ES202 Lab 3 - Sedimentary Rock Analysis and Classification

Update Jan 14, 2016 Part 1 A. Cambridge Intro Rock Video Questions (ROCKSandMINERALS_cambridge_science.mpeg; Time Mark: 12:40) 1. What is the definition of a "rock"

- 2. What are the three basic types of rocks?
- 3. How do igneous rocks form?
- 4. How do extrusive or volcanic igneous rocks form?
- 5. How do intrusive or plutonic igneous rocks form? Provide a common example of an intrusive rock?
- 6. What are sedimentary rocks? Where do they form and why?
- 7. List four types of surface environments in we find sediments that form sedimentary rocks?
- 8. What are the two types of sedimentary rocks?
- 9. In detrital sedimentary rocks, what is the difference between gravel, sand, silt and clay? What is the distinguishing characteristic?
- 10. Provide an example of biochemical or chemical sedimentary rocks. How are chemical rocks classified?

(End Video on Time Mark 18:53)

Part 1B. Sedimentary Rock Video Exercise(Earth Revealed: Sedimentary Rocks)Watch the video in the lab and answer the questions below.

- 1. Who first explored the geology of the Grand Canyon? How did the Grand Canyon form?
- 2. How many years of Earth history are contained in the sedimentary rocks of the Grand Canyon?
- 3. What is the general goal of sedimentary geology?
- 4. What is sediment? How is it formed?
- 5. List and describe 3 examples of loose sediment at the Earth's surface.
- 6. How is loose sediment transformed into hard sedimentary rock?

- 7. True or False: sedimentary rocks most commonly occur inside the Earth, while igneous rocks are common at the Earth's surface. Explain your answer.
- 8. Define the term "clastic".
- 9. What is the smallest size of sediment particle called? What is the largest size of sediment particle called?
- 10. List and briefly describe 2 examples of how sediment may be transported at the Earth's surface.
- 11. List and describe 3 places at the Earth's where you would likely find sediment deposits. Why do you find deposits in these places?
- 12. Define the term "lithification". What are 2 processes that result in lithification of sediment?
- 13. List and describe 2 environments where chemical sediments may form.
- 14. What is the name of a sedimentary rock that forms from the skeletons and hard parts of dead sea animals?
- 15. Where does coal form? What is coal composed of?
- 16. What is the motto for the "principle of uniformitarianism"? What is the principle of uniformity and how is it used to interpret Earth history?

End Video at Uniformitarianism.

Part 2. Recognition of Sedimentary Process (refer to 10th Edition of AGI Lab Manual)

1-1. Based on your pre-lab questions and **p. 165 (Fig. 6.10)** of your lab manual, match the sedimentary process term on the right with the sedimentary rock on the left.

- ____1. Sandstone
- _____2. Conglomerate
- _____3. Shale
- _____4. Rock Gypsum
- _____5. Coral Reef Deposits
- _____6. Sand on the beach
- _____7. Bonneville Salt Flats of Utah
- _____8. Shells on the beach
- _____9. Coal
- ____10. Breccia

- A. Detrital Origin (weathering / fragmental)
- B. Biochemical (biologically-derived rock)
- C. Chemical (Physical-Chemical Process)

Part 3. General Questions on Sedimentary Texture

2-1. Using the attached grain size chart and the Wentworth scale, determine the grain-size of the following detrital sedimentary rock samples (derive the grain-size to the level of fine sand, medium sand, etc.)., and determine the sorting (well sorted, moderately sorted, poorly sorted).

Sample No.	Grainsize (list ~diameter and term)	Sorting		
11				
9B				
15				
4				
6				
14				
Sample Jar S2-1				
Sample Jar S2-7				

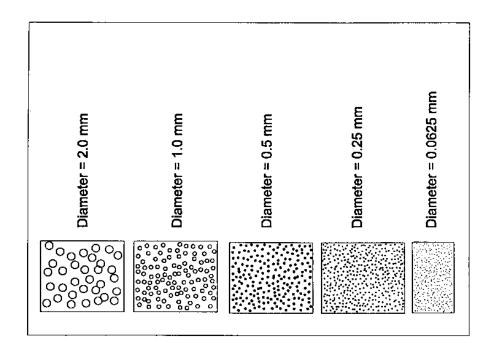
2-2. Compare and contrast the sedimentary texture of sample 11 and sample 4. Which one do you think has sediment that was more greatly transported during it's formation?

2-3. Observe the characteristics of sample 35. Is this detrital or biochemical? What is this specimen?

2-4. Examine the deposit in the beaker labeled "2-4". Explain how this deposit formed. Is it chemical or detrital?

Part 4. Sedimentary Rock Identification

Using the sedimentary rock analysis guides on **p. 158-159 (Fig. 6.2, 6.3)** and identification key on **p. 164 (Fig. 6.9)** of the lab manual, complete the table below for the samples listed.


