G302 Class Notes - Angular Measurement

I. Angular Measurement

- a. Angular Measurement (based on circle)
 - i. Full Circle = 360 degrees
 - 1. 1 degree = 1/360 th of circle
 - (1) Subdivisions of Degree
 - (a) 1 degree = 60 minutes
 - (b) 1 minute = 60 seconds
 - (c) 1 degree = 60 min x 60 sec/min = 3600 sec
 - (2) Famous Angular Measurements
 - (a) Right Angle = 90 degrees
 - (b) (Straight Angle) Line = 180 degrees
 - (c) Circle = 360 degrees
 - (d) Acute Angle < 90 degrees
 - (e) Obtuse Angle: between 90-180 degrees
 - (f) Complementary Angles two angles add up to 90 degrees

- Area = $pi(r)^2$
 - 2. Radians unit of angular measurement based on the length of an arc circumscribed by a circle
 - a. Circumference of Circle = $2\pi r$,

where π = circumference of circle / radius of circle = 3.14, and r = radius of circle

b. Circle = 360 degrees = 2π radians; 180 degrees = π radians

pi = circumference / diameter = c / 2r

Degree Measure of an Angle

Let an angle be in standard position. It is said to have the measure one **degree**, written 1° , if the angle is obtained by rotating its terminal side $\frac{1}{360}$ of a complete revolution in the positive (counterclockwise) direction. Thus, an angle obtained from one complete counterclockwise revolution has a measure of 360° ; an angle obtained from half a complete counterclockwise revolution has a measure of 180° , an angle obtained from one quarter of a complete counterclockwise revolution has a measure of 90° , and so on. An angle obtained from half a complete revolution in the clockwise (negative) direction has a measure of -180° . If the terminal side is not rotated so that the initial and terminal sides coincide, then the angle has measure zero degrees, written 0° . Some angles are depicted in Figure 2.

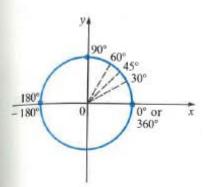
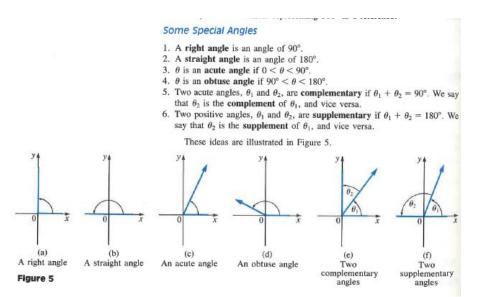



Figure 2

