I. Graphing Review
A. Purpose of graphing - to plot data and allow general relationships to be visualized.
B. Basic X-Y (scatterplot) graph

1. Axis
a. $\quad \mathrm{Y}$ axis $=$ vertical axis (ordinate)
b. $\quad \mathrm{X}$ axis $=$ horizontal axis (abscissa)
C. Graph Trends (see attached figures)
2. Linear Increase / Decrease
3. Constant
4. Parabolic (curvilinear) Increase / Decrease

Linear Increase
Constant

Parabolic

D. Determining Slopes of Lines

1. \quad slope of any line on a graph $=$ rise $/$ run $=\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right) /\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)$

E. Linear Relationships - represented by uniform change of y relative to x
2. General Equation for Line: $\mathrm{Y}=\mathrm{mX}+\mathrm{B}$
where $\mathrm{Y}=$ variable on ordinate axis, $\mathrm{X}=$ variable on abcissa, $\mathrm{m}=$ slope of line, $\mathrm{B}=\mathrm{y}$-intercept (value on y axis where line intercepts it)
a. \quad Sloping line downward to right = negative slope
b. sloping line downward to left = positive slope
F. Relationships other than linear
3. Quadratic Equation
a. form: $Y=a X^{2}+b X+C$
where y is a function of x, while a, b, and c are constants
4. Polynomial Functions of higher order (expanded quadratic equation)
a. e.g. form: $Y=a X^{4}+b X^{3}+c X^{2}+d X+e$
5. Power Functions
a. form: $\mathrm{Y}=\mathrm{aX}$ b equivalent to: $\ln \mathrm{Y}=\mathrm{b}(\ln \mathrm{X})+\mathrm{a}$
6. Log Function
a. form: $\mathrm{Y}=\mathrm{b}(\ln \mathrm{X})+\mathrm{a}$
7. Exponential Function
a. form: $\ln \mathrm{Y}=\mathrm{bX}+\mathrm{a} \quad$ equivalent to: $\mathrm{Y}=\mathrm{aX} \mathrm{XX}^{\mathrm{X}}$

G. Best-Fit Functions

1. process of fitting functions to data using regression analysis
a. regression - curve fitting process that maximizes the trend of the fitted curve with the distribution of data
(1) Residuals - difference between fit Y values and actual Y values of data at given X values
(2) Coefficient of Determination

$$
\mathrm{r}^{2}=1-\mathrm{SSe} /(\mathrm{SSe}+\mathrm{SSr})
$$

where $\mathrm{r}=$ coefficient of determination, $\mathrm{SSe}=$ sum of squares of all residual values, $\mathrm{SSr}=$ sum of squares of the difference between all actual Y values and the fit Y value at each X location where the data point occurs
(a) Interpretation:
i) $\quad \mathrm{r}^{2}$ values between $0.7-1.0=$ good fit of function to data distribution
ii) $\quad r^{2}$ values between 0.5-0.7 $=$ moderate to poor fit
iii) $\quad r^{2}$ values $<0.5=$ poor fit to data
II. More on Logarithms
A. logarithms = inverse of exponential functions

1. examples
a. $\quad Y=10^{3}=1000$, then $\log _{10}(1000)=3$
b. $\quad Y=10^{-2}=0.01$, then $\log _{10}\left(10^{-2}\right)=-2$
c. If $Y=10^{n}$, then $\log _{10}\left(10^{\mathrm{n}}\right)=\mathrm{n}$
d. If $Y=X^{n}$, then $\log _{x}\left(X^{n}\right)=n$
B. Uses for logarithms
2. re-arranging equations containing exponential functions
3. reducing exponential functions / curves to straight lines
4. compressing large data ranges
C. Natural Logarithms - logs to the base "e", where $\mathrm{e}=2.718$

In-Class Example:

Logs are used in the classification of sediment grain sizes by use of the following equation:

$\phi=-\log _{2}(\mathbf{d})$ where $\phi=$ "phi" (greek letter f), and d = diameter of sediment grain in millimeters

If a grain has a diameter of $\mathbf{8} \mathbf{~ m m}$, what is it's corresponding "phi" size? show all work.

If a grain has a diameter of 4 mm , what is it's corresponding "phi" size? show all work.

If a grain has a diameter of 0.2 mm , what is it's corresponding "phi" size? show all work.
III. Overview of Graph Types
A. X-Y Scatterplot Graphs

1. linear axes
2. log-linear axes
3. log-log axes
B. Bar Graphs
C. Triangular Graphs (three end-member composition plots)
D. Polar-Azimuthal Graphs (directional scatter plots)
E. Rose Plots (directional histograms)

Example Bar Graph

Example Log Equation $Y=4 \operatorname{Ln}(X)+2$
Plotted on Linear Axes

Example Polynomial Equation $Y=2 X^{4}+3 X^{3}+5 X^{2}+4 X+5$

Example linear regression of scatter plot data

$$
\text { Example Quadratic Equation } Y=2 X^{2}+4 X+5
$$

Example Rose Diagram

Example Polar Plot

