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More about graphs

6.1 Introduction

In one sense geologists frequently have too much data. A field geologist may
have a notebook full of dip, strike and location measurements, a geochemist
may have analyses of 10 different elements in 100 different rock samples,
or a geophysicist may have more than a kilometre of computer tape for every
kilometre of a 1000 km seismic survey. In all these cases the problem is the
same, the scientist involved must somehow make sense of a mass of data that
is far too large to be digested raw. There are three things that can be done
about this.

(i) Throw away most of the data. Usually this means ignoring all data which
does not fit some preconceived notion. This is very definitely not recom-
mended although it is quite frequently done!

(ii) Perform a statistical analysis. This is the subject of the next chapter.

(iii) Plot the data on a graph which will allow the general properties of the
data to be visualized. This is the subject of this chapter.

In fact, although T have separated them here, statistics and graphing are sub-
jects which overlap very significantly.

This chapter deals with graphs in which each data item is plotted as a point
on a suitable piece of graph paper. The most common graph of this type has
already been used extensively, particularly in Chapter 2. This is the simple
x—y graph which has two axes at right angles to each other, representing two
different quantities. Figure 6.1, shows such a graph which plots sediment
density against depth in a well. Each point represents a specific measurement
of depth and density. The remainder of this chapter is about variations upon
t/his simple theme.

6.2 Log-normal and log-log graphs

The use of logarithms, to enable a wide spread of data to be visualized, has
already been introduced in Chapter 2. Table 6.1 gives the masses of various
modern and extinct animals together with the total areas of the soles of their
feet (this is relevant to whether these animals could walk on soft mud without
sinking in and can help to indicate the environment in which they lived). This
datais plotted on an x—y type graph in Fig. 6.2, Note that all the points except
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Fig. 6.1 A simple x—y plot of sediment density versus depth in a particular well.

Table 6.1 Masses and total foot area for modern and extinct animals. Data taken from
Alexander, R. (1989). Dynamics of Dinosaurs and other Extinct Giants, Columbia University
Press, New York.

Animal Mass (kg) Log(mass) Foot area {m2)
Apatosaurus 35000 4.54 1.2
Tyrannosaurus 7000 3.85 0.6
Iguanodon 5000 3.70 0.4
African Elephant 4500 3.65 0.6
Cow 600 2.78 0.04
Human 70 1.85 0.035
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Fig. 6.2 Simple x—y plot of the data in Table 6.1. Note that five out of the six data points are
squeezed into the leftmost fifth of the graph.
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Fig. 6.3 Plot of foot area as a function of logarithm of the mass. Data is now much better spread
across the plot.
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Fig. 6.4 Analternative to Fig. 6.3. Plot the raw data but use a logarithmically scaled axis. The
resultant graph is the same shape as before but is easier to read.

one are squeezed into the leftmost fifth of this graph which makes the graph
difficult to analyse. A solution to this problem is to plot using the logarithm of
the mass instead as discussed in Section 2.8 and the result of doing this is
shown in Fig. 6.3.

The problem with Fig. 6.3, however, is that it is now difficult to read off
values on the horizontal axis. For example, without looking at Table 6.1,
what is the mass of an elephant? You have to read down to the axis (gives
3.65) and then take the inverse logarithm (i.e. mass = 103.65 = 4467 kg). This
is rather tedious and error prone. An alternative, shown in Fig. 6.4, is to use
a logarithmically scaled axis. Note that the distance on the horizontal axis
between 100 kg and 1000 kg (a 10-fold increase) is the same as the distance
between 10 kg and 100 kg (also a 10-fold increase). The result is a graph
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Table 6.2 Average earthquake

Magnitude Number per year frequency between 1918 and 1945,
— Data from Gutenberg, B. and Richter,

8 1 C.F. (1954). Seismicity of the Earth and

7 18 Associated Phenomena, Princeton

6 108 ' University Press, Princeton.

S 800

4 6200

3 49 000

2 300 000

whose shape is identical to that of Fig. 6.3 but from which it is much easier to
read the mass of any given animal. Such a graph is known as a log-normal
plot since one axis (the horizontal one in this case) is scaled logarithmically
whilst the other has a normal scale. Note that the grid lines initially go up
in multiples of 10 (i.e. the left-most grid line is for 10 kg, the second one for
20 kg etc.) until 100 kg is reached. Then the grid lines go up in multiples of
100 kg (i.e. the next grid line is for a mass of 200 kg) until 1000 kg is reached.
Grid lines then increase in multiples of 1000 kg. Hence, the mass of the
elephant can be read off the axis as around 4500 kg.

