m} \quad$ which equals $10,000 \mathrm{~m}^{2}$; i.e. $10,000 \mathrm{~m}^{2} / \mathrm{Ha}$
e.g. determine the no. of hectares in a plot of land: $1.6 \mathrm{~km} \times 1.2 \mathrm{~km}=1600 \mathrm{~m} \times 1200 \mathrm{~m}=1,920,000$ $m^{2}\left(1 \mathrm{Ha} / 10,000 \mathrm{~m}^{2}\right)=192 \mathrm{Ha}$
6. METRICATION OF VOLUME (length x length x length)
a. volume- the amount of space within a container or enclosed within a solid
b. SI units of volume: cubic meters which can be equated to litres.
c. Can use same metric-prefix approach as given for meters, can be used with litres as well
e.g. $1 \mathrm{I}=1000 \mathrm{ml}=.001 \mathrm{kl}$ and so on
e.g. convert 17 litres to milliters:
$17 \mathrm{I}(1000 \mathrm{ml} / \mathrm{l})=17,000 \mathrm{ml}$
d. E.g. of problems converting volume in metric system
(1) Find the volume in liters of a rectangular tank (lxwxh) $2 \mathrm{~m} \times 20 \mathrm{dm} x$ 28 cm
7. METRICATION OF MASS
a. Mass - quantity of material contained in a given body
(1) Weight - measure of the force of gravity upon a given body.

Thus mass and weight are interchangeable under a given force of gravity, but may differ in cases of 2 different gravitational forces (e.g. a given mass will have different weights on the earth as compared to the moon (G moon = $1 / 6 \mathrm{G}$ earth), but the mass or quantity of material occupying space will be same on earth as on the moon).
b. Metric unit of measuring mass = gram, kilogram, etc.
(1) converting from volume to capacity to weight:
$1000 \mathrm{cu} . \mathrm{cm}=1000 \mathrm{ml}=1000$ gram of pure water
For pure water: $1 \mathrm{~L}=1 \mathrm{Kg}$, thus 1 gm of water $=1 \mathrm{ml}$ of water $=1 \mathrm{cu} . \mathrm{cm}$
c. E.g. of metric conversions: convert 2700 mg to grams
$2700 \mathrm{mg}(1 \mathrm{gm} / 1000 \mathrm{mg})=2.7$ grams
8. METRIC MEASUREMENT OF TEMPERATURE
a. \quad Metric unit = celsius, English unit = Farenheit
b. water freezes at $32^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}$ water boils at $212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}$
c. Conversion Factors:
(1) From C to $F: F=9 / 5 C+32^{\circ}$
(2) From F to $\mathrm{C}: \mathrm{C}=5 / 9\left(\mathrm{~F}-32^{\circ}\right)$
(a)
d. CONVERSION FROM ENGLISH SYSTEM TO METRIC AND VICE VERSA
(1) Conversion charts/factors given for units of length, area, volume, and weight/mass on p. 300.
(2)
(a) E.g. of conversion problems:
(b)

In-Class Exercise

Given that 1 yard $=0.9144$ m, how many meters are there in 5360 yards?

C. Dimensional Analysis

1. Dimension - physical quantity, common physical quantities

$$
\begin{aligned}
& \mathrm{L}=\text { distance } \\
& \mathrm{M}=\text { mass } \\
& \mathrm{T}=\text { time } \\
& \mathrm{L}^{2}=\text { Area } \\
& \mathrm{L}^{3}=\text { Volume } \\
& \mathrm{L} / \mathrm{T}=\text { Velocity } \\
& \mathrm{L} / \mathrm{T}^{2}=\text { Acceleration } \\
& \mathrm{ML} / \mathrm{T}^{2}=\text { Force } \\
& \mathrm{ML}^{2} / \mathrm{T}^{2}=\text { Energy }
\end{aligned}
$$

2. Dimensionally-consistent formulas; units and dimensions must be consistent and algebraically sound; also refered to as "dimensionally homogenous" values
(a) Dimensional Analysis - process of algebraically balancing dimensions and units in an equation.

