ES202 Midterm Study Guide (updated Winter 2015)

Recommended Study Techniques

- (1) go over pre-lab questions / study them
- (2) review the "How to Study" sheet handed out at beginning of term
- (3) use the concepts below as a guide to help you focus on your notes
- (4) memorize terms and concepts
- (5) go over your on-line homework questions / answers, make sure you know the answers
- (6) go back over the labs and make sure you can do the tricks / skills
- (7) review some of the important figures in your lab manual and text
- (8) go to the lab and look at the lab answer keys, minerals and rocks, work with the samples in lab
- (9) review the techniques for working with maps / air photos
- (10) polish your shoes and drink plenty of Diet Coke (a proud sponsor of G202)
- (11) avoid acoholic beverages and mind-altering cold medicine the night before the quiz
- (12) clean out the smashed and leaking ketchup packets in your glove compartment....

NOTE: I would spend a minimum of 10-12 hours studying for this quiz if I wanted to do well.

Part 1. Lecture Concepts

Key Words

Fundamentals	Slope of Line	cleavage
Environmental Spheres	y=mx+B	fracture
Lithosphere	map view	specific gravity
Biosphere	cross-section view	rock forming minerals
Hydrosphere	3-D view	silicates
Age of the Earth	metric / English units	carbonates
Ultimate Driving Forces	mass	oxides
Climate	temperature	sulfates
Gravity	density	halides
Tectonics		rock cycle
Crustal Composition	Mineral/Rock Overview	igneous
Core	rock	metamorphic
Mantle	mineral	sedimentary
Crust	element	magma / lava
Oceanic Crust	compound	fast-cooling lava
Continental Crust	atom	slow-cooling magma
Asthenosphere	nucleus	two-phase cooling
Lithosphere	electron	extrusive / lava
"Plates"	proton	intrusive / magma
Scientific Method	neutron	weathering
Hypothesis	mineral properties	sediment
Experimental Design	crystal form	sediment transport
Unit Algebra	luster	sediment burial
Unit Conversion	color	lithification
Graphing	streak	fossil
Equation of Line	hardness	metamorphic

foliation	non-foliated	heat-pressure-chemical
granite	water	glacial
basalt	Clay (size / mineral)	
obsidean	bedrock	Sedimentary Features
sandstone	soil	sedimentary structures
shale	regolith	methods of transport
limestone	colluvium	bedload
siltstone	alluvium	suspension
gneiss	drift	dissolved load
slate	lacustrine	cross-stratification
marble	anthropogenic	graded bedding
quartz	aeolian	reverse grading
feldspar	clay	normal grading
muscovite	mass wasting	asymmetric ripples
biotite		symmetric ripples
	Sedimentary Rocks	flute casts
Plate Tectonics Overview	weathering	cast vs. mold
Continental Drift	sediment	mudcracks
Plate Boundaries	erosion	raindrop imprints
Convergent	lithification	paleocurrents
Divergent	compaction	1
Transform	cementation	Stratigraphy/Geologic Time
Spreading Center	Sed. Rock types	Law of Original Horizontality
Subduction Zone	Detrital	Law of Superposition
Volcanic Arc	Biochemical	Law of Uniformitarianism
Mountain Building	chemical	Law of Cross-Cutting Relations
C	sediment size fractions	Relative Geologic Dating
Weathering /Sediment	gravel	Absolute (numerical) Dating
Weathering	sand	Half Life
Erosion	silt	Parent-Daughter Isotopes
Sediment	clay	Radioactive decay
Agents of Transport	grain shape	Horizontal/vertical bed relations
Wind	grain sorting	Stratigraphy
Water	rock types	Dike
Ice	sandstone	Sill
Gravity	conglomerate	Fault
Physical Weathering	shale	Geologic time / Earth History
rk fragmentation	limestone	Age of Earth
frost wedging	evaporites	
unloading/release	crystalline vs. microcrystalline	Intro to Topo Maps
Thermal Expansion	coal	topographic maps
Root Wedging	clastc / nonclastic	north arrow
Animal Burrowing	marine	map scale
Chemical Weathering	nonmarine	contour interval
carbon dioxide	fluvial	index contour
carbonic acid	lacustrine	

Questions for Thought

How do the three ultimate driving forces relate to anything that we've covered since the beginning of the term?

What is the elemental composition of the Earth's crust? atmopshere?

What is the difference between a rock and mineral? Can you sketch the rock cycle yet?

What is the controlling factor of mineral properties? Why are they different?

What is the crust anyhow? Can you draw a diagram of the interior of the Earth (core, mantle, asthenosphere, crust)?

What factors influence how fast a rock will weather? Do all rocks weather at the same rate?

What is the difference between weathering and erosion?

What are the two meanings of the word "clay"?

What do rocks inherently decompose? Why are clay minerals stable at the Earth's surface?

What is the sedimentary process from start to finish?

How does transport energy relate to grain size of deposits? (e.g. would you find boulders in the deep ocean?)

What are the basic marine and nonmarine sedimentary environments?

What are sedimentary structures and how are they used to reconstruct sedimentary environments?

What type of environment do the various sed. rock types form? e.g. sandstone, conglomerate, evaporites, coal, mudcracks, limestone, etc. where would these rocks form at the earth's surface?

What is mass wasting and what are some of the processes associated with it? What drives mass wasting on the surface of the Earth?

How do rocks physically and chemically weather? What are some of the specific processes?

What types of work do rivers perform at the Earth's surface? How is the work of a river related to energy and force? to gravity? to climate?

How do sediments accumulate over time? How is time recorded in the rock record?

2. Lab Skills to Work On

Applying the scientific method basic metric / english unit conversion graphing drawing sketch maps and cross-sections

Identifying basic mineral properties

which minerals / rocks fizz?

metallic vs. nonmetallic

light vs. dark colored

1 or 3 directions of cleavage

can you do a basic mineral hardness test?

Could you identify an igneous, sedimentary vs. metamorphic rock?

what about the three diff. types of sed. rocks?

Can you estimate: grainsize? sorting? grading? angularity?

What about basic paleocurrent directions? How can you tell which way the fluid was moving when the sediment was deposited?

What about recognizing some basic sedimentary structures?

Associating a specific rock type to a possible sedimentary environment?

How does transport energy relate to grain size of deposits? (e.g. would you find boulders in the deep ocean?)

What are the basic marine and nonmarine sedimentary environments?

What are sedimentary structures and how are they used to reconstruct sedimentary environments?

What type of environment do the various sed. rock types form? e.g. sandstone, conglomerate, evaporites, coal, mudcracks, limestone, etc. where would these rocks form at the earth's surface?

Can you determine the elevation of a point on a topographic map?

Can you identify hills and valleys on a topographic map?

By reading a topo map, can you determine "up hill" and "down hill"