Question 6.1 Table 6.2 gives the average frequency (number per year) of
earthquakes of various magnitudes over the period 1918 to 1945.
Using this data:
(i) Plot the frequency as a function of magnitude on normal graph paper.
(Frequency should be on the vertical axis.)
(ii) Plot the frequency as a function of magnitude on log-normal graph
paper.
(iii) Plot log(frequency) against magnitude on normal graph paper. Estim-
ate the constant b in the equation logN = k — bM where N is frequency, M
is magnitude and & is a constant.

It would have been more difficult, although not impossible, to estimate
b from the second graph you plotted. Thus, if the main objective is to dis-
play the data more clearly, use log-normal graph paper but, if the objective
is to estimate a parameter such as b, take logarithms first and plot on
normal graph paper.

In Table 6.1, the foot areas are also spread over a rather large range. It might
be useful, therefore, to take logarithms of the areas or to use logarithmically
scaled axes in both directions. Figure 6.5 is an example of such a log-log plot.

Question 6.2 Using Fig. 6.5, what is the mass and total foot area of
Brachiosaurus?
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Fig. 6.5 The data from Table 6.1 plotted using logarithmic axes in both directions.

Incidentally, in this example, using a logarithmic scale for the vertical axis
has only made a marginal improvement. However, in other cases it will make
a much more useful alteration in the distribution of the data across the graph.

6.3 Triangular diagrams

Triangular diagrams can be used whenever you wish to visualize the relative
proportions of three components making up a specimen. Common examples
are:
(i) The proportions of sand (particles between 2 and 0.063 mm diameter),
silt (0.063-0.004 mm) and clay (less than 0.004 mm) in a sedimentary rock;
(i} An AFM diagram which shows the proportions of alkalis, iron and mag-
nesium in a volcanic rock.

Figure 6.6 shows simple cases from the sedimentological example. Point
A sits in the corner marked ‘100% clay’ and represents a sediment contain-
ing only clay. Similarly, points B and C represent rocks containing exclusively

100% Sand
B

Fig. 6.6 A triangular diagram showing
the proportion of clay, sand and silt for
seven different sedimentary rock C

specimens. 100% Clay 100% Silt
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sand and silt, respectively. Point D lies half way along a line joining 100%
clay to 100% sand. It represents a sediment half of which is clay and half of
which is sand. Similarly, point E is a 50: 50 sand-silt mixture whilst point F
is a 50: 50 clay—silt mixture. Finally, point G is in the centre of the triangle,
equidistant from all three edges, and represents a sediment which consists of
a 1/3 clay, 1/3 sand and 1/3 silt mixture.

It is also, I think, fairly obvious where to plot a point corresponding to,
say, 40% clay and 60% sand and which, therefore, contains no silt. This
point will be on the line joining 100% sand to 100% clay and will be 40% of
the distance along from sand to clay (or, equivalently, 60% of the distance
along from clay to sand), i.e. slightly closer to sand than to clay.

Question 6.3 Plot the 40% clay, 60% sand point onto Fig. 6.6.

These examples are relatively straightforward and it is quite easy to see where
on the triangular plot each of these points should go. What about a sediment
containing 36% sand, 24 % silt and 40% clay? Figure 6.7 illustrates how this

Sand

40% Clay
60% Sand

Clay 40% Clay Silt
60% Silt
(a

Sand

N\
_%\ _36%sand
G\

2

Clay silt Fig. 6.7 Plotting a point which is 40%
(b) clay, 24% silt and 36 % sand.
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Fig. 6.8 A triangular diagram net. Lines /\/\/\/\/\/\/\/\

are drawn here at 10% increments

although most such graph paper would /\/\/\/\/\/\/\/\/\
also have 1% intervals marked. / \/\/\/\/\/\/\/ \/\/\

is done. In Fig. 6.7a, a line has been drawn which connects the 40% clay,
60% sand point to a point representing 40% clay, 60% silt. All points along
this line contain 40% clay but have differing amounts of sand and silt making
up the remaining 60%. Similarly, Fig. 6.7b shows a line representing all
points which have 36% sand. The point where the 40% clay line intersects
the 36% sand line is, of course, a point representing a sediment with 36%
sand and 40% clay and which must, therefore, be 24% silt.

To assist in accurate plotting of such points, a triangular net similar to that
shown in Fig. 6.8 is used. For clarity in this illustration, the lines are drawn at
10% intervals, although these lines will usually be plotted at 1% intervals on
most sheets of triangular graph paper.