Example Equation: $x=x_{0}+v t$, where $x=$ distance, $v=$ velocity, $t=$ time.
Dimensional Analysis of example: $L=L+(L / T) T=L+L$ thus, length $=$ length
(b) Dimensionless quantities: ratios where the units cancel or are identical e.g. $4 \mathrm{~m} / 2 \mathrm{~m}=2$ a dimensionless ratio of lengths

In-Class Exercise: Show that $x=x_{0}+v_{0} t+0.5$ at 2
where x and $x_{0}=$ distances, $t=$ time, $v_{0}=$ velocity, and $a=$ acceleration; use dimensional analysis to demonstrate that the equation is properly constructed.
(1) equations that are derived from direct observation or experimentation, that do not possess dimensionally consistent units.
E.g. Manning's Equation derived from flow through an open channel (relationship derived from direct experimentation, data collection, and analysis of relationships):

$$
V=\left(D^{2 / 3 *} S^{1 / 2}\right) / n
$$

where $\mathrm{V}=$ velocity ($\mathrm{m} / \mathrm{sec}$), $\mathrm{D}=$ channel depth (m) $\mathrm{S}=$ slope (dimensionless), and $\mathrm{n}=$ roughness factor (dimensionless)
D. Significant Figures

1. defined - the number of significant digits in a quantity is equal to the number of digits that are known with certainty
e.g. A ball is rolls 21.2 cm in 8.5 sec , the velocity $=\mathrm{L} / \mathrm{t}=21.2 \mathrm{~cm} / 8.5 \mathrm{sec}=$ $2.491176 \mathrm{~cm} / \mathrm{sec}$
however, the minimum no. of siginicant digits in the calculation is 2 for the value of 8.5 sec , thus the answer must be limited to 2 significant digits, i.e. $\mathrm{V}=2.5 \mathrm{~cm} / \mathrm{sec}$
E. Scientific Notation - using numbers in combination with powers of ten; standard notation:
e.g. $2500=2.5 \times 10^{3}$ e.g. $0.000036=3.6 \times 10^{-5}$

F. Orders of Magnitude

1. Magnitude refers to factors of powers of 10
e.g. in comparing 100 to 1000,1000 is one order of magnitude greater than 100

In-Class Exercise:

a. How many orders of magnitude are these two numbers apart: 100 vs. 10000000
b. Approximately how many orders of magnitude are these two numbers apart:

3475 vs. 75849300
II.Algebra Review / Graph Function Review
A. Unit Conversion and Unit Management

1. Keeping track of unit dimensions in equations is very important
2. Unit algebra is based on simple unit cancelling
E.g. Given the fractional equation:

since there is a 4 in the numerator and 4 in the denominator, we can short-cut by simply cancelling out the 4 above, and 4 below $(4 / 4=1) \ldots$ and we find that the equation is equal to 2 .

By analogy, given the algebraic equation: $\quad \mathrm{Y} * \frac{2}{\mathrm{Y}} \quad$ (note here "*" $=$ times)
since there is a " Y " in the numerator and Y in the denominator, we can short-cut by simply cancelling out the Y above, and Y below $(\mathrm{Y} / \mathrm{Y}=1) \ldots$ and we find that the equation is equal to 2.

By analogy, given that 1 mile $=5280 \mathrm{ft}$, we can convert $20,000 \mathrm{ft}$ to miles by using unit algebra:

1) set up the equation so that the units you are trying to cancel are in the numerator and denominator
2) check to see if the end unit is the one you're looking for....
$20,000 \mathrm{ft} * \frac{1 \mathrm{mile}}{5280 \mathrm{ft}}=3.79$ miles $\quad .$. in this case the $\mathrm{ft} / \mathrm{ft}$ cancels, leaving miles as the unit

In-Class Exercise: given that $1 \mathrm{in}=2.54 \mathrm{~cm}, 1 \mathrm{ft}=12 \mathrm{in}$, and $1 \mathrm{mi}=5280 \mathrm{ft}$; How many centimeters are in 863 ft ? Remember you are going from ft to cm , manage your units so that all cancel, except cm ! Show all unit algebra.
B. Algebraic Manipulation of Exponents

