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Physics is a quantitative science, based on careful
measurements of quantities such as mass, length,
and time. In the measurement shown here,

an albatross chick is found to have a mass of
approximately 1.3 kilograms, corresponding

to a weight of just under 3.0 pounds.

he goal of physics is to gain a deeper understanding As we begin our study of physics, it is useful to con-
of the world in which we live. For example, the laws sider a range of issues that underlie everything to follow.
of physics allow us to predict the behavior of every- One of the most fundamental of these is the system of units
thing from rockets sent to the moon, to integrated chips in we use when we measure such things as the mass of an ob-
computers, to lasers used to perform eye surgery. In short, ject, its length, and the time between two events. Other
everything in nature—from atoms and subatomic particles equally important issues include methods for handling nu-
to solar systems and galaxies—obeys the laws of physics. merical calculations and basic conventions of mathematical
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CHAPTER 1

INTRODUCTION

notation. By the end of the chapter we will have developed a common “language”
of physics that will be used throughout this book and probably in any science that
you study.

1-1 Physics and the Laws of Nature

Physics is the study of the fundamental laws of nature, which, simply put, are the
laws that underlie all physical phenomena in the universe. Remarkably, we have
found that these laws can be expressed in terms of mathematical equations. As a
result, it is possible to make precise, quantitative comparisons between the pre-
dictions of theory—derived from the mathematical form of the laws—and the ob-
servations of experiments. Physics, then, isa science rooted equally firmly in theory
and experiment.

What makes physics particularly fascinating is the fact that it relates to every-
thing in the universe. There is a great beauty in the vision that physics brings to our
view of the universe; namely, that all the complexity and variety that we see in the
world around us, and in the universe as a whole, are manifestations of a few fun-
damental laws and principles. That we can discover and apply these basic laws of
nature is at once astounding and exhilarating.

For those not familiar with the subject, physics may seem to be little more than
a confusing mass of formulas. Sometimes, in fact, these formulas can be the trees
that block the view of the forest. For a physicist, however, the many formulas of
physics are simply different ways of expressing a few fundamental ideas. It is the
forest—the basic laws and principles of physical phenomena in nature—that is
the focus of this text.

1-2 Units of Length, Mass, and Time

To make quantitative comparisons between the laws of physics and our experi-
ence of the natural world, certain basic physical quantities must be measured. The
most common of these quantities are length (L), mass (M), and time (T). In fact, in
the next several chapters, these are the only quantities that arise. Later in the text,
however, additional quantities, such as temperature and electric current, will be in-
troduced as needed.

We begin by defining the units in which each of these quantities is measured.
Once the units are defined, the values obtained in specific measurements can be ex-
pressed as multiples of them. For example, our unit of length is the meter (m). It
follows, then, that a person who is 1.94 m tall has a height 1.94 times this unit of
length. Similar comments apply to the unit of mass, the kilogram, and the unit of
time, the second.

The detailed system of units used in this book was established in 1960 at the
Eleventh General Conference of Weights and Measures in Paris, France, and goe:
by the name Systeme International, or SI for short. Thus, when we refer to ST units
we mean units of meters (m), kilograms (kg), and seconds (s). Taking the first let
ter from each of these units leads to an alternate name that is often used—the mk
system.

In the remainder of this section we define each of the SI units.

Length

Early units of length were often associated with the human body. For example, th
Egyptians defined the cubit to be the distance from the elbow to the tip of the mic
dle finger. Similarly, the foot was originally defined to be the length of the roy:
foot of King Louis XIV. As colorful as these units may be, they are not particularl
reproducible—at least not to great precision.



In 1793, the French Academy of Sciences, seeking a more objective and repro-
ducible standard, decided to define a unit of length equal to one ten-millionth the
distance from the North Pole to the equator. This new unit was named the metre
(from the Greek metron for “measure”). The preferred spelling in the United States
is meter. This definition was widely accepted, and in 1799 a “standard” meter was
produced. It consisted of a platinum-iridium alloy rod with two marks on it one
meter apart.

Since 1983, however, we have used an even more precise definition of the meter,
this time based on the speed of light in a vacuum. In particular:

One meter is defined to be the distance traveled by light in a vacuum in
1/299,792,458 of a second.

No matter how its definition is refined, however, a meter is still about 3.28 feet,
which is roughly 10 percent longer than a yard. A list of typical lengths is given in
Table 1-1.

TABLE 1-1 Typical Distances

Distance from Earth to the nearest large galaxy

(the Andromeda galaxy, M31) 2 X 10%2m
Diameter of our galaxy (the Milky Way) 8 X 10 m
Distance from Earth to the nearest star 4 X 10 m
One light year 9.46 X 10 m
Radius of Pluto’s orbit 6 X 102 m
Distance from Earth to the Sun 1.5 X 10" m
Radius of Earth 6.37 X 10°m
Length of football field 10°m
Height of a person 2m
Diameter of a CD 0.12m
Diameter of the aorta 0.018 m
Diameter of a period in a sentence 5X10*m
Diameter of a red blood cell 8 X107 °m
Diameter of the hydrogen atom 107 m
Diameter of a proton 2X 107 % m

A The size of these viruses, seen here at- A The diameter of this typical galaxy
tacking a bacterial cell, is about 10 =7 m. is about 10*' m. (How many viruses
would it take to span the galaxy?)