Question 6.4 Use Fig. 6.8 or some triangular graph paper to plot an AFM
diagram as follows.

The left corner of the plot represents 100% (Na,O + K,O). The right-
hand corner represents 100% MgO. The top corner represents 100%
(FeO +Fe,0;). Mark these points on your graph and then plot the follow-
ing data which is taken from a set of related volcanic rocks.

(1) 10% (Na,O +K,0),45% MgO, 45% (FeO + Fe,O,).

(ii) 10% (Na,O + K,0), 35% MgO, 55% (FeO + Fe,0,).

/(111 10% (Na,O +K,0),25% MgO, 65% (FeO + Fe,0,).

\(w) 12% (Na,O + K,0),20% MgO, 68% (FeO + Fe,0;).

(v} 15% (Na,O +K,0), 15% MgO, 70% (FeO + Fe,O,).

(vi) 18% (Na,0 +K,0),12% MgO, 70% (FeO + Fe,0,).

(vii) 23% (Na,O +K,0), 12% MgO, 65% (FeO + Fe,0,).

A graph such as this can furnish significant information about the evolu-
tion of a volcanic rock series. However, the way in which this is done, as
well as the details of how to obtain the numbers to plot, is beyond the
scope of this book.
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Fluvial
dominated

Wave Tidal Fig. 6.9 Classification of delta types
dominated dominated using a triangular diagram.

Before leaving the subject of triangular diagrams, it is worth mentioning
that they can be used for classification of geological features if there are three
clear end members to such a classification scheme. For example, deltas are
commonly classified as being dominated by fluvial, wave or tidal processes.
However, real deltas are influenced to some extent by all three types of
process and will not be accurately represented by a simple threefold clas-
sification scheme. The solution is to use a triangular diagram to represent all
possible deltas (Fig. 6.9). Real deltas will then fall at some point within the
diagram which represents the proportions of fluvial, wave and tidal effects
governing the geometry.

6.4 Polar graphs

Some types of data are naturally cyclic. For example, the data in Table 6.3
gives the strength of the non-dipole portion of the Earth’s magnetic field at

. . Table 6.3 Non-dipole magnetic strength
Longitude Non-dipole strength (1 T) (in micro tesla) at various locations
- around the Earth’s equator.

0 17.5
30 13
60 6
90 9.5

120 9.5
150 7
180 4.5
210 3
240 3
270 2
300 5

330 14
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Fig. 6.10 The data from Table 6.3 plotted in polar form.

various locations around the equator (the non-dipole field is that part of
the magnetic field which can’t be explained as due to a simple bar magnet).
Now, the data at a longitude of 330° is only 30° from the data at 0° but, on
an x~y plot, it would appear at the opposite end of the graph. Using a polar
plot avoids this problem (Fig. 6.10). In the polar plot, the longitude is plotted
around the circumference of a circle whilst the field strength is given by the
distance from the plot centre (i.e. the stronger the field the further the point is
from the centre).

6(5 Equal interval, equal angle and equal area
projections of a sphere

This section deals with the problem of plotting data measured on the surface
of a sphere onto a flat sheet of paper. This problem occurs, for example, in
map making when it is necessary to represent a large portion of the Earth’s
surface by a map in an atlas. This cannot be done without distortion and
there are therefore a large number of different ways of doing this, each of
which has advantages and disadvantages. This section will deal with three
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Table 6.4 Apparent dip measurements

Apparent dip Azimuth from a single bed at eight different
locations. The azimuth gives the
44 11 directions along which the apparent
12 305 ; dips were measured.
31 79
42 2
21 318
34 337
7 112
39 352

very similar methods which are widely used in structural geology, crystallo-
graphy, earthquake seismology and many other branches of Earth science.
These projections are useful whenever information about directions in three
dimensions is plotted and they enable many, otherwise complex, manipula-
tions to be carried out relatively simply. There are subtle differences between
the methods used in different branches of geology but there is a core of ideas
and methods which is common throughout. In this section I introduce some
of these ideas but, it must be emphasized, application in particular fields
has much more extensive uses than those described here. This section is very
much a starting point for the more detailed discussions you will meet in
specific geological sub-disciplines.

Consider a bed which outcrops at various locations and whose apparent
dip has been measured along a different orientation at each of the different
locations. Table 6.4 lists such a series of apparent dip measurements together
with the directions in which these dips were measured. Is the bed a simple
planar dipping one or is the bed folded in some way? If the bed is planar, what
is the true dip and dip direction?

Figure 6.11 illustrates the starting point for resolving these issues. This
diagram assumes that the bed is indeed a simple dipping planar bed rep-
resented by the dipping plane in this figure. The arrows drawn on the plane
represent measurements of apparent dip of this surface taken in various ori-

/' entations. A sphere is drawn with its centre on the plane. The intersection of
" the plane and sphere is a great circle. A great circle is any circle on the surface
of a sphere whose centre lies at the centre of the sphere. Thus, the equator and
lines of longitude on the Earth’s surface are great circles but lines of latitude
are not. The individual apparent dip measurements start at the centre of the
sphere and intersect the sphere at points on the great circle. If you think of
the sphere as having lines of latitude and longitude in a similar fashion to
the Earth, each point plots at a ‘southerly’ latitude equal to the apparent dip
and at a longitude equal to the azimuth. Thus, if we plot the projection of our
dip measurements onto a sphere and if the resulting points lie along a great
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Fig. 6.11 Spherical projection of apparent dip measurements. These will lie along a great circle
if the bed is planar.

circle, the measured bed is a simple dipping plane. On the other hand, if this
spherical projection of the dip measurements is not a great circle, the bed is
not planar. Note that, because dips are always measured below the horizon-
tal, only half of all possible orientations are represented. Thus, the spherical
projection of the dip data should actually define a semicircle (i.e. the lower
half of the great circle).

The problem now is that plotting and performing measurements on a
sphere is not very convenient. A solution would be to plot the data using a
proje(ction which represents the surface of the sphere on a flat sheet of graph
papef\.

A method for doing this, bearing in mind that we only have to deal with the
lower hemisphere, is to plot onto polar graph paper. To do this, the azimuth
is plotted around the circumference of the plot and distance, 7, from the
centre of the plot is used to represent dip. There are, however, many ways
of doing this. The simplest is just to let the distance from the plot edge be
proportional to the dip. In other words, dip increases linearly from zero at
the plot circumference to 90° at the plot centre. Thus, if a point on the plot
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Fig. 6.12 Equal interval polar plot of
the data from Table 6.4.

represents a dip of ¢, the corresponding distance, 7, from the plot centre is
given by

7= R(90 — $)/90 (6.1)

where R is the plot radius. For example, a dip of 45° would plot at a distance

of

r=R(90 —45)/90
=R/2

i.e. half way between the plot edge and the plot centre. Similarly, a dip of 0°
would be at the plot edge (i.e. 7 = R) and a dip of 90° would be at the graph
centre (i.e. = 0).

Question 6.5 Using Eqn. 6.1, calculate how far apart two points with the
same azimuth but dips of 10° and 20° are. Assume the graph radius, R, is
90 mm. Repeat this calculation for dips of 70° and 80°.

Using this method for plotting the measurements in Table 6.4 results in
Fig. 6.12 and is known as an equal interval projection. The data certainly
looks as if it might lie along a semicircle but we have the problem that we
don’t really know whether this is half of a great circle or just some other fairly
smooth curve.

Figure 6.13 shows a stereographic or equal angle projection of the apparent
dip data. This is very similar to the equal interval plot (Fig. 6.12) except that
the distance between the circles representing dip is not constant. Note, for
example, that the distance between the 0° dip and 10° dip circles is greater
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® Apparent
dips

Fig. 6.13 Equal angle (stercographic)
projection of the data from Table 6.4. A
great circle is also shown which passes
close to the apparent dip measurements.
Two example small circles are also
shown.

than the distance between the 70° dip and 80° dip circles. In this case, the dis-
tance from the plot centre is given by

7= R tan[(90 — ¢)/2] (6.2)
Thus, a dip of 45° would plot a distance

r=Rtan[(90 — 45)/2]
= R tan(22.5)
=0.414R

which is significantly closer to the centre than half way out (i.e. closer to the
centre than in the equal interval plot). Applying Eqn. 6.2 to the cases of zero
dip and 90° dip gives a result of » = R and = 0, respectively (the same as for
the equal interval plot).

Question 6.6 Repeat question 6.5 using Eqn. 6.2. How do these results
compare to the equal interval case?