1. Negative Exponents
$a^{-n}=1 / a^{n}$
2. The zero power (any no. raised to the zero power $=1$)
$a^{0}=1$
3. Power of one (any no. raised to the 1 st power = that number)
$a^{1}=a$
4. Multiplication (exponential nos. with the same base)
$a^{m *} a^{n}=a^{m+n}$
5. Division
$a^{m} / a^{n}=a^{m-n}$
6. Distribution
$\left(a^{*} b\right)^{n}=a^{n *} b^{n}$
$\left(a^{m}\right)^{n}=a^{m^{*} n}$
C. Dividing Fractions
7. When dividing by a fraction, invert the fraction and multiply
e.g. $1 /(1 / 4)=1^{*}(4 / 1)=4$
e.g. $(\mathrm{m} / \mathrm{sec}) / \mathrm{sec}=(\mathrm{m} / \mathrm{sec})^{*}(1 / \mathrm{sec})=\mathrm{m} / \mathrm{sec}^{2}$
D. Graphing Review
8. Axis
a. $\quad \mathrm{Y}$ axis $=$ vertical axis (ordinate)
b. $\quad \mathrm{X}$ axis $=$ horizontal axis (abscissa)
9. Graph Trends (see attached figures)
a. Linear Increase / Decrease
b. Constant
c. Parabolic (curvilinear) Increase / Decrease

Linear Increase
Constant

Parabolic

3. Determining Slopes of Lines
a. slope of any line on a graph $=$ rise $/$ run $=\left(Y_{2}-Y_{1}\right) /\left(X_{2}-X_{1}\right)$

E. Rearranging equations algebraically

1. By using simple algebra, equations can be re-arranged to solve for other unknowns:
2. Examples

Given velocity and time, how to figure distance traveled during the time period?
Velocity $\quad V=d / t \quad$ rearranged to... multiply both sides of equation by $t \ldots \quad d=V^{*} t$
Given velocity and distance, how to figure time of travel?
Velocity $\quad V=d / t \quad$ rearranged to... $t=d / V$
Given acceleration and time, how to figure velocity acquired during the time period?
Acceleration $A=V / t \quad$ rearranged to... multiply both sides of equation by $t . \ldots V=A^{*} t$
Example: you are driving a constant $50 \mathrm{~km} / \mathrm{hr}$ for 35 minutes, how far have you traveled?
Example: you are accelerating in your car at $10 \mathrm{~km} / \mathrm{sec} / \mathrm{sec}$ for 90 sec , what is your velocity?

Time

1 b.y. = 1,000,000,000 years
1 m.y. $=1,000,000$ years
1 year $=365$ days
1 day = 24 hours
1 hour $=60$ minutes
1 minute $=60$ seconds

Length

1 mile $=5280$ feet
1 foot = 12 inches
1 yard = 3 feet
1 inch $=2.54 \mathrm{~cm}$
1 meter $=3.28$ feet
1 meter $=100 \mathrm{~cm}$
1 meter $=1000 \mathrm{~mm}$
$1 \mathrm{~km}=1000 \mathrm{~m}$
$1 \mathrm{mile}=1.61 \mathrm{~km}$
$1 \mathrm{~km}=0.62$ miles

Mass / Weight

1 pound = 16 ounces
1 ton $=2000$ pounds
$1 \mathrm{~kg}=1000 \mathrm{gm}$
1 ounce $=28 \mathrm{gm}$
$1 \mathrm{~kg}=2.2$ pounds

Volume

1 gallon = 4 quarts
1 quart = 0.95 litres
1 litre = 1.05 quartz
1 litre $=1000 \mathrm{ml}$
$1 \mathrm{ml}=1$ cubic cm (of pure water)

In-Class Problem:

A city landscape covers approximately $10^{8} \mathrm{~m}^{2}$ in area. A rain storm drops 10 mm of rain over the area in a 12 hour period. Given that the average diameter of a raindrop is 4 mm , and assuming that a raindrop is spherical in shape, and that the volume of a sphere $=4 \pi r^{3} / 3$ (where $r=$ radius of a sphere and $\pi=3.14)$; calculate how many rain drops fell on the city during the 12 hour period. Show all of your math work and unit algebra. (hint: calculate the total volume of rainfall on the city first)

