Opening the
Geologist's Tool Kit

Every profession has a specialized vocabulary. An ac-
countant, for example, may speak of a “leveraged” deal
on the stock market or declare that a “low-income fam-
ily” qualifies for the government’s “earned income
credit.” All three terms have specific, defined meanings.
Similarly, an accountant uses specific tools to do her job.
She may perform financial analysis with a balance sheet
or computer spreadsheet. The point: to understand
what any professional does, you must learn their vocab-
ulary and understand their tools.

The same is true in science. That’s why you will
learn new vocabulary in this course and discover special
tools for analyzing the world around us. It’s easiest to
learn the vocabulary and tools by doing small problems
and experiments. Like learning to ride a bicycle, once
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you get the hang of it, you won’t forget what you have
mastered.

Part I of this lab manual contains Units 1 and 2,
which summarize analytical methods. These methods
are the basic tools of the trade in scientific work. You
may have used some of them in high school, but revisit-
ing them here will refresh your memory and improve
your understanding. These units let you practice basic
scientific skills before you jump into the specifics of
geology.

Understanding the tools in this unit will lay a firm
foundation for the rest of your geology course. So please
do all the work assigned in these units with great care, be-
cause you need to master these skills before continuing.
Ask for help if you have difficulty!

This unit presents paper-and-pencil tools used by geol-
ogists and other scientists. We offer examples and prob-
lems in unit conversion (like meters to feet), unit analy-
sis of formulas, constructing graphs, and constructing
histograms (bar graphs). We also offer problems in ap-
plying the Le Chételier principle: a system at equilib-
rium responds to any change by working to minimize
the change.

; Tool 1.1 Unit Conversion

One of arithmetic’s most useful tools is unit conver-
sion—converting from inches to feet, liters to gallons,
miles to kilometers, and so on. The key to unit conver-
sion is that you can multiply any number by 1 without
changing the value of the original number. For example,

5X1=5
31 X 1 =31

py’ X 1 =py’

Also, when you divide anything by itself, like 7 <+ 7,
the result is 1. All such expressions are equal in value to
the number 1. For example:

27 =27 =1
168
— =1
168

843/843 = 1

Further, you can multiply any number by a fraction
like 1/1, abc/abc, or 62/62 without changing the value of
the original number. This little trick allows us to change
units to more useful forms without altering value in any
way. As a first step toward converting units, we can
write:

12 inches
1 foot

This equality is true because the upper and lower
numbers in the fraction have the same equivalent value
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expressed in different form. Similarly,

$1
100 cents

In the preceding examples, the fractions contain
mixed units in the numerator and denominator.
Nevertheless, you know they equal 1, because the top
and bottom are actually the same (that is, 12 inches = 1
foot and $1 = 100 cents).

This gives us an easy way to convert measurements.
For example, if we want to convert a value expressed in
feet into a value expressed in inches, we can easily do so
and be right every time. For example:

How many inches are in 3.5 feet? We can write:

12 inches
35fcet X —— =7?
1 foot
12 inches
35feet X ———— =2
1 foot
12 inches .
3.5 X —1— = 42 inches

That’s the basic idea behind unit conversion. And,

by the same reasoning, you can multiply a number by
several fractions to achieve multiple conversions, as long
as each fraction equals 1. This technique is simple and
useful because it allows us to manipulate numbers,
putting them in different form for convenience without
really changing them. It’s like pouring 12 ounces of bev-
erage from a can into a glass: you change the shape of
the drink, but it’s still the same amount.
Example: Converting Square Feet to Square Yards.
Suppose that you measure your studio apartment with
a tape measure and find that it is 21 feet long and 15 feet
wide. You want to buy carpet for the room and, armed
with your measurements, you figure that you need

21 feet X 15 feet = 315 square feet of carpet
(also written as 315 ft.?)

At the store, however, you find that carpet is priced
in square yards, not square feet. So, in the store’s terms,
how many square yards of carpet do you need? Your first
thought might be to divide 315 by 3, but oops—wrong!
Play it safe and write out a unit-conversion equation,
converting square feet to square yards:

lyard lyard
3fect  3feet

315 yards X yard
£ e =35 yd.”

315 ft.2 = 315 feet X feet X

3X3

Geologists often use unit conversion. The problems
in this book assume that you can convert units using
this method. You can convert units not only within the
English system (like feet to yards or feet to inches) but
from English units to metric ones (like feet to meters or
galions to liters) and vice versa.