1-2 UNITS OF LENGTH, MASS, AND TIME
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TABLE 1-2 Typical Masses Mass

In SI units, mass is measured in kilograms. Unlike the meter, the kilogram is not
Galaxy based on any natural physical quantity. By convention, the kilogram has been de-

(Milky Way) 4% 10% kg fined as follows:

Sun 2 X 10¥ kg
Farth 597 X 10%* kg The kilogram, by definition, is the mass of a particular platinum-iridium
Space Shuttle 2 x 106 kg alloy cylinder at the International Bureau of Weights and Standards in Sevres,
Elephant 5400 kg France.
Automobile 1200 kg To put the kilogram in everyday terms, a quart of milk has a mass slightly less
Human 70kg than 1 kilogram. Additional masses, in kilograms, are given in Table 1-2.
Baseball 0.15kg Note that we do not define the kilogram to be the weight of the platinum-
Honeybee 1.5 X 107" kg iridium cylinder. In fact, weight and mass are quite different quantities, even
Red blood cell 107 % kg though they are often confused in everyday language. Mass is an intrinsic, un-
Bacterium 10 P kg changing property of an object. Weight, in contrast, is a measure of the gravita-
Hydrogen atom 167 X 10 7 kg tional force ac.ting on an object, which can vary depending on the object’s lo.cati.on.
Hlesteon 9.11 x 10" kg For example, if you are fortunate enough to travel to Mars someday, you will find

that your weight is less than on the Earth, though your mass is unchanged. The
force of gravity will be discussed in detail in Chapter 12.

Time

Nature has provided us with a fairly accurate timepiece in the revolving Earth. In fact,
prior to 1956, the mean solar day was defined to consist of 24 hours, with 60 minutes
per hour, and 60 seconds per minute, for a total of (24)(60)(60) = 86,400 seconds.
Even the rotation of the Earth is not completely regular, however.

Today, the most accurate timekeepers known are “atomic clocks,” which are
based on characteristic frequencies of radiation emitted by certain atoms. These
clocks have typical accuracies of about 1 second in 300,000 years. The atomic clock
used for defining the second operates with cesium—133 atoms. In particular, the
second is defined as follows:

One second is defined to be the time it takes for radiation from a cesium-133
atom to complete 9,192,631,770 cycles of oscillation.

A range of characteristic time intervals is given in Table 1-3.

A The standard kilogram, a cylinder of
platinum and iridium 0.039 m in height
and diameter, is kept under carefully
controlled conditions in Sévres, France.
Exact replicas are maintained in other
laboratories around the world.

A This atomic clock, which keeps time on
the basis of radiation from cesium atoms,
is accurate to about three millionths of a :
second per year. (How long would it take ? ol

for it to gain or lose an hour?) MY ComNESs 5 12:15:0436420175! TIME FoR LONCRT
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TABLE 1-3 Typical Times

Age of the universe 5X107g
Age of the Earth 1.3 X 10V g
Existence of human species 6 X 1085
Human lifetime 2X10%s
One year 3X107s
One day 8.6 X 10*s
Time between heartbeats 0.8s
Human reaction time 0.1s
One cycle of a high-pitched sound wave 5X107%s
One cycle of an AM radio wave 10°s
One cycle of a visible light wave 2X1075s

Other Systems of Units and Standard Prefixes

Although SI units are used throughout most of this book and are used almost ex-
clusively in scientific research and in industry, we will occasionally refer to other
systems that you may encounter from time to time.

For example, a system of units similar to the mks system, though comprised of
smaller units, is the cgs system, which stands for centimeter (em), gram (g), and
second (s). In addition, the British engineering system is often encountered in every-
day usage in the United States. Its basic units are the slug for mass, the foot (ft) for
length, and the second for time.

Finally, multiples of the basic units are common no matter which system is
used. Standard prefixes are used to designate common multiples in powers of ten.
For example, the prefix kilo means one thousand, or, equivalently, 10%. Thus, 1 kilo-
gram is 10° grams, and 1 kilometer is 10° meters. Similarly, milli is the prefix for one
thousandth, or 103, Thus, a millimeter is 103 meter, and so on. The most common
prefixes are listed in Table 1—4.

EXERCISE 1-1

(a) A minivan sells for 33,200 dollars. Express the price of the minivan in kilodollars
and megadollars.

(b) Atypical E. coli bacterium is about 5 micrometers (or microns) in length. Give this
length in millimeters and kilometers.

Solution

(a) 33.2 kilodollars, 0.0332 megadollars.
(b) 0.005 mm, 0.000000005 km.

1-3 Dimensional Analysis

In physics, when we speak of the dimension of & physical quantity, we refer to the
type of quantity in question, regardless of the units used in the measurement. For
example, a distance measured in cubits and another distance measured in light-
years both have the same dimension—length. The same is true of compound units
such as velocity, which has the dimensions of length per unit time (length/time).
A velocity measured in miles per hour has the same dimensions—length/time—
4 one measured in inches per century.

Now, any valid formula in physics must be dimensionally consistent; that is,
each term in the equation must have the same dimensions. It simply doesn’t make

1-3 DIMENSIONAL ANALYSIS

A Medical instruments like these sy-
ringes are typically graduated in cubic
centimeters (cc).

TABLE 1-4 Common Prefixes

Power

1015
1012
10°
10°
10°
102
10?

Prefix

peta
tera
giga
mega
kilo
hecto
deka
deci
centi
milli
micro
nano
pico
femto

Abbreviation

~T 5T B s aflsrZ0qg
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TABLE 1-5

Dimensions of Some Common

Physical Quantities
Quantity

Distance
Area
Volume
Velocity
Acceleration
Energy

Dimension

L

12

13

L/T
L/T?
ML2/T?

sense to add a distance to a time, for example, any more than it makes sense

add apples and oranges. They are different things.

To check the dimensional consistency of an equation, it is convenient to i
troduce a special notation for the dimension of a quantity. We will use squa
brackets, [, for this purpose. Thus, if x represents a distance, which has dime
sions of length [L], we write this as x = [L]. Similarly, a velocity, v, has dime
sions of length per time [T]; thus we write v = [L]/[T] to indicate its dimensior
Acceleration, a, which is the change in velocity per time, has the dimensio
a = ([L]/[TNH/IT] = [L]/[T?]. The dimensions of some common physical quan

ties are summarized in Table 1-5.
Let’s use this notation to check the dimensional consistency of a simple eqt

tion. Consider the following formula:
X = Xg + vt

In this equation, x and x, represent distances, v is a velocity, and t is time. Writ
out the dimensions of each term, we have

Tt might seem at first that the last term has different dimensions than the of
two. However, dimensions obey the same rules of algebra as other quantities. T
the dimensions of time cancel in the last term:

_ 4 By =

L) = [L] + 8 = L] + (L]
g

As a result, we see that each term in this formula has the same dimensions.
type of calculation with dimensions is referred to as dimensional analysis.

EXERCISE 1-2
Show that x = xo + vof + latis dimensionally consistent. The quantities x and x,
distances, v, is a velocity, and 7 is an acceleration.

Solution
Using the dimensions given in Table 1-5 we have
u-m+Bm e pE-mm

Note that } is ignored in this analysis because it has no dimensions.

Later in this text you will derive your own formulas from time to time. A
do so, it is helpful to check dimensional consistency at each step of the deriv
If at any time the dimensions don’t agree, you will know that a mistake ha
made, and you can go back and look for it. If the dimensions check, howev
not a guarantee the formula is correct—after all, dimensionless factors, like
2, don’t show up ina dimensional check.

1-4 Significant Figures

When a mass, a length, or a time is measured in a scientific experiment, the
is known only to within a certain accuracy. The inaccuracy or uncertainty
caused by a number of factors, ranging from limitations of the measuring
itself to limitations associated with the senses and the skill of the person pe
ing the experiment. In any case, the fact that observed values of experimenta
tities have inherent uncertainties should always be kept in mind when perf
calculations with those values.



Suppose, for example, that you want to determine the walking speed of your
ot tortoise. To do so, you measure the time, ¢, it takes for the tortoise to walk a dis-
tance, d, and then you calculate the quotient, d4/t. When you measure the distance
with a ruler, which has one tick mark per millimeter, you find that d = 21.2 cm,
with the precise value of the digit in the second decimal place uncertain. Defin-
ing the number of significant figures in a physical quantity to be equal to the
number of digits in it that are known with certainty, we say that d is known
to three significant figures.

Similarly, you measure the time with an old pocket watch, and as best you can
determine it, t = 8.5 s, with the second decimal place uncertain. Note that f is
known to only two significant figures. If we were to make this measurement with
a digital watch, with a readout giving the time to 1/100 of a second, the accura-
cy of the result would still be limited by the finite reaction time of the experi-
menter. The reaction time would have to be predetermined in a separate
experiment (See Problem 67 in Chapter 2 for a simple way to determine your re-
action time.)

Returning to the problem at hand, we would now like to calculate the speed
of the tortoise. Using the above values for d and t and a calculator with eight dig-
its in its display, we find (21.2 cm)/(8.5 s) = 2.4941176 cm/s. Clearly, such an ac-
curate value for the speed is unjustified, considering the limitations of our
measurements. After all, we can’t expect to measure quantities to two and three sig-
nificant figures and from them obtain results with eight significant figures. In gen-
eral, the number of significant figures that result when we multiply or divide
physical quantities is given by the following rule of thumb:

The number of significant figures after multiplication or division is equal to
the number of significant figures in the least accurately known quantity.

In our speed calculation, for example, we know the distance to three significant
figures, but the time to only two significant figures. As a result, the speed should
be given with just two significant figures, d/t = (21.2cm)/(8.5s) = 2.5 cm/s. Note
that we didn’t just keep the first two digits in 2.4941176 cm /s and drop the rest. In-
stead, we “rounded up”; that is, because the first digit to be dropped (9 in this case)
is greater than or equal to 5, we increase the previous digit (4 in this case) by 1.
Thus, 2.5 cm/s is our best estimate for the tortoise’s speed.

EXAMPLE 1-1 It's the Tortoise by a Hare

i BT AR TR LIRS 1A

tortoise cover?

Picture the Problem

The race between the rabbit and the tortoise is shown in our
sketch. The rabbit pauses to eat a carrot while the tortoise walks
with a constant speed.

Strategy

The distance covered by the tortoise is the speed of the tortoise
multiplied by the time during which it walks.

Solution
1. Multiply the speed by the time to find the distance d: d = (speed) (time)

1-4 SIGNIFICANT FIGURES 7

A Every measurement has some degree
of uncertainty associated with it. How
precise would you expect this measure-
ment to be?

A tortoise races a rabbit by walking with a constant speed of 2.51 cm/s for 12.23 s. How much distance does the

= (2.51 cm/s)(12.23 s) = 30.7 cm

continued on the fbllowing page
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continued from the previous page

Insight

Notice that if we simply multiply 2.51 cm/

sby 12.23 s, we obtain 30.6973 cm. We don’t give all of these digits in our answer, how-

ever. In particular, because the quantity that is known with the least accuracy (the speed) has only three significant figures, we give
a result with three significant figures. Note, in addition, that the third digit in our answer has been rounded up from 6 to 7.

Practice Problem

How long does it take for the tortoise to walk 17 cm? [Answer: t = (17 cm)/(2.51 cm/s) = 6.8 5]
Some related homework problems: Problem 11, Problem 15
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A The finish of the 100-meter race at the
1996 Atlanta Olympics. This official tim-
ing photo shows Donovan Bailey setting
anew world record of 9.84 s. (If the tim-
ing had been accurate to only tenths of a
second—as would probably have been
the case before electronic devices came
into use—how many runners would have
shared the winning time? How many
would have shared the second-place and
third-place times?)

Note that the distance of 17 cm in the Practice Problem has only two significant
figures because we don't know the digits to the right of the decimal place. If the dis-
tance were given as 17.0 cm, on the other hand, it would have three significant figures.

When physical quantities are added or subtracted, we use a slightly different
rule of thumb. In this case, the rule involves the number of decimal places in each
of the terms:

The number of decimal places after addition or subtraction is equal to the small-
est number of decimal places in any of the individual terms.

Thus, if you make a time measurement of 16.74 s, and then a subsequent time mea-
surement of 5.1 s, the total time of the two measurements should be given as 21.8 s,
rather than 21.84 s.

EXERCISE 1-3

You and a friend pick some raspberries. Your flat weighs 12.7 Ib, and your friend’s
weighs 7.25 Ib. What is the combined weight of the raspberries?

Solution

Just adding the two numbers gives 19.95 Ib. According to our rule of thumb, howev-
er, the final result must have only a single decimal place (corresponding to the term
with the smallest number of decimal places). Rounding off to one place, then, gives
20.0 Ib as the acceptable result.

Scientific Notation

The number of significant figures in a given quantity may be ambiguous due to the
presence of zeros at the beginning or end of the number. For example, if a distance
is stated to be 2500 m, the two zeros could be significant figures, or they could be
zeros that simply show where the decimal point is located. If the two zeros are sig-
nificant figures, the uncertainty in the distance is roughly a meter; if they are not
significant figures, however, the uncertainty is about 100 m.

To remove this type of ambiguity, we can write the distance in scientific
notation—that is, as a number of order unity times an appropriate power of ten.
Thus, in this example, we would express the distance as 2.5 X 10® m if there are
only two significant figures, or as 2.500 X 10% m to indicate four significant fig-
ures. Likewise, a time given as 0.000 036 s has only two significant figures—the pre-
ceding zeros only serve to fix the decimal point. If this quantity were known to
three significant figures, we would write it as 3.60 X 107° s to remove any ambi-
guity. See Appendix A for a more detailed discussion of scientific notation.

EXERCISE 1-4

How many significant figures are there in (a) 21.00, (b) 21, (c)2.1 X 107% and
(d)2.10 x 107%?

Solution
(@) 4, (02, (2, (d)3



Round-Off Error

Finally, even if you perform all your calculations to the same number of significant
figures as in the text, you may occasionally obtain an answer that differs in its last
digit from that given in the book. This is not something to be concerned about—
in most cases it is simply due to round-off error.

Round-off error occurs when numerical results are rounded off at different
times during a calculation. To see how this works, let’s consider a simple example.
Suppose you are shopping for knickknacks, and you buy one item for $2.21, plus
8 percent sales tax. The total price is $2.3868, or, rounded off to the nearest penny,
$2.39. Later, you buy another item for $1.35. With tax this becomes $1.458 or, again
to the nearest penny, $1.46. The total expenditure for these two items is
$2.39 + $1.46 = $3.85.

Now, let’s do the rounding off in a different way. Suppose you buy both items
at the same time for a total before-tax price of $2.21 + $1.35 = $3.56. Adding in
the 8 percent tax gives $3.8448, which rounds off to $3.84, one penny different
from the previous amount. This same type of discrepancy can occur in physics
problems. In general, it’s a good idea to keep one extra digit throughout your
calculations whenever possible, rounding off only the final result. But while this
practice can help to reduce the likelihood of round-off error, there is no way to
avoid it in every situation.

1-5 Converting Units

It is often convenient to convert from one set of units to another. For example, sup-
pose you would like to convert 316 ft to its equivalent in meters. Looking at the con-
version factors on the inside front cover of the text, we see that

1m = 3.281 ft 1-1
Equivalently,
1m
= 1-2
3.281 ft !

Now, to make the conversion, we simply multiply 316 ft by this expression, which
is equivalent to multiplying by 1:

1m
(316 ﬂ‘) (m) =96.3m

Note that the conversion factor is written in this particular way, as 1 m divided by
3.281 ft, so that the units of feet cancel out, leaving the final result in the desired
units of meters.

Of course, we can just as easily convert from meters to feet if we use the reci-
procal of this conversion factor—which is also equal to 1:

3.281 ft
1 o
1m

For example, a distance of 26.4 m is converted to feet by canceling out the units of
meters, as follows:

3.281 ft> — 866 ft
bzl

(26.4 m)<

Thus, we see that converting units is as easy as multiplying by 1—because that’s
really what you're doing.

1-5 CONVERTING UNITS

WAIMEA 3N
HANAPEPE ;M
LIHUE gem

A From this sign, you can calculate fac-
tors for converting miles to kilometers
and vice versa. (Why do you think the
conversion factors seem to vary for dif-
ferent destinations?)

9
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EXAMPLE 1-2 A High-Volume Warehouse
=t A warehouse is 20.0 yards long, 10.0 yards wide, and 15.0 feet high. What is its volume in SI units?
Ba H
ot
Picture the Problem

In our sketch we picture the warehouse and indicate the rele-
vant length for each of its dimensions.

Strategy

We begin by converting the length, the width, and the height of
the warehouse to meters. Once this is done, the volume in SI
units is simply the product of the three dimensions.

Solution
1. C t the length of the warehouse to meters: L= (200 ard)(—aﬁ—>< L] ) =183m

. Convert the leng s ers: Oy Tyard/\3.281 :
2. Convert the width to meters: W = (10.0 ard)(—-gi—> L0 >—914m

. Conver i ers: Oy Tyard /\3.281 f :

’ _ Im _

3. Convert the height to meters: H = (15.0 ft)( 3281 ft> = 457m
4. Calculate the volume of the warehouse: V=LXWXH=(183m)(9.14m) (457 m) = 764 m?
Insight

We would say, then, that the warehouse has a volume of 764 cubic meters.

Practice Problem
What is the volume of the warehouse if its length is one-hundredth of a mile? [Answer: V = 672 m%]

Some related homework problems: Problem 17, Problem 18

Finally, the same procedure can be applied to conversions involving any num-
ber of units. For instance, if you walk at 3.00 mi/h, how fastis that in m/s? In this
case we need the following additional conversion factors:

1mi = 5,280 ft 1h=3,600s

With these factors at hand, we carry out the conversion as follows:

. /528086\/ 1m 1\
(3.00 ped/ h)( 1at ><3.281 f»r)<3,600 s) = 1.8%m/s

Note that in each conversion factor the numerator is equal to the denominator. In
addition, each conversion factor is written in such a way that the unwanted units
cancel, leaving just meters per second.

ACTIVE EXAMPLE 1-1  The Speed of Life

Blood in the human aorta can attain speeds of 35.0 cm/s. How fast is this in (a) ft/s and
(b) mi/h?

Solution
Part (a)
1. Convert centimeters to meters and 1.15 ft/s
then to feet:
Part (b)
2. First, convert centimeters to miles: 2.17 X 10™*mi/s

3. Next, convert seconds to hours: 0.783 mi/h

A Major blood vessels branch from the Insight

aorta (bottom), the artery that receives Of course, the conversions in part (b) can be carried out in a single calculation if desired.
blood directly from the heart.
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1-6 Order-of-Magnitude Calculations

An order-of-magnitude calculation is a rough, “ballpark” estimate designed to
be accurate to within a factor of about 10. One purpose of such a calculation is
to give a quick idea of what order of magnitude should be expected from a com-
plete, detailed calculation. If an order—of-magnitude calculation indicates that a
distance should be on the order of 10 m, for example, and your calculator gives
an answer on the order of 107 m, then there is an error somewhere that needs to
be resolved.

For example, suppose you would like to estimate the speed of a cliff diver on
entering the water. First, the cliff may be 20 or 30 feet high; thus in SI units we
would say that the order of magnitude of the cliff’s height is 10 m—certainly not
1 m or 10 m. Next, the diver hits the water something like a second later—certainly
not 0.1 s later nor 10 s later. Thus, a reasonable order-of-magnitude estimate of the
diver’s speed is 10m/1s = 10 m/s, or roughly 20 mi/h. If you do a detailed calcu-
lation and your answer is on the order of 10*m/s, you probably entered one of your
numbers incorrectly.

