Statistics

7.1 Introduction

This chapter is a very brief introduction to the subject of geological statistics.
Statistics is probably the most intensively used branch of mathematics in the
Earth sciences. For this reason, even an introduction to the subject fills an
entire book and there are a large number of such texts. I do not intend, there-
fore, to cover this topic in the depth it deserves but to give an introduction
which I hope will help ease you into the subject and allow you to go on to
other texts with some idea of what to expect.

A major problem with statistics is that it is very easy to mislead. A
good example comes from the statisticians’ favourite subject, coin-tossing.
If a coin is tossed six times it is quite likely that there will be three heads.
It is very unlikely that six heads will occur. If I then went on to state that
it is more probable that the result will be HTHTHT than HHHHHH
(where H represents heads and T tails) I would be seriously misleading you.
Both of these events are equally unlikely! The reason that the most likely
result is three heads and three tails is that there are a large number of ways of
doing this (e.g. HHTHTT, HTHTTH and HHHTTT) whereas there is only
one way to get six heads (i.e. HHHHHH). Any particular combination of
heads and tails is as likely as any other. Other ways in which statistics can
mislead are more subtle and even experts can, and do, make very serious
errors. However, don’t let me put you off statistics. If you work carefully and
thoughtfully, statistics can produce results that could not be obtained in
any other way.

Question 7.1 Write down all possible results of tossing a coin four times.
Tabulate the results in terms of the number of different ways of obtaining
0 heads, 1 head, 2 heads, 3 heads or 4 heads. What is the most likely
number of heads to get?

7.2 What is a statistic?

I have been writing up to now as if everybody knows exactly what a statistic
is. However, even this term is popularly misused. A statement such as ‘in
1970 the oil refining capacity of Belgium was 32.6 million tonnes per year’ is
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a fact, not a statistic. So what is a statistic? Let me start with an example of 5
situation in which statistics might be useful.

Consider a pebbly beach. How would you go about determining the typ-
ical composition, mass and length of the pebbles on this particular beach? If
I were to pick up one pebble from this beach I would have a specimen from
the beach. This would probably tell me the composition of some of the
pebbles. However, this specimen might be very untypical. A better way to get
information would be to pick up one hundred or one thousand pebbles from
random locations on the beach. I would then have a sample from the beach,
This would give me a much better idea of the most common rocks the pebbles
were produced from and their typical masses and lengths. Finally, I could
examine (in principle) all the pebbles from the beach. This is the population
of all pebbles from this beach and I could then make definitive statements
about the composition of the beach. To recap, a specimen is one object, a
sample is a number of objects and a population is all the relevant objects.
Note that the word sample is frequently used in geology to denote a specimen
(e.g. ‘a sample of sandstone’ meaning a single piece of sandstone). This is con-
fusing and I recommend that you use the word ‘specimen’ whenever possible.

Question 7.2 If I have six books from a library containing 10 000 books,
do these six form a specimen from the library, a sample from the library or

the library population?

Now we can return to the idea of a statistic. Is the average mass of a pebble a
statistic? This depends on whether this average is determined from a sample
of pebbles or from the total population of pebbles. The average of the popula-
tion is a parameter of the beach and is a simple fact (just like the Belgian oil
refining capacity). The average of a sample, on the other hand, is a statistic; it
Is an attempt to estimate the average mass of all the pebbles by calculating the
average mass of some of the pebbles. In other words, a statistic is an estimate
of a parameter based upon a sample of the population. As another example,
consider voting patterns in an election. The estimates of voting intentions
obtained by polling organizations before the election itself are statistics (they
are based on questioning a small minority of voters), whereas the final official
result is a parameter of the election.

Returning to the beach example, the way in which the masses vary from
pebble to pebble is described by many parameters in addition to the average
mass. For example, the pebble masses may all be very close to one another or
they may be widely different. One parameter which quantifies this is called
the standard deviation. This will be defined more precisely in the next section.
Another parameter is called the skew of the population and this tells us
whether there are more pebbles which are heavier than the average or more
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a pebbles which are lighter. All of these parameters would normally be estim-
ated from a sample of the population. Each of the resulting estimates of a
parameter is a statistic.
f Whether or not these statistics are good estimates depends on how well the
L sampling was performed and also on the size of the sample. Two pebbles
g picked up from one place on the beach are unlikely to yield a good estimate of
t the average mass. One hundred pebbles picked up at random from all over
[ the beach will give a much better estimate. Designing an experiment or field-
work so that the information collected represents a good sample is an import-
ant part of a scientific approach to a problem.

7.3 Commonly encountered parameters and statistics

Table 7.1 shows the masses of 100 pebbles from a beach. From this sample
we might wish to get an idea of the typical mass and also the spread of masses.
Each of these can be quantified in several different ways.

Table 7.1 The masses of 100 pebbles sampled from a beach.

Pebble Pebble Pebble Pebble
number Mass (g) number Mass (g) number Mass (g) number Mass (g)

1 374 26 294 51 284 76 287

2 389 27 256 52 403 77 340
. 3 358 28 359 53 341 78 401
4 395 29 352 54 435 79 422

S 371 30 330 5SS 307 80 369

6 334 31 269 56 420 81 379

7 224 32 355 57 342 82 432

8 335 33 283 58 331 83 368

9 256 34 301 59 331 84 338
10 340 35 346 60 331 85 327
11 374 36 393 61 290 86 433
12 423 37 386 62 383 87 370
13 338 38 338 63 370 88 343
14 373 39 380 64 302 89 450
15 342 40 357 65 394 920 318
16 242 41 326 66 329 91 384
17 318 42 403 67 324 92 EAN
18 454 43 317 68 283 93 366
19 346 44 301 69 358 94 324
20 408 45 394 70 311 95 353
21 403 46 407 71 265 96 277
22 384 47 350 72 364 97 359
23 397 48 375 73 322 98 400
24 307 49 303 74 283 99 314
25 409 50 384 75 367 100 389
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The typical mass can be described by the mean, io,

i = (Total mass of the sample)/(number of pebbles)
=35018/100=350.18 g (7.1)

for the pebbles in Table 7.1. Frequently, this computation will be described
using the following notation:

N
7=— D w (7.2)

where w; is the mass of the ith pebble and N is the number of pebbles in
the sample (i.e. w, is the first mass in Table 7.1 (374 g), w, is the 2nd mass
(389 g) and so on). The symbol ‘¥ (sigma) is an instruction to add together
the w/’s (i.e. add the masses of the pebbles together). The i = 1 below the X,
and the N above, indicate that all items numbered between 1 and N have
to be added (i.e. the mass of 100 pebbles in our example). Finally, the result
of this addition is divided by N (i.e. 100 in our case). Equation 7.2 may be
rewritten in words as ‘the average mass may be found by summing the masses
of N pebbles and dividing by N’. This notation will be used repeatedly
throughout this chapter so make sure that you understand it. Note also that
drawing a line over a letter (e.g. iz}, to denote an average, is a very common
convention.

An alternative way of quantifying the typical mass is to use the median
value. This is obtained by ranking the pebbles from the heaviest to the lightest
and taking the central value. If we had 5 pebbles, the central one would be
the third heaviest pebble (also the third lightest). Similarly, for 99 pebbles the
median would be the mass of the fiftieth heaviest pebble. However, for an
even number of pebbles there is no central pebble. For example, for 4 pebbles
the second and third are equally close to being central. In such cases the pro-
cedure is to average the two most central values. For 100 pebbles we must
average the mass of the fifticth and fifty-first pebble. Ranking of the beach
sample in Table 7.1 results in Table 7.2. Pebbles 50 and 51 are then 353 g
and 352 g, respectively. Thus, the median mass is the average of 353 and 352,
i.e. 352.5 g. Note that this is different to the average mass.

So much for statistics which indicate the typical mass. What about other
aspects of the distribution of pebble masses? For example, the pebbles might
all have very similar masses or the masses might be very widely dispersed.
What is needed is a measure of dispersion. A very simple way to indicate
this would be to give the range of values, i.e. the lowest and highest masses
in the sample. In the case of Table 7.1 (or better, Table 7.2) the range is from
224 g to 454 g. However, the heaviest and lightest pebbles might be very
untypical. It would be better to use a measure of the spread of masses which is
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Table 7.2 Pebbles ranked according to decreasing mass.

Rank Mass (g) Rank Mass (g) Rank Mass (g) Rank Mass (g)
1 454 26 384 . 51 352 76 318
2 450 27 384 52 350 77 318
3 435 28 383 53 346 78 317
4 433 29 380 54 346 79 314
5 432 30 379 55 343 80 311
6 423 31 375 56 342 81 307
7 422 32 374 57 342 82 307
8 420 33 374 58 341 83 303
9 409 34 373 59 340 84 302

10 408 35 371 60 340 85 301
11 407 36 370 61 338 86 301
12 403 37 370 62 338 87 294
13 403 38 369 63 338 88 290
14 403 39 368 64 335 89 287
15 401 40 367 65 334 90 284
16 400 41 366 66 331 91 283
17 397 42 364 67 331 92 283
18 395 43 359 68 331 93 283
19 394 44 359 69 330 94 277
20 3% 45 358 70 329 95 269
21 393 46 357 71 327 96 265
22 389 47 355 72 326 97 256
23 389 48 355 73 324 98 256
24 386 49 355 74 324 99 242
25 384 50 353 75 322 100 224

determined by all of the pebbles in the sample rather than a small minority.
One such measure is the mean square deviation from the mean. This is also
called the variance. For the total population of pebbles this is denoted by 62
and is defined as:

02 = (mass — average mass)? (7.3)

where the bar over the expression indicates that the average value of this
quantity should be calculated. In other words, we first find the average pebble
mass and then calculate the difference between this and the mass of each indi-
vidual pebble. The result is then squared which gives the square deviation
from the mean. Finally, the average value of this for all the pebbles is found.
The deviation of each pebble from the mean is squared since some of the
deviations are negative (mass less than average) and some are positive (mass
higher than average), leading to an average deviation of zero. Squaring all the
deviations from the mean ensures that the average of a series of positive num-
bers is found which will, of course, also be a positive number. Notice that if
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the masses are all very similar then they will all be very close to the mean lead-
ing to a small value for the variance. If, on the other hand, the masses differ
widely from one another then some of these masses will be a long way from
the average value and the variance will be much larger. The standard devia-
tion, ¢, which is simply the square root of Eqn. 7.3, could also be used to
indicate the range of values in the population.

However, it would be better to have a measure of distribution width
based upon a sample rather than the entire population. An obvious candidate
would be the sample variance, s2, i.e. apply Eqn. 7.3 to a sample rather than
the population. In terms of the notation introduced earlier this gives

1 N
2 = N ; (w, — i) (7.4)

where v is the average mass defined by Eqn. 7.2, There is a slightly easier
method for calculating s2 since Eqn. 7.4 can be rearranged to give

$2 = w2 — (D)2 (7.5)

i.e. the mean of the squared masses minus the square of the mean mass
(proof of this is given as an exercise at the end of the chapter). Using the
figures from Table 7.1, the square of the pebble 1 mass is 374 x 374 =
139 876 g2. Repeating this for all pebbles and taking the average then gives
a mean square mass of 124 876 g2. The square of the mean mass, on the
other hand, is 350.182 =122 626 g2, Thus, using Eqn. 7.5, the sample vari-
anceis 124 876 — 122 626 = 2250 g2.

As a measure of the width of the distribution this number has several dis-
advantages. The first problem is that @ itself has been estimated from the
sample. In fact, the estimate of @ obtained from Eqn. 7.2 has the property
that it is the value which minimizes the sample variance. If another value is
used in Eqn. 7.4, in place of i7, a larger value for s2 is always obtained. Hence,
if the true population mean were substituted into Eqn. 7.4 instead of its
estimate, i0, a larger value for s2 would result. Equation 7.4 is therefore
biased towards a smaller value than the true one. To counteract this effect the
unbiased estimate, 52 is used instead, where

§2=[N/(N - 1)]s2 (7.6)

Note that, for large sample sizes, this increases the variance very slightly,
whereas for smaller sample sizes this variance estimate is significantly larger
than s2, A formal proof that §2 is a better estimate of the population variance
than s2 is beyond the scope of this chapter, but you should be able to see that
it has the effect of altering s2 in the right direction (i.e. it increases it by an
amount which depends upon the sample size).
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d- Table 7.1 has a value for N of 100, the figure calculated above for s2
~r then produces an estimate of the population variance of §2 = 100 x 2250/99
n =2273 g2.
- Another problem with using varjance to measure distribution width is
o that the final number (in this case 2273 g2) is not very understandable. What
does this result actually mean? Perhaps the simplest way to look at this is to
h use the variance for comparison purposes. Take two samples of 100 pebbles
from two different beaches. If the first beach has a larger variance for the
1 masses than the second, the pebbles on the second beach tend to have more
similar masses to each other than those from the first beach.
The ‘interpretability’ of variance is further improved by taking its square
) root. This gives an estimate, $, of the population standard deviation . In
the case of our data this yields an answer of V2273 = 47.7 g. For reasons that
are covered in more detail later (see Section 7.5), this result implies that
around 68% of all pebble weights should fall within 47.7 g of the mean value
(350.2 g). Thus, 68% of all weights should fall between 302.5 gand 397.9 g.
In fact, out of the 100 measurements in Table 7.1, 65 fall in this range which
is, of course, 65% of the total. Thus, the theoretical prediction that 68% of the
pebble weights should fall in this range is not at all bad. Standard deviation is
therefore a very simple way of describing the range of values in your data. A
large standard deviation implies a wide spread of values whilst a small stand-
ard deviation implies a small spread.

Question 7.3 Using the first 10 values from Table 7.1, calculate:

(i) the sample mean;

(ii) the sample median;

(iii) the sample variance.

| Also estimate:

{iv) the population variance;

(v) thestandard deviation.

Compare these results to those obtained above from the sample of
100 pebbles.

There are many other parameters and statistics which could be calculated for
given populations and samples. However, the most important are undoubtedly
thé mean and the standard deviation and these are the ones with which you
should be most familiar.

7.4 Histograms

It is useful to have a method for displaying, for example, the distribution of
pebble masses in Table 7.1 graphically. The simplest such method uses the
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Table 7.3 Number of pebbles in

Range (g) Number Table 7.1 which fall into 50-g-wide
classes.
201-250 2
251-300 12
301-350 35
351-400 36
401-450 14
451-500 1
T 7]
; 4 4 J } 4 N
201-250 251—-300 301-350 351-400 401450 451-500

Pebble mass (g)

Fig. 7.1 The frequency histogram resulting from plotting the data from Table 7.3.

frequency histogram which allows the general properties of the distribution
to be visualized. To construct such a plot we must first count the number of
occurrences of pebble masses within specified ranges. For example, there are
2 pebbles in Table 7.2 with masses between 201 g and 250 g. Table 7.3 lists
the number of pebbles with masses in 50-g-wide classes from 201 gto 500 g.
Such a table is called a frequency distribution. If these figures are plotted as a
bar chart, the result is a frequency histogram (Fig. 7.1). From this we can
instantly see that the masses most commonly fall between 300 g and 400 g.

It was pointed out in Chapter 6 that, if your data is a function of a cyclic
variable such as direction or longitude, it is best represented by a polar plot.
The same is true for histograms. For example, cross bedding and ripple marks
in sandstones can be used to indicate the palaeocurrent direction, i.e. the
direction of transport of ancient rivers or submarine currents. Such data will
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Table 7.4 Number of palacocurrent

measurements as a function of direction. Direction range

(°EofN) Number of measurements
1-30 43
31-60 23
61-90 10
91-120 11
121-150 14
151-180 20
181-210 10
211-240 4
241-270 15
271-300 20
301-330 40
331-360 36

usually have considerable scatter due to uncertainties in measurement and
the effect of local topographic features. Thus, if the general direction of trans-
port is required, the best course of action is to collect a large number of meas-
urements and then to plot these on a histogram. Table 7.4 lists the frequency
data from such a series of measurements.

Now, an obvious way to plot this data is as a histogram on polar graph
paper. In other words, plot the frequency as a function of direction such that
direction is represented by angle around the plot and the frequency is propor-
tional to distance from the plot centre. This yields a rose diagram (Fig. 7.2)
from which it is very clear that the main current direction was roughly NNW.
Spreadsheet Rose.xls can be used to plot this, and other similar, data.

7.5 Probability

Probability is a central concept in statistics. In essence, the idea is very simple.
If I perform a very large number of measurements on field data or experi-
mental data then I can determine how often a particular result is obtained.
This will then allow me to predict the probability that a particular result will
occur in any future measurement. Thus, if I toss a dice 1000 times and the
number two occurs 400 times, I can predict that the probability is 0.4 of two
being the result of my next throw of the dice. I can also conclude that the dice
is pré)bably loaded. Note that an event which has a probability of one is
certain to occur whilst an event whose probability is zero will never occur.
Similarly, for the data shown in Table 7.3 and Fig. 7.1, the most probable
weight range (351-400 g) occurs in 36 cases out of 100, i.e. 36 % of the time.
In other words, an estimate of the probability of a pebble, picked up at ran-
dom from the beach, being in the range 351-400 g is 0.36. Repeating this
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Fig. 7.2 Rose diagram of the data from Table 7.4.

Table 7.5 Estimates of probability for

Range (g) Probability cach pebble mass range using the data
from Table 7.1. Note that results are

201-250 0.02 simply those from Table 7.3 divided by

251-300 0.12 the number of specimens (100).

301-350 0.35

351-400 0.36

401-450 0.14

451-500 0.01

procedure for the entire table leads to Table 7.5 which is a probability dis-
tribution. The results can then be plotted in a new histogram (Fig. 7.3). Note
that the shape of this is identical to Fig. 7.1 except that the vertical scale has
been shrunk by a factor of 100 (i.e. divide by the size of the sample).

This probability distribution can be compared to various theoretical dis-
tributions. The most important of these is the normal distribution otherwise
known as the Gaussian distribution. This has the form
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201-250 251-300 301-350 351-400 401-450 451-500
Pebble mass (g)

Fig. 7.3 Probability distribution histogram for the data from Table 7.5.

_ exp|—(x — x)2/202]
\2mo2

where P(x) is called the relative probability of obtaining the value x,

X is the average of all x values,

o is the standard deviation of the distribution.

A graph of this function is shown in Fig. 7.4 for the case of mean equal to 5.0
and standard deviation equal to 2.0. Note that the maximum probability
occurs at the mean value, that the curve is symmetrical about the mean and
that a large fraction of the area under the graph occurs between X — ¢ and
X + o (i.e. the dark grey area).

The probability of obtaining values within a specified range is governed by
two things. Firstly, the higher the graph is within that range, the higher the
probability is. Thus, given the graph shown in Fig. 7.4, you are more likely
to obtain a value between, say, 5 and 6 (where the graph is high) than you
are between 1 and 2. Secondly, the probability of obtaining a value within a
specified range increases as the width of the range increases. Thus, you are
more likely to obtain a value between 5 and 7 than between 5 and 6 because
more possibilities are included in the second case. In fact, the relative prob-
ability distribution is defined such that the probability of obtaining a value
within a given range is given by the area under the graph over that range.
For example, the probability of obtaining a value between 1.0 and 2.0 is

P(x)

(7.7)
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Fig. 7.4 Gaussian probability distribution for a mean of 5.0 and standard deviation of 2.0. The
area of the light grey shaded region gives the probability of a specimen lying in the range 1-2.
Similarly, the dark grey area gives the probability of a specimen lying between 3—7. The total
area under the graph is 1.0.

given by the light grey area shown in Fig. 7.4 whilst the (much greater) prob-
ability of obtaining a value between 3 and 7 is given by the dark grey area.
Given this definition, the total area under the graph is 1.0 since the probabil-
ity of obtaining some value is 1.0. This is, indeed, the case for the Gaussian
distribution defined in Eqn. 7.7.

So, how can such areas be found? The simplest method is to use a table
showing area under the curve as a function of multiples of standard deviation
from the mean (e.g. Table 7.6). From such a table it can be seen that the area
of the dark grey region in Fig. 7.4 is 0.683. Similarly, the area under the curve
within two standard deviations (i.e. between 1.0 and 9.0 in the example
shown in Fig. 7.4) is 0.954.

The table can also be used to find areas such as the grey zone in Fig. 7.4. To
do this, you should note that 1.0 is two standard deviations from the mean
whilst 2.0 is 1.5 standard deviations from the mean. From Table 7.6 it can be
seen that the area within 1.5 ¢ is 0.866 whilst the area within 2 ¢ is 0.954.
Thus, the area between 1.5 6 and 2.0 6 is 0.954 — 0.866 = 0.088. However,
there are two such zones, one between 1.0 and 2.0 and the other between
8.0 and 9.0 (see Fig. 7.5). The area between 1.5 & and 2.0 ¢ is shared equally
between these two regions and thus the area of the zone between 1.0 and 2.0
is half of 0.088 (i.e. 0.044). Thus, if a process has a probability distribution
like that shown in Fig. 7.4, the probability of obtaining a result between 1.0
and 2.0 is 0.044.
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Table 7.6 Area under the Gaussian curve as a function of number of standard deviations from
the mean. For example the probability of lying within 2 sd of the mean is 0.954.

Number of Number of Number of
standard standard standard
deviations Area deviations Area deviations Area
0.00 0.000
0.10 0.080 1.10 0.729 2.10 0.964
0.20 0.159 1.20 0.770 2.20 0.972
0.30 0.236 1.30 0.806 2.30 0.979
0.40 0.311 1.40 0.838 2.40 0.984
0.50 0.383 1.50 0.866 2.50 0.988
0.60 0.451 1.60 0.890 2.60 0.991
0.70 0.516 1.70 0.911 2.70 0.993
= 0.80 0.576 1.80 0.928 2.80 0.995
—+— 0.90 0.632 1.90 0.943 2.90 0.996
10 1.00 0.683 2.00 0.954 3.00 0.997
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4 | mean. Note that there are two such zones.
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r, |
n Ths, if a population variable has a Gaussian probability distribution, the
y probability of obtaining results within specified ranges can be calculated.
0 However, the Gaussian distribution function is an idealized model. Real
n populations are often approximately Gaussian but never exactly so. How
) good is the Gaussian model at predicting the probabilities shown in Table 7.5

for the pebble weights on our beach? Now, the mean and standard deviation
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Table 7.7 Comparison of the probabilities estimated in Table 7.5 with a Gaussian distribution
having the same mean and standard deviation.

Range (g) Measured probability Range (multiples of 6) Gaussian probability
201-250 0.02 ' -3.10t0-2.06 0.019
251-300 0.12 -2.06to—-1.02 0.134
301-350 0.35 -1.02t00.02 0.354
351-400 0.36 0.02t0 1.06 0.347
401-450 0.14 1.06 t0 2.10 0.127
451-500 0.01 2.10t0 3.13 0.017

for the pebble weights have been estimated to be about 350 g and 48 g,
respectively. Using these values, Table 7.6 can be used to predict the prob-
abilities in various ranges of weights. The results are shown in Table 7.7
together with the measured probabilities shown in Table 7.5 (in fact T have
used a slightly more detailed table than Table 7.6). For this data set the
Gaussian model seems to be pretty good.

Question 7.4 The range from 401 g to 450 g starts 1.06 standard devi-
ations above the mean and ends 2.10 standard deviations above the mean.
Using Table 7.6 and these values, estimate the Gaussian probability of
a pebble weight lying in this range. N.B. To get the area under the curve
within 1.06 standard deviations (call it P, ) assume that it is given by the
expression

Plog=0.6P,,+04P ,

i.e. an average of the probabilities corresponding to 1.0 6 and 1.1 0
weighted towards the 1.1 ¢ probability. Check the result using spread-
sheet Gauss.xls.

7.6 Best fit straight lines

So much for statistical analysis of a single variable. What about analysis
of two related variables? As discussed in Chapter 2, it is very common for
graphs of the relationship between pairs of geological variables to be well
approximated by straight lines. However, the fit is never perfect. Thus, a
straight line must be found which passes as close to all the data points as
possible. The problem of how to find this line is ideally suited to a statistical
treatment.

First, we have to define what we mean by a best fit straight line. The usual
definition is that the mean square difference between the data and the straight
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Fig. 7.6 A straight line drawn through
some x—y data such that it passes close
to all of the points. The deviation, Ay,
of one of the points from the line is also
shown. X

line should be a minimum. Figure 7.6 illustrates this idea. The graph of y as a
function of x consists of seven points and a straight line has been drawn
which passes close to all of these. The deviation, Ay, of one point from the
straight line is also shown. The mean square deviation is found by calculating
the square of this distance for all of the points and then finding the average.
Now, if the line is a poor fit to the data, Ay for many of the points will be large
and the average squared value will also be large. A good fit for the straight
line will result in a much smaller average. The best fit straight line is defined as
that line which results in the smallest possible mean square deviation. The
process of finding such a line is called linear regression.

We now need a method for estimating the gradient, m, and intercept, c, of
this straight line. A formal proof is, again, beyond the scope of this chapter
but the result is that the best gradient is given by

m:any—Zny
nYx2 — (2 x2

(7.8)

In this expression all summations are evaluated for # measurement pairs
(x,). The first summation, ¥, xy, is simply the sum of all products X1Y1s X5V,
up tox,,y,. Similarly, ¥ x is the sum of all the x values, ¥, v is the sum of all the
y values and ¥ x2 is the sum of all the x values squared. The best estimate for
the intercept then follows directly from the fact that the best fit line passes
through the point (%, %), i.e. the point defined by the average x value and the
average y value. Thus,

y =(/m9? +c
giv‘i\ng
c=y—mx (7.9)

Table 7.8 shows the age versus depth data used in question 2.11 of Chapter 2
but with the first point excluded. Now, given that the remaining data when
plotted seemed to fit a reasonably good straight line, what is the best fit line
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Table 7.8 Age versus depth data from

Depth (cm) Age (years) question 2.11 but with first data point
excluded.
407 10 510
545 11 160
825 11 730
1158 12 410
1454 12 585
2060 13 445
2263 14 685

through these points? First, we should construct all the summations given in
Eqn. 7.8. In this example, we need to plot age as a function of depth and
therefore Depth replaces x and Age replaces y. The summations required by
Eqn. 7.8 are then

3. depth = 407 + 545 + 825 + 1158 + 1454 + 2060 + 2263

=8712 cm (7.10)
Y age=10510+11 160 + 11 730 + 12 410 + 12 585 + 13 445 + 14 685
=86 525 years (7.11)

Y. depth.age = (407 x 10 510) + (545 x 11 160) + (825 x 11 730)
+ (1158 x 12 410) + (1454 x 12 585) + (2060 x 13 445)
+ (2263 x 14 6895)
=4277 570+ 6 082200+ 9 677 250 + 14 370 780
+ 18298 590 +27 696 700 + 33 232 155
=113 635 245 cm years (7.12)

S, (depth?) = 4072 + 5452 + 8252 + 11582 + 14542 + 20602 + 22632
=13 963 148 cm? {7.13)

From Eqns. 7.10 and 7.11, together with the fact that there are seven mea-
surements, the mean depth and mean age are

depth =8712/7 = 1245 cm (7.14)
and
age = 86 525/7 = 12 361 years (7.15)

Thus, substituting results 7.10 to 7.13 into Eqn. 7.8 gives

_ 7x113 635 245 - 8712x 86 525

7 x13 963 148 - 8712 x 8712
=1.91 years cm! (7.16)

Substituting this into Eqn. 7.9 gives the best estimate of the intercept as
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Fig. 7.7 The data from Table 7.8 together with a best fit straight line.
¢ = age — (m.depth)
=12 361 - (1.91 x 1245)
= 9983 years (7.17)

The data from Table 7.8 is plotted in Fig. 7.7 together with a straight line of
gradient 1.91 yr cm-1 and intercept 9983 years. As you can see, the fit is
remarkably good. Note that, before starting this exercise, I deliberately
excluded a point that did not fit the general linear trend. This means that the
resultant line is not appropriate at ages close to this point (i.e. for sediments
less than about 10 000 years old). However, it was important to exclude this
point since fitting a straight line through points which do not have a simple
linear trend would be a meaningless exercise.

Question 7.5 Calculate the best fit straight line through the data in
' Table 2.2 of Chapter 2.

The principles behind linear regression can be applied to other functions. For
example, spreadsheet Bfit.xls is set up to calculate best fit polynomials
through datasets and can be used for fitting curves of the form of Eqn. 2.9 (see
Section 2.4) forn =0, 1,2, 3 and 4. Note that for 7 = 0 it will simply calculate
the mean of the data, for 7 = 1 it will ind the best fit straight line and for n = 2
it will fit a quadratic function.
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7.7 The importance of error estimates

All data values are wrong! It is impossible to measure anything with infinite
precision and so any measured quantity must differ slightly from its true
value. A pebble mass may be measured to the nearest gram but is unlikely to
really weigh an exact number of grams. Pebble 1 in Table 7.1 is quoted as
weighing 374 g but it might be 374.126 547 g or 373.556 321 678 g or any
other mass between 373.5 gand 374.5 g.

To make matters worse, many measurements are hard to make even as
accurately as the measuring instrument can theoretically manage. Dip and
strike measurements, for example, could in theory be measured with a stand-
ard geologist’s compass clinometer to the nearest degree. In practice it is hard
to make measurements this accurately and most field measurements are
probably in error by several degrees.

An additional problem is that data values themselves may be inherently
variable. The dip of a planar bed will change slightly between nearby loca-
tions because no real sedimentary surface is perfectly flat. Hence, any single
measurement on that bed is likely to give a dip that differs at least a little from
the average bed dip.

Table 7.9 shows dip and strike measurements taken by 20 different stu-
dents at two different field locations. You can see that, for either of the two
locations, the individual dip values vary by as much as 10° whilst the strike
values are even more variable. These variations occur for the reasons given
above, namely that the measurements are hard to do accurately and, in any
case, the dip and strike depend upon the exact spot at which the measure-
ments were taken.

Data without error estimates are useless. Take student number 1’s meas-
urements in Table 7.9. An interesting question for the student to ask might
be ‘is the dip higher at location B than at location A?’ From his dips of 22° at
location A and 25° at location B it is impossible to say since the increase may
be real or may be entirely due to measurement error. Dips differing by 60° are
clearly different but what if they differ by 1°? Most geologists would agree
that a 1° difference is not significant, but why would they say this? The reason

| is that 60° is much bigger than any likely uncertainty in the measurement
whilst a 1° difference is a lot less than variations caused by measurement
error or unevenness of the bed.

Carefully taken dip measurements should be accurate to about 3° (ru
explain how to estimate this in Section 7.8). Hence, with student number 1’s
data, it is very hard to be sure if the dip has increased between locations. The
difference between the dips is uncomfortably close to the uncertainty in the
measurements.
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Table 7.9 Dip and strike measurements from two locations measured by 20 different students.

Location A Location B

Student Strike .Dip Strike Dip

1 51 22 60 25

2 45 23 54 22

3 44 21 69 22

4 61 24 59 19

S 37 21 58 27

6 11 23 59 16

7 26 23 66 18

8 54 21 62 22

9 42 22 48 23
10 29 22 62 16
11 48 22 53 16
12 34 18 72 19
13 50 26 62 21
14 61 24 69 21
15 36 26 70 26
16 47 30 41 20
17 30 21 59 16
18 54 25 76 22
19 48 21 54 22
20 55 21 64 12
Average 43.15 22.80 60.85 20.25
Standard deviation 12.70 2.57 8.41 3.80
Standard error 2.84 0.57 1.88 0.85

Despite these types of difficulty, most geological data values are given
without error estimates. This might be excusable for dip and strike measure-
ments since most geologists have a pretty good (perhaps subconscious) idea
of how accurate such measurements are. However, it is good practice to
give error estimates whenever possible. Don’t trust anyone’s numbers if the
person responsible cannot give you at least a rough idea of how accurate
they might be.

Question 7.6 Cores taken from two different wells, but from the same
sedimentary bed, have sand/shale ratios of 0.50 and 0.51, respectively, If it
is hard to determine this ratio with an accuracy better than about 0.02, do
you think it is safe to infer that the sand/shale ratio is higher in the second
well?
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7.8 Quantitative estimates of error

Returning to the data in Table 7.9, the fact that there are 20 independent
estimates of the bed strike and dip allows much more to be said about the
problem of whether the bed has changed orientation between the two loca-
tions. To start with, the methods given in Section 7.3 allow average strike/
dip and associated standard deviations to be estimated. The results are given
in Table 7.9.

As should be clear from Section 7.3, the standard deviation is an estim-
ate of the typical deviation of any given measurement from the mean
value. Hence, each individual student’s strike measurements have an error
of around 10° (strike standard deviations are 12.7° and 8.4° at A and B,
respectively) and a dip error of about 3° (dip standard deviations are 2.6°
and 3.8° at A and B, respectively). Note that student 1’s estimates of the
dips at locations A and B (22° and 25°, respectively) differ from each other
by an amount which is similar to the measurement uncertainty and so,
from student 1°s measurements alone, it is impossible to say which dip is
larger.

However, the average of the 20 measurements should be much more accur-
ate than the individual values and, in general, should improve as the number
of measurements increases. Note that, unlike the impression given by student
1’s measurements, the average dip at B is actually less than at A. An estimate
of the typical deviation of the sample mean from the true mean is given by the
standard error, s,, where

s,=§NN (7.18)

where § is the standard deviation and N the number of observations. The
resulting s, estimates are also given in Table 7.9.

The exact meaning of the standard error depends upon the sample size.
This is because estimates of a population mean have a t-distribution. For
large sample sizes the t-distribution is similar to the Gaussian distribution
introduced earlier but for smaller sample sizes it is different. Figure 7.8
shows the multiple of the standard error within which there is a 95% prob-
ability of the true value lying. This depends upon the degrees of freedom
(explained below) which, for the problem considered in this section, is
given simply by N — 1. Hence for our sample size of N =20 there are 19
degrees of freedom implying that the true mean has a 95% chance of lying
within 2.1s, of our mean estimate. At location A, for example, the true
strike has a 95% chance of lying within 2.1 X 2.9 = 6.1 degrees of 43.2°.
Similarly, the 95% confidence interval for the strike at B is 60.9 + 4.0°.
Hence, this analysis implies that the strike values at the two locations are
clearly different.
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Fig. 7.8 Multiple of standard deviations from the sample mean within which there isa 95%
chance of the true mean lying.

Question 7.7 Using Fig. 7.8, find the 95% confidence limits for the dips at
locations A and B. Check your answer using spreadsheet Sterr.xls.

You should have found, from your answer to question 7.7, that the pos-
sible range of dips at locations A and B just overlap implying that, even after
averaging 20 measurements, we still cannot say which location has the higher
dip. A more sophisticated statistical approach (a #-test, not covered here)
would just allow these particular two values to be distinguished. However,
the simple approach used here, i.e. comparing 95% confidence ranges to
determine whether two values are significantly different, will suffice for many
purposes. Note that it is inherently conservative in the sense that only very
well separated values will be distinguished as clearly different.

For completeness, a few words need to be said concerning the concept of
degrees of freedom. Generally, if there are N specimens in a sample then there
is freedom to change N numbers (i.e. there are N degrees of freedom for N
measurements). However, in the problems discussed above, we first used the
N measurements to determine a mean value. Once a mean has been set it
is only possible to change N — 1 values since the Nth value is forced to be a
particular number if the mean is to be retained. Hence, after estimating both
a mean and a standard error, the confidence intervals are determined from
the z-distribution for N — 1 degrees of freedom. Don’t worry too much about
this rather abstract point. In practice, statistics books give quite explicit
instructions on how many degrees of freedom are appropriate for a particular
problem.
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Table 7.10 Dip directions for one bed at 20 different locations.

Location Direction Location Direction
1 27 z 11 14
2 63 12 355
3 10 13 300
4 87 14 96
S 103 15 276
6 256 16 190
7 200 17 191
8 23 18 23
9 17 19 10

10 25 20 N

7.9 Further questions

7.8 Measured dip directions for a particular bed at 20 different locations in a
field area are given in Table 7.10.

(i) Use this data to calculate the frequency distribution and estimate the
probability distribution using 30° wide classes.

(ii) Plot the frequency distribution on a suitable type of histogram.

(iii) Is there an overall trend for this data?

7.9 In Section 7.3 it was stated that
(&

2= z (o, — 10)? (7.4)
N\ ia

can be rearranged to give
s2 = w2 — (D)2 (7.5)

Verify this by:

(i) Multiply out (w; — )2 in Eqn. 7.4

(ii) Split the result into three separate summations using the following rela-
tionship:

Y(a+b+c+...)=Xa+Xb+%c+...
(iii) Simplify each of the resulting summations using the following result:

Y ka=k2Ya wherekisaconstant.
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Table 7.11 The percentage weight of

calcium carbonate and organic carbon Calcium carbonate (%) Organic carbon (%)
in the top 100 cm of core RAMA 44PC.
Data from Keigwin, L. Jones, G. and 6.10 0.35
Froelich, P. (1992). A 15 000 year . 530 0.27
palaeoenvironmental record from 5.30 0.28
Meiji Seamount, far north-western 6.70 0.35
Pacific. EPLS, 111, 425-40. 9.00 0.42
7.20 0.43
3.20 0.22
14.30 0.39
13.40 0.48
15.30 0.68
9.00 0.70
3.40 0.87
6.30 0.86
10.20 0.95
10.50 0.95
13.40 1.23
15.10 1.22
5.70 1.25
1.90 1.05
2.00 0.98

(iv) Finally, use the definition of mean and mean square to simplify further
and obtain the required result.

7.10 Skewness has been mentioned several times in this chapter and is a
measure of the symmetry of a distribution. One of several possible defini-
tions is

Skew = (3. (w, - iw)3)/Ns3

which will equal zero if and only if the distribution is symmetric.
Evaluate this expression for the same 10 pebbles you used in question 7.3.

7.11 Table 7.11 lists the calcium carbonate and organic carbon weight
percentages obtained at various points within the top 100 cm of a core from
a seamount in the north-western Pacific Ocean.

(i) Calculate a linear regression for this data.

(ii) Plot the resulting best fit straight line together with a scatter plot of the
original data (i.e. plotted as individual points not joined together).

(iii) How well do you think a linear regression works in this case?

7.12 The amounts of subsidence at two nearby locations in the south
Pyrenean foreland during the mid-Eocene were as follows:
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Age (Ma) Subsidence at Puig d’Olena (m) Subsidence at Tona (m)
46 12 15
42.5 183 102
40.1 340 ' 381
38.4 491 641
35.6 742 788

Calculate, using linear regression, the best fit gradient and intercept for a plot
of subsidence at Tona versus subsidence at Puig d’Olena.

7.13 The SiO, contents for samples taken from two adjacent locations in the
Yilgarn Craton of Western Australia were:

Mount Monger Emu
65.08 60.40
67.51 66.50
59.52 70.43
61.60 61.27
63.09 64.07
63.49 66.33
64.31 67.10
62.70 63.88
67.49 66.72
69.38

Calculate the mean, standard deviation, standard error and 95% confid-
ence limits for the SiO, contents at these two locations. Is there a significant
difference between the mean SiO, content at Mount Monger and that at
Emu?

Data from Smithies, R. and Champion, D. (1999). Late Archaean felsic
alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western
Australia: a result of lower crustal delamination? | Geol Soc 156, 561-76.

7.14 Use spreadsheet Bfit.xls to check your answers to 7.5, 7.11 and
7.12.

7.15 Use spreadsheet Bfit.x!s to fit the temperature versus depth data given
below. Try fitting it with» =0, 1,2, 3 and 4.



z(km)

100

400

700
2 800
5100
6 360
7 620
9 920
12 020
12 320
12 620

T(°C)

1150
1500
1900
3700
4300
4300
4300
3700
1900
1500
1150