The'equal angle projection has two important properties. Firstly, angles mea-
sured on the projection are the same as angles on the surface of the sphere.
This is particularly useful in crystallography. Secondly, circles drawn on the
surface of the sphere project as circles on an equal angle plot and this will
be useful for solving our apparent dip problem. Figure 6.13 shows three
examples of projections of circles. Two of these are projections of small
circles (i.e. circles on the surface of a sphere which are not great circles).
A great circle is also plotted and is an arc of a circle whose start and end
locations define a diagonal to the plot since the two points where it crosses
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® Apparent
dips

Fig. 6.14 Equal area plot of the data
from Table 6.4.

the 0° dip line on the sphere must be opposite each other. In particular, the
great circle plotted has been chosen to pass as close as possible through the
dip/azimuth data.

This great circle clearly passes quite well through the data points so we
can say that the apparent dip measurements are, indeed, taken from a simple
planar dipping bed. The true dip and dip direction can also now be found.
A dip measurement made in any direction other than the true direction of
dip must be smaller than the true dip. Hence, the true dip corresponds to the
maximum dip crossed by the great circle. This occurs at the point shown and
the true dip and dip direction can be read off as 46° in a direction 27° E of N.

The equal angle projection has the disadvantage that it distorts areas. A
figure near the circumference of the plot will plot as an area four times larger
than an identical figure at the plot centre. Figure 6.14 shows an equal area
projection of the apparent dip data. In this case the concentric circles get
closer together towards the edge of the plot and 7 is given by

r =2R sin[(90 — ¢)/2] (6.3)
This time, a dip of 45° will plot at a distance

r =V2R sin[(90 — 45)/2]
= V2R sin(22.5)
=0.541R

which is significantly further from the centre than half way out (i.e. further
out than in the equal interval plot). Applying Eqn. 6.3 to the cases of zero dip
and 90° dip gives a result of r = R and 7 = 0, respectively (the same as for the
equal interval plot).
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Fig. 6.15 Equatorial net which has great
circles and small circles plotted on it.

Question 6.7 Repeat question 6.5 using Eqn. 6.3. This time compare your
results to both the equal interval and equal angle plots.

The equal area plot has the property that equal areas on the surface of the
sphere project as equal areas on the plot. The disadvantage is that circles
and angles are now distorted. The equal area projection is frequently used in
structural problems rather than the equal angle projection since the density
of plotted points is often important and this is distorted by the equal angle
projection.

To make it easier to find great circles (and indeed small circles) on these
projections, a slightly different type of display from the polar plots is norm-
ally used. These are called equatorial nets and are drawn with great circles and
small circles already plotted upon them. Figure 6.15 shows the equatorial net
for the equal angle case. This is known as a Wulff net. The equivalent plots
for the equal interval and equal area projections are called Kavraiskii nets
and Schmidt nets, respectively, and have a similar appearance to the Wulff net.
In Fig. 6.15, the great circles and small circles cut the vertical and horizontal
axes at 10° intervals and cut the circumference of the net at 10° azimuth inter-
vals (({hese lines will usually be drawn at even finer intervals on these nets).

These nets are extremely useful, but plotting a point on an equatorial net is
slightly more involved than on the polar type plots. Plotting the position of
data points is normally achieved using an equatorial net mounted on a board
with a drawing pin through the centre of the net and into a piece of tracing
paper placed over the net. This arrangement allows the tracing paper, upon
which the data is plotted, to be rotated above the net. Figure 6.16 (a, band ¢)
shows how to plot one of the data points from Table 6.4 (dip 31°, azimuth
79°) as follows. Figure 6.16a shows a Wulff net with North marked onto the
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Fig. 6.16 Plotting of the data from Table 6.4 onto an equatorial net.

tracing paper at the top of the net. In Fig. 6.16b the tracing paper is rotated
anticlockwise by 79° and the point is plotted 31° down from the top of the
net. Rotating the tracing paper so that North is again at the top results in the
point being correctly positioned over the net (Fig. 6.16¢).

Repeating this procedure for all of the data points from Table 6.4 results
in Fig. 6.16d. This figure can then be rotated until the points lie along a great
circle (Fig. 6.16¢€). The distance of this great circle from the plot edge gives
the maximum dip value (46°). Finally, rotating the paper again so that North
is uppermost results in Fig. 6.16f in which the data and the great circle appear
in their correct positions and it can be seen that the dip direction is 27° E of
N. Exactly the same set of manipulations can be performed with either the
Kavraiskii or the Schmidt nets and, indeed, for many purposes these nets are

" interchangeable.

The above is only one example of the many problems which these projec-
tions can solve. Other examples are: determining the axes of folded structures;
determining the earlier orientations of structures which have been multiply
deformed; determining detailed earthquake mechanisms; characterizing and
identifying crystal structures. This list is very far from being exhaustive.
Quite a few of these involve plotting the poles of a surface rather than a dir-
ection lying on a surface. Poles are outward pointing normals to the surface
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Fig. 6.17 The 6 poles to the faces of a *
cube.

(i.e. lines at right angles to the surface). In structural geology, downward
pointing normals are used instead. Figure 6.17 shows the poles of the surfaces
forming a simple cube. As you can see, if this cube has its upper and lower
faces horizontal, these poles would plot in a spherical projection with two
points at the poles of the sphere and with the remaining four points around
the equator.

A small complication with transferring this data to a stereographic (or
other) projection is that we have points plotted in both the upper and lower
hemispheres whereas a stereographic projection represents only one hemi-
sphere. The solution is to use two projections, one for the upper hemisphere
and one for the lower. In practice, both sets of points are plotted on one graph
and the difference between them is indicated by using dots for the upper
hemisphere points and circles for the lower hemisphere points. Thus, the
stereographic projection of the cube poles produces Fig. 6.18.

Fig. 6.18 Stereographic projection of
the poles from Fig. 6.17. The top and
bottom faces plot as the dot and circle,
respectively.
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Table 6.5 Area of continental basement

Age (My) Area (106 km2) which is older than a given age. Source:
- Hurley, P. and Rand, J. (1969). Pre-drift

> 450 91.1 continental nuclei. Science, 164,
> 900 50.0 1229-42.

> 1350 35.4 ’

> 1800 26.7

>2250 7.3

>2700 1.1

6.6 Further questions
6.8 Sedimentary beds, when folded, can have three types of geometry:

(i) Planar (i.e. not folded at all);

(ii) Cylindrical (i.e. folded around one axis, think of a towel hanging over a
towel rail);

(iii) Isoclinal (i.e. dome shaped).

In practice, these are the extreme types of fold and real beds are deformed
using a combination of these. Thus, for example, a bed might have a very
gentle cylindrical fold which can be thought of as a combination of the planar
and cylindrical end members. Another bed might be tightly folded around
one axis and be gently folded about another axis at right angles (imagine
the towel on the towel rail again but this time the rail itself is bent up in the
middle). This would be a combination of cylindrical and isoclinal folding.
What type of graph would be suitable for illustrating the above concepts?

6.9 Table 6.5 shows the total area of continental crust which is older than a
given age. Plot this data in a variety of ways and decide which, you believe,
shows the data best.

6.10 Cross-sections through the Earth taken parallel to the equator are, to a
good approximation, circular. However, there are small variations due to
mountain ranges, ocean basins etc. Imagine such as section taken at a latitude
of, say, 30° N. The difference between a circle and the actual section could be
tabulated as a function of longitude. What form of plot would be best for
displaying such data?

6.11 Consider Fig. 6.19 which shows a planar bed which has been folded
about a single axis. Some of the poles to the bedding are also shown and these
point in various directions because of the fold.

(i) What form would you expect a spherical projection of the poles to
bedding to take?
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Poles to
bedding

Fig. 6.19 See question 6.11.

(i) How does the direction and dip of a pole relate to the direction and
amount of bed dip at any particular point? For example, if a bed dips towards
30°E of N what direction does the pole point? If the same bed has a dip of 20°
what is the dip of the pole?

(iii) Determine the poles resulting from the following bed dip data and plot
them onto an equatorial net

Dip (°) Dip direction (° E of N)
70 182
65 170
25 131
40 70
36 90
70 35
40 40
37 73
37 146

(Data from McClay, K. (1987) The Mapping of Geological Structures. John
Wiley, Chichester.)

(iv) Is this information consistent with being taken from a bed folded around
one axis?

6.12 Consider the following data:

Location  Dip  Strike %Sand %Limestone %Marl %TOC  Age(Ma)

1 44 11 10 90 0 0.01 42
2 12 305 30 30 40 14 36
3 7 112 60 20 20 1 38
4 31 79 15 5 90 50 32




110 Chapter 6

Sketch the best types of graphs for showing the following. Ensure the graphs
have well-labelled axes and that all appropriate data is marked in approxim-
ately the right locations.

(i} The dip and strike relationships.

(ii) The %sand, limestone and marl on a single graph.

(iii) The %TOC as a function of age.

6.13 Use spreadsheet Triangle.xls to replot the data from question 6.4.

6.14 Use spreadsheet Polar.xls to replot the data from question 6.11 using
equal-interval, equal-angle and equal-area projections.