The table on the inside front cover provides equiv-

alent values for conversions. Each pair of numbers in
this table, when written as a fraction, equals 1. Use
these pairs to convert any units you encounter in this
book.
Example: Converting Miles per Hour to Kilometers
per Hour. Over-the-road truck drivers in the United
States often cover 700 miles per day. Imagine that your
cousin from England, where metric measures are
used, moves to Louisiana and finds work as a truck
driver. Using the method of unit conversion and the
table on the inside front cover, help him to express 60
miles per hour, a common speed limit, in kilometers
per hour.

60 mifes | 1.609km _ 96.5 km
hour mite hour

Over a 14-hour workday, your cousin averages 52
miles per hour. How many kilometers has he traveled by
the end of the day?

Start with what you know: 14 hours of travel. Then
use cancellation of units to get the units you want: kilo-
meters.

52 mites ” 1.609 kilometer
heour mite
= 1171 kilometers

14 hours X

Example: Converting Square Feet per Quart to Square
Meters per Liter. Imagine that you have been working as
a house painter for most of the summer. Your favorite
brand of high-quality paint claims that it will cover 150
square feet per quart. One of your cousins, who sells
paint in Canada, tells you that he can get you a better
paint at the same price in U.S. dollars. “How much does
a can cover?” you ask. He looks at his can’s label and
says, “11 square meters per liter” Which paint claims to
cover more area, yours or his? Try converting the units
on your brand.

150 foot—<foot 54 0.3048 meter y 0.3048 meter
quart foot foot
= 14.73 m?*/L




Your paint appears to cover more area than your
cousin’s Canadian paint. Make sure that you see how the
units cancel correctly—drawing lines through them is
the best way, as shown—and make sure to rub in the an-
swer at the next family reunion!

Problem 1.1. Volume of Spilled Oil. In 1989, an oil
tanker in Prince William Sound, Alaska, hit a reef. In a
matter of hours, about 10 million gallons of oil spilled
into the water. This was the worst oil spill in U.S. history.

Q1.1. What volume of oil was released, expressed in
liters? (Use the unit-conversion method taught
in this book. Record your answers to all ques-
tions on the Answer Sheet at the end of this
unit.)

Problem 1.2. Weight of Spilled Oil. Water weighs about
1 kilogram per liter. Ocean water is a bit heavier
(denser) because of the salt dissolved in it. Oil, of
course, is less dense than water, which is why it floats
atop water, creating oil slicks and the rainbow effect you
see in oily puddles along the street. Now, suppose that
the crude oil spilled from the ruptured tanker in Alaska
weighed 0.91 kg/L.

Q1.2. How many metric tons of oil were spilled (1
metric ton = 1000 kilograms)? (Use the unit-
conversion method.)

Problem 1.3. Converting Metric Tons to Pounds and
Cents to Dollars. Imagine that you are an interna-
tional copper broker. Copper’s price is 88 cents per
pound. You have an overseas dealer who wants to sell
1488 metric tons of copper (1 metric ton = 1000 kilo-
grams).

Q1.3. How much is the copper worth right now in
U.S. dollars? (Use unit conversion.)

Problem 1.4. Converting Cubic Meters to Cubic Feet.
Imagine that a geologist digs a hole where she is
prospecting, removing 1 cubic meter of soil.

Q1.4. How much soil is that in cubic feet? (Use unit
conversion.)

Problem 1.5. Converting Grams to Troy Ounces to
Dollars. A geologist is hiking along a creek and discov-
ers a nugget of pure gold. At her office, she weighs the
nugget on the only scale available, which reads in grams.
The nugget weighs 388 grams.
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QL.5. If gold is priced at $345 per troy ounce in U.S.
dollars, what is the nugget worth in dollars to-
day? (Use unit conversion: 20 troy oz. = 1 Ib.)

Tool 1.2  Unit Analysis
of Formulas

Unit analysis is an easy concept. It helps you think
through the problem you are trying to solve and under-
stand the units you are dealing with. When you write a
formula, either from memory or from a reference, pause
to check the units in the equation. The units must make
sense for the formula to work! For example, consider
this simple equation:

distance
rate = ———
time

It makes sense as far as its units are concerned, for
rate means a distance traveