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Introduction 
 The three-point problem is one of the classic laboratory problems of the undergraduate 
geology curriculum.  Given the elevation of three points on a geologic surface such as a 
formation contact, what is the attitude (strike and dip) of that surface?  A similar question arises 
in hydrogeology.  What is the gradient of the potentiometric surface given its elevation in three 
wells?   

Aside from the fact that the three-point problem arises in real-world applications, geology 
instructors like the problem because it drives home the meaning of strike and dip.   

The three-point problem is also a gateway to some useful mathematics.  In this essay, I 
will discuss two solutions of the three-point problem using Cramer's Rule, an important 
technique for solving a small number of simultaneous equations.  Cramer's Rule is one of the 
important methodologies of school algebra, but geology students generally do not see an 
application of simultaneous equations until advanced courses in geological data analysis or 
geophysics, and, in those courses, instructors want to approach higher-dimension problems using 
matrix algebra.   
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Figure 1.  Map showing the location and 
elevation of three points.  Modified slightly 
from Davis and Reynolds, 1996, Fig. G.7. 

 
The Problem 
 Figure 1 shows a common presentation of the three-point problem. This example is very 
similar to the three-point problem discussed in a standard textbook in structural geology.  The 
surface of interest is an unconformity.  The elevation of the unconformity is known at three 
locations (A, B, and C).  The horizontal scale is provided.  We want to find the strike and dip of 
the unconformity.  



 
Graphical Solution 
 The standard approach is graphical.  The elevation at B is between the elevations at A and 
C, so a contour passing through B (i.e., the 2700-ft contour) must cross the line segment AC.  By 
the definition of strike, the direction of this contour is the strike of the unconformity surface.  
Thus the first step is to draw this contour (Fig. 2). 
 We can locate the contour by dividing line segment AC into proportional parts according 
to the elevation differentials.  Specifically, the unconformity surface drops 1000 ft between A 
and C; 700 ft between A and B', and 300 ft between B' and C.  Therefore, B' must be 70% of the 
distance from A to C.  This locates B'.  So, we draw the line segment BB' (Figure 2) and measure 
the azimuth of the strike with a protractor.   
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Figure 2.  Map showing the location of the line of 
strike from data in Figure 1. 

 
 The second step is to find the dip.  To use a fully graphical way of doing this (Davis and 
Reynolds, 1996), draw a cross-section perpendicular to BB', the line of strike (Figure 3).  Then, 
using a vertical scale equal to the horizontal scale, lay out elevations on the cross section; project 
the locations of A, B, and C onto the cross-section at the appropriate elevations; and connect the 
dots.  The resulting line segment shows the unconformity in cross-section.  Because the cross-
section is perpendicular to strike, the included angle is the true dip.  So, we measure the angle 
with a protractor. 
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Figure 3.  Map and cross-section showing true dip from data in 
Figure 1 (after Davis and Reynolds, 1996, Fig. G.7) 



 
 A slight modification.  Sometimes it is easier to find drafting triangles and a ruler than it 
is to find a protractor.  Not to worry, we can easily find the strike and dip by measuring distances 
and drawing parallels and perpendiculars with the triangles (Figure 4).   First draw line segments 
AA' and CC' perpendicular to the line of strike.  Second, draw right triangle BDC' by drawing a 
vertical line (parallel to the north arrow) through B and a horizontal line segment (perpendicular 
to the north arrow) through C'.  Then measure the distances BD, DC', AA', and CC' and find a 
calculator.  The azimuth of strike (θstrike) is 
 

  ⎟
⎠
⎞

⎜
⎝
⎛=

BD
DC

strike
'arctanθ .        (1) 

 
The angle of dip (θdip) is 
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where hA, hA' , hC, and hC' are the elevation at the locations identified by the subscripts.  
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Figure 4.  Map showing location of auxiliary lines to 
calculate strike and dip from arctangents. 

 
Limitations.  Three-point problems make good graphical exercises. But graphical 

solutions take great care.  If construction lines are off by only a slight angle, the error in the final 
answer can be substantial.  Moreover, graphical solutions take time.  How would you like to 
have to find the answer to 50 different three-point problems before leaving your desk? 
 
Computational Solutions 
 There are a number of ways of calculating the strike and dip from three-point data 
without measuring anything.  These algorithms are based on analytical expressions and can be 
easily programmed.  Such programs allow you to solve 50 or more three-point problems in the 
time that it takes you to enter the data. 
 Computational solutions generally start with a different presentation of the problem. 
Figure 5 shows the same problem as Figure 1.  The data are in Cartesian form; i.e., the x- y- and 
z-coordinates of the three points are given. 