Sample Number	Detrital, Chem., or Biochem?	Composition: choose all that apply: quartz, feldspar, clay, plant frags., calcite, halite, gypsum, iron minerals	Grain Size (for detrital) / Crystal Size (for chemical / biochemical)	Other Characteristics (e.g. fossils, grain shape, fizzes with HCl, scratchable, taste, etc.)	Rock Name
30					
1B					
14					
9B					
11					
8					
3					
13					
31					
32					
20					
16					
2					
7					
15					
12					
10					
6					
37					
4					

Type of sample	Sample grade	Method of analysis
Unconsolidated sediment	Boulders Cobbles Pebbles	Manual measurement of individual clasts
	Granules Sand Silt —————	Sieving or settling tube analysis
	Clay	Pipette analysis, photohydrometer, Coulter counter
Lithified sedimentary rock	Boulders Cobbles Pebbles	Manual measurement of individual clasts
	Granules Sand Silt	Thin-section measurement
	Clay	Electron microscope

TABLE 5.2 Methods of measuring sediment grain size

TABLË 5.1	Grain-size scale for sediments, sho	wing Wentworth size classes	, equivalent phi (φ) units, and sieve
numbers of	U.S. Standard Sieves corresponding	to various millimeter and ϕ	sizes

	U.S. Standard sieve mesh	Millimet	ers	Phi (ф) units	Wentworth size class
		4096 1024 256	256	- 12 - 10 - 8	Boulder
E		64	64	- 6	Cobble
GRAVEL		16		- 4	Pebble
0	5 6		4	2 - 1.75	
	7	2.83		- 1.5	Granule
	8	2.38		- 1.25	
		2.00	2	1.0	······································
	12 14	1.68		- 0.75 - 0.5	17.
	14	1.41 1.19		- 0.5 - 0.25	Very coarse sand
	18	1.19	1	0.0	
	20	0.84	•	0.25	
	25	0.71		0.5	Coarse sand
	30	0.59		0.75	
	35	0.50	1/2	1.0	
Ω	40	0.42		1.25	
SAND	45	0.35		1.5	Medium sand
ŝ	50	0.30		1.75	
	60 70	0.25 0.210	¥	2.0	
	70 80	0.177		2.25 2.5	Fine sand
	100	0.149		2.5	Fine sand
	120	0.145	¥8	3.0	
	140	0.105	/	3.25	
	170	0.088		3.5	Very fine sand
	200	0.074		3.75	
	230	0.0625	1/18	4.0	
	270	0.053		4.25	
	325	0.044		4.5	Coarse silt
	SILT SILT	0.037		4.75	
MUD	S	0.031		5.0	
					Medium silt
					Fine silt
		0.0039	/230	9.0	Very fine silt
_		0.00098		10.0	Clay
	A A	0.00049		11.0	City
	СLAY	0.00024		12.0	
		0.00012		13.0	
1	1	0.00006		14.0	

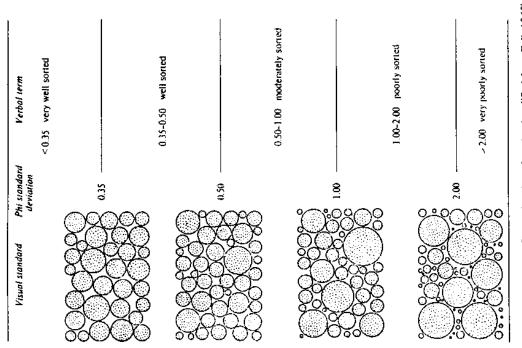


Figure 6.4 Chart for the field estimation of sorting (modified from Folk 1968).

COMPOSITIONAL CLASSIFICATION OF SEDIMENTARY ROCKS

A. DETRITAL (SILICICLASTIC) - made mostly of rock fragments, quartz grains, feldspar grains, or clay minerals

Breccia: made mostly of angular gravel (usually rock fragments)

Mudstone and Shale: made mostly of clay minerals

Conglomerate: made mostly of rounded gravel and sand grains (usually quartz grains)

Arkose: made mostly of feldspar grains

B. BIOCHEMICAL (BIOCLASTIC) - made mostly of grains that are fragments or shells of organisms (plants or animals)

Biochemical/Bioclastic Limestone: made mostly of shells and shell fragments

Peat: made mostly of plant fragments

Coal: made of carbon/charcoal from plants

C. CHEMICAL - made mostly of mineral crystals precipitated from aqueous solutions and/or chemical residues (e.g., rust)

Rock Gypsum: made mostly of gypsum mineral crystals

Chemical Limestone: made mostly of calcite (or aragonite) mineral crystals

Ironstone: made mostly of iron-bearing mineral crystals like this hematite

Chert made of microcrystalline quartz varieties

Ironstone: made mostly of iron-bearing residues like this limonite

made mostly of dolomite made of micro mineral crystals quartz va

Dolostone:

FIGURE 6.2 Compositional classification of sedimentary rocks. Scale for all images is ×1

Rock Salt:

made mostly of halite

mineral crystals