Another reason for doing an order-of-magnitude calculation is to get a feeling
for what size numbers we are talking about in situations where a precise count is
not possible. This is illustrated in the following Example.

EXAMPLE 1-3  Estimation: How Many Raindrops in a Storm

% Real
World
Physics

Picture the Problem

Our sketch shows an area A = 108 m? covered to a depth
d = 0.01 m by rainwater. Each drop of rain is considered to be
a small sphere.

Strategy

To find the number of raindrops, we first calculate the volume
of water required to cover 108 m2to a depth of 0.01 m. Next, we
calculate the volume of an individual drop of rain, recalling
that the volume of a sphere of radius 7 is 47r°/3. We estimate
the diameter of a raindrop to be about 4 mm. Finally, dividing
the volume of a drop into the volume of water that fell during
the storm gives the number of drops.

Solution
1. Calculate the order of magnitude of the volume of water, Viater =
Viwaters that fell during the storm:

2. Calculate the order of magnitude of the volume of a drop
of rain, Virop- Note that if the diameter of a drop is 4 mm,
its radius is ¥ = 2 mm = 0.002 m:

3

3. Divide Virop INtO V1o to find the order of magnitude of
the number of drops that fell during the storm:

Insight

A Enrico Fermi (1901-1954) was renowned
for his ability to pose and solve interesting
order-of-magnitude problems. A winner of
the 1938 Nobel Prize in physics, Fermi
(left) would ask his classes to obtain order-
of-magnitude estimates for questions such
as “How many piano tuners are there in
Chicago?” or “How much is a tire worn
down during one revolution?” Estimation
questions like these are known to physi-
cists today as “Fermi Problems.”

A thunderstorm drops a half-inch (~0.01 m) of rain on Washington, D.C., which covers an area of about 70 square
miles (~10°® m?). Estimate the number of raindrops that fell during the storm.

Ad = (10° m?)(0.01 m) =~ 106 m®

4
Varop = éwﬁ ~ gw(o.ooz m)® =~ 1078 m?

The number of raindrops in this one small storm is roughly 100,000 times greater than the current population of Earth.

Practice Problem

If a storm pelts Washington, D.C. with 105 raindrops, how many inches of rain fall on the city? [Answer: About 5 inches.]

Some related homework problems: Problem 31, Problem 33

¥
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CHAPTER 1

INTRODUCTION

1-7 Problem Solving in Physics

Physics is a lot like swimming—you have to learn by doing. You could read a book
on swimming and memorize every word in it, but when you jump into a pool the
first time you are going to have problems. Similarly, you could read this book care-
fully, memorizing every formula in it, but when you finish, you still haven’t learned
physics. To learn physics you have to go beyond passive reading; you have to in-
teract with physics and experience it by doing problems.

In this section we present a general overview of problem solving in physics. The
suggestions given below, which apply to problems in all areas of physics, should
help to develop a systematic approach.

We should emphasize at the outset that there is no recipe for solving problems
in physics—it is a creative activity. In fact, the opportunity to be creative is one of
the attractions of physics. The following suggestions, then, are not intended as 2
rigid set of steps that must be followed like the steps in a computer program.
Rather, they provide a general guideline that experienced problem solvers find to
be effective.

* Read the problem carefully Before you can solve a problem you need to know
exactly what information it gives and what it asks you to determine. Some in-
formation is given explicitly, as when a problem states that a person has a mass
of 70 kg. Other information is implicit; for example, saying that a ball is dropped
from rest means that its initial speed is zero. Clearly, a careful reading is the es-
sential first step in problem solving.

Sketch the system This may seem like a step you can skip—but don’t. A
sketch helps you to acquire a physical feeling for the system. It also pro-
vides an opportunity to label those quantities that are known and those that
are to be determined. All Examples in this text begin with a sketch of the sys-
tem, accompanied by a brief description in a section labeled “Picture the
Problem.”

Visualize the physical process Try to visualize what is happening in the system
as if you were watching it in a movie. Your sketch should help. This step ties in
closely with the next step.

Strategize This may be the most difficult, but at the same time the most creative,
part of the problem-solving process. From your sketch and visualization, try tc
identify the physical processes at work in the system. Then, develop a strategy—
a game plan—for solving the problem. All Examples in this book have a “Strate-
gy” spelled out before the solution begins.

Identify appropriate equations Once a strategy has been developed, find the
specific equations that are needed to carry it out.

Solve the equations Use basic algebra to solve the equations identified in the
previous step. Work with symbols such as x or y for the most part, substituting
numerical values near the end of the calculations.

Check your answer Once you have an answer, check to see if it makes sense
(i) Does it have the correct dimensions? (ii) Is the numerical value reasonable?

Explore limits/special cases Getting the correct answer is nice, but it’s not all
there is to physics. You can learn a great deal about physics and about the con-
nection between physics and mathematics by checking various limits of your
answer. For example, if you have two masses in your system, m, and m,, what
happens in the special case that m; = 0 or m; = m,? Check to see whether your
answer and your physical intuition agree.

The Examples in this text are designed to deepen your understanding of physics
and at the same time develop your problem-solving skills. They all have the same
basic structure: Problem Statement; Picture the Problem; Strategy; Solution, pre-

D, T




senting the flow of ideas and the mathematics side-by-side in a two-column for-
mat; Insight; and a Practice Problem related to the one just solved. As you work
through the Examples in the chapters to come, notice how the basic problem-solv-
ing guidelines outlined above are implemented in a consistent way.

Finally, it is tempting to look for shortcuts when doing a problem—to look for
a formula that seems to fit and some numbers to plug into it. It may seem hard-
or to think ahead, to be systematic as you solve the problem, and then to think
back over what you have done at the end of the problem. The extra effort is worth
it, however, because by doing these things you will develop powerful problem-
solving skills that can be applied to unexpected problems you may encounter
on exams—and in life in general.
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Chapter Summary

Topic Remarks and Relevant Equations
1-1 Physics and the Laws Physics is based on a small number of fundamental laws and principles.
of Nature
1-2 Units of Length, Mass,
and Time
length One meter is defined as distance traveled by light in a vacuum in 1/299,792,458 second.
mass One kilogram is the mass of a metal cylinder kept at the International Bureau of
Weights and Standards.
time One second is the time required for a particular type of radiation from cesium-133 to
undergo 9,192,631,770 oscillations.
1-3 Dimensional Analysis
dimension The dimension of a quantity is the type of quantity it is; length (L), mass (M), or time (T).
dimensional consistency An equation is dimensionally consistent if each term in it has the same dimensions. All
valid physical equations are dimensionally consistent.
dimensional analysis A calculation based on the dimensional consistency of an equation.
1-4 Significant Figures
significant figure The number of digits reliably known, excluding digits that simply indicate the decimal
place. For example, 3.45 and 0.000 034 5 both have three significant figures.
round-off error Discrepancies caused by rounding off numbers in intermediate results.
1-5 Converting Units Multiply by the ratio of two units to convert from one to another. As an example, to
convert 3.5 m to feet you multiply by the factor (1 ft/0.3048 m).
1-6 Order-of-Magnitude Aballpark estimate designed to be accurate to within the nearest power of ten.
Calculations
1-7 Problem Solving in Physics A good general approach to problem solving is as follows: read; sketch; visualize;

strategize; identify equations; solve; check; explore limits.



14

CHAPTER 1 INTRODUCTION

Conceptual Questions

1.

Can dimensional analysis determine whether the area of a circle
is r? or 2mr??

. If a distance d has units of meters, and a time T has units of sec-

onds, does the quantity T + d make sense physically? What
about the quantity d/T?

. Which of the following equations is dimensionally consistent?

@) x = ot, (b) x = Lat®, (At = (2x/a)"

. Which of the following equations is dimensionally consistent?

(@0 = at, b) v = Lat?, (o) t = afv, (d) v* = 2ax.

5.

6.

Is it possible for two quantities to (a) have the same units but
different dimensions or (b) have the same dimensions but dif-
ferent units? Explain.

Give an order-of-magnitude estimate for the time in seconds of
the following: (a) a year; (b) a baseball game; (c) a heartbeat;
(d) the age of Earth; (e) the age of a person.

. Give an order-of-magnitude estimate for the length in meters of

the following: (a) a person; (b) a fly; (c) a car; (d) a 747; (e) an in-
terstate freeway stretching coast-to-coast.

Problems

Note: IP denotes an integrated conceptual/quantitative problem. BIO identifies problems of biological or medical interest.
Blue bullets (s, oo, ooe) are used to indicate the level of difficulty of each problem.

Section 1-2 Units of Length, Mass, and Time

1.

e The movie Titanic broke all box-office records by bringing in
over $1,270,000,000 in worldwide distribution. Express this
amount in (a) gigadollars and (b) teradollars.

. e Ahuman hair has a thickness of about 70 um. What is this in

(a) meters and (b) kilometers?

. o The speed of light in a vacuum is approximately 0.3 Gm/s.

Express the speed of light in meters per second.

. o Acomputer can do 2 gigacalculations per second. How many

calculations can it do in a microsecond?

Section 1-3 Dimensional Analysis

5.

o Velocity is related to acceleration and distance by the follow-
ing expression, v? = 2ax”. Find the power p that makes this
equation dimensionally consistent.

. o Acceleration is related to distance and time by the following

expression,a = 2xt7. Find the power p that makes this equation
dimensionally consistent.

. e Show that the equationv = v, + at is dimensionally consistent.

Note that v and v, are velocities and that a is an acceleration.

. ee Newton’s second law (to be discussed in Chapter 5) states

that acceleration is proportional to the force acting on an object
and is inversely proportional to the object’s mass. What are the
dimensions of force?

. ee The time T required for one complete oscillation of a mass m

on a spring of force constant k is

[m
T =2mw p

Find the dimensions k must have for this equation to be dimen-
sionally correct.

Section 1-4 Significant Figures

10.

1.

12.

13.

o The first several digits of 7 are known to be = = 3.141 592 653
589 79. ... What is 7 to (a) three significant figures, (b) five sig-
nificant figures, and (c) seven significant figures?

o The speed of light to five significant figures is 29979 X 10°m/s.
What is the speed of light to three significant figures?

o A parking lot is 117.2 m long and 40.14 m wide. What is the
perimeter of the lot?

e On a fishing trip you catch a 2.65-1b bass, a 10.1-1b rock cod,
and a 17.23-Ib salmon. What is the total weight of your catch?

14.

15.

ee How many significant figures are there in (a) 0.000 054,
(b) 3.001 X 10°?

ee What is the area of circles of radius (a) 5.342 m and (b) 2.7 m?

Section 1-5 Converting Units

16.
17.

18.

19.

20.

o The Eiffel Tower is 301 m high. What is its height in feet?

e (a) Calculate the volume of the warehouse in Example 1-2
in cubic feet. (b) Convert your result from part (a) to cubic
meters.

o The Ark of the Covenant is described as a chest of acacia wood
2.5 cubits in length and 1.5 cubits in width and height. Given
that a cubit is equivalent to 17.7 in., find the volume of the ark
in cubic feet.

o How long does it take for radiation from a cesium—133 atom
to complete 1 million cycles?

o Water going over Angel Falls in Venezuela, the world’s high-
est waterfall, drops through a distance of 3212 ft. What is this
distance in km?

A Angel Falls, in Venezuela, is over 3000
feet high. (Problem 20)



21.

22.

23.

24.

25.

26.

27-

28.

29.

30.

» An electronic advertising sign repeats a message every 8 sec-
onds, day and night, for a week. How many times did the mes-
sage appear on the sign?

» What is the conversion factor needed to convert seconds to
years?

» The Star of Africa, a diamond in the royal scepter of the British
crown jewels, has a mass of 530.2 carats, where 1 carat = 0.20 g.
Given that 1 kg has an approximate weight of 2.21 Ib, what is
the weight of this diamond in pounds?

o Many highways have a speed limit of 55 mi/h. What is this
in km/h?

» What is the speed in miles per hour of a beam of light travel-
ing at 3.00 X 10° m/s?

» Kangaroos have been clocked at speeds of 65 km/h. What is
their speed in mi/h?

e Suppose 1.0 cubic meter of oil is spilled into the ocean. Find
the area of the resulting slick, assuming that it is one molecule
thick, and that each molecule occupies a cube 0.50 um on a side.

oo IP (a) A standard sheet of paper measures 8 1/2 by 11 inch-
es. Find the area of one such sheet of paper in m? (b) A second
sheet of paper is half as long and half as wide as the one de-
scribed in part (a). By what factor is its area less than the area
found in part (a)?

ee BIO Nerve impulses in giant axons of the squid can travel
with a speed of 20.0 m/s. How fast is this in (a) ft/s and (b) mi/h?
s The acceleration of gravity is approximately 9.81 m/s” (de-
pending on your location). What is the acceleration of gravity
in feet per second squared?

Section 1-6 Order-of-Magnitude Calculations

31.

32,

o Give a ballpark estimate of the number of seats in a typical
major league ballpark.

A Shea Stadium, in New York. How many fans can it
hold? (Problem 31)

e Milk is often sold by the gallon in plastic containers. Estimate
the number of gallons of milk that are purchased in the United
States each year. What approximate weight of plastic does this
represent?

33.

34.

PROBLEMS 15

ee New York is roughly 3000 miles from Seattle. When it is
10:00 A.M. in Seattle, it is 1:00 .M. in New York. Using this in-
formation, estimate (a) the rotational speed of the surface of
Earth, (b) the circumference of Earth, and (c) the radius of
Earth.

ee You've just won the $1 million cash lottery, and you go to
pick up the prize. What is the approximate weight of the cash if
you request payment in (a) quarters or (b) dollar bills?

General Problems

35.

36.

37.

38.

39.

ee A Porsche can accelerate at 12 m/s% What is this in (a) ft/s*
and (b) km/h??

ee BIO Type A nerve fibers in humans can conduct nerve im-
pulses at speeds up to 140 m/s. (a) How fast are the nerve im-
pulses in miles per hour? (b) How far (in meters) can the
impulses travel in 5.0 ms?

A The impulses in these nerve axons, which carry com-
mands to the skeletal muscle fibers in the background,
travel at speeds of up to 140 m/s. (Problem 36)

eee Acceleration is related to velocity and time by the following
expression, 2 = v”t". Find the powers p and g that make this
equation dimensionally consistent.

eee The period T of a simple pendulum is the amount of time
required for it to undergo one complete oscillation. If the length
of the pendulum is L and the acceleration of gravity is g, then T
is given by

T = 27LPg"

Find the powers p and g required for dimensional consistency.

eee Driving along a crowded freeway, you notice that it takes
a time t to go from one mile marker to the next. When you in-
crease your speed by 5.0 mi/h, the time to go one mile decreases
by 11 s. What was your original speed?





