INTRODUCTION TO TOPOGRAPHIC MAPS

c:twoulgeomorphlf2000Vintrolab.wpd

All of the following questions refer to the Monmouth, OR Quadrangle.

1) What is the fractional scale, contour interval, and magnetic declination of this map?
a) Scale:
: 24,000
b) Contour Interval:
10 f
c) Declination:
$19^{\circ} E$
2) What quadrangle maps are located immediately adjacent to the Monmouth Quad.?
a) North:Rickreal
b) South: Lewisburg
c) East: Sidney
d) West: Alrlie North
3) What is the quadrangle size series of this map (in long. and lat.)?
7.5 min
4) What is the date of publication of this map?

1970 (photo revised 1986
5) What does the tick with 4956000 m N. mean? (lower right of map)

UTM demarcation
6) What is the name of the major fluvial system flowing through this area. Of What larger drainage basins) does this river form a part of?

Willamette River, Columbia River Basin
7) What is the approximate elevation of the Natural Sciences Building based on the map representation? 210 ft
8) Given the fractional scale determine the following
$1 i_{n}=24,000 \mathrm{i}$.
5 inches on the map= \qquad ain = If t Feet on ground $=1.89$
10 inches on the map $=\ldots 097.6$ Meters on ground $=1.098$
$5280 \mathrm{ft}=1$ mile Miles on ground.

$$
3.28 \mathrm{ft}=1 \mathrm{~m} \quad 1000 \mathrm{~m}=1 \mathrm{~km}
$$

9) A. What is the road distance in miles along Rt. 99 between Helmick State Park and Monmouth city limits? $=13 \mathrm{in} \times 24,000=312,000 \mathrm{~m}\left(\frac{f t}{12 \mathrm{~m}}\right)\left(\frac{\mathrm{kn}}{5280 \mathrm{ft}}\right)=4.92$ miles
B. What is the distance in kilometers?

$$
\begin{aligned}
& \text { is the distance in kilometers? } \\
& 4.92 \mathrm{mi} \\
& 42.604+)\left(\frac{\mathrm{km}}{3285 f t}\right)\left(\frac{\mathrm{km}}{1000 \mathrm{~m}}\right)=7.93 \mathrm{~km}
\end{aligned}
$$

10) A. Determine the average stream gradients (in $\mathrm{Ft} / \mathrm{Mi}$) for the following drainages:
A. Willamette River:
Gradient: $177-153=24 \mathrm{ft}$ Length: $105-93 \mathrm{mi}=12 \mathrm{mi}$
$24 \mathrm{ft} / 12 \mathrm{mi}=2 \mathrm{ft} / \mathrm{mi}$
B. Luckiamute River:
Gradient: $312-157=55 \mathrm{ft} \quad$ Length: $13-5 \mathrm{mi}=8 \mathrm{mi} \quad 55 \mathrm{ft} / 8 \mathrm{mi}=7 \mathrm{ft} / \mathrm{mi}$
11) A. What is the highest point of elevation represented on this map? 880 ff
B. What is the lowest point of elevation represented on this map? 150 ft
C. What is the maximum relief. $880 \mathrm{ft}-150 \mathrm{ft}=730 \mathrm{ft}$
12) A. What is the longitude and latitude location of the road intersection at Buena Vista
(3.3') $1.15^{\prime} \quad 44^{\circ} 46^{\prime} 10^{\prime \prime}, 1230,65^{\prime} 47^{\prime \prime}$
B. What is the longitude and latitude location of Davidson Hill?
1.713^{\prime}

$$
44^{\circ} 45^{\prime} 59^{\prime \prime}, 123^{\circ}, 11^{\prime} 15^{\prime \prime}
$$

C. What is the straight line distance in miles between these two points?

$$
5 \operatorname{in} \times 24,000=120,000 \text { in }\left(\frac{f_{t}}{12, n}\right)\left(\frac{1}{520, t}\right)=1,89 \text { miles }
$$

D. What is the azimuth bearing FROM Davidson Hill TOWARDS Buena Vista? 085°
E. What is the quadrant bearing FROM Buena Vista TOWARDS Davidson Hill? $585^{\circ} \mathrm{W}$
13) A. What is the nature of the topographic slope in the vicinity of the town of Monmouth? gently sloping
C. What is the local relief between WOU and the Willamette adjacent to Independence? $210-150=100 f+$
D. Is the outline of the topography east of Independence relatively arcuate or irregular in outline?
irregular
E. What processes might have formed the pattern in D above?
possibly landslides on unstable hill slopes
14) Examine the cultural activity immediately north of Monmouth and Independence.
A. Write a brief assessment of the potential for environmental degradation to the surface and groundwater of this area. List three types of water quality degradation (i.e. contamination) problems that may exist in this area.

One source of environ mental degradation that is likely is from agriculturat runoff in the area, as agriculture is the predominant hand bee : the area
 runoff from the the urban sectores of the nay) (time An"mouth / ladeperteve ireas)
athra syurce weimll water contamination that muyocur is from industriat runoff from a thropogere industrial activity in the area \& Urbancenter (smo. : itomp.
18. Determine the elevations of the following locations:
A. Wigrich 260 ft .
B. Oak Hill (SC) 476 ft
C. Dicker Reservoir (NE) 450 ft
D. Davidson Bridge (SC) 160 ft
19. Draw a topographic profile along a line connecting Oak Hill (SC) to Vitae Springs. Use a horizontal scale of $1 \mathrm{in}=4000 \mathrm{Ft}$, and a vertical scale of $1 \mathrm{in}=333.33 \mathrm{ft}$ (see attached profile paper).
A. Determine the minimum slope grade represented on the profile in percent.
1% willamete River to Burlingtom Nartherm
B. Determine the maximum slope grade represented on the profile in percent.
9% Burlington Northern to vitae Springs
C. Where are the areas most likely associated with flooding?

Williameite River \& adjucent
D. The vertical exaggeration of a profile is calculated by: $\mathrm{VE}=\mathrm{H}$ scale $/ \mathrm{V}$ scale; Calculate the vertical exaggeration represented on the attached profile.

Topographic Profile from Oak Hill to Vitae Springs, Monmouth, OR Quad.

Horizontal Distance in Feet (each tic $=2000 \mathrm{ft})$

$$
\begin{aligned}
& \text { Horizontal Scale: } 1 \mathrm{in}=4000 \mathrm{ft} \\
& \text { Vertical Scale: } 1 \mathrm{in}=333.33 \mathrm{ft} \\
& \text { V.E. }=H N=\frac{1 / 4 \infty 0}{1 / 333.33} \quad .0833 \mathrm{ft} / \mathrm{f}+\text { V.E }
\end{aligned}
$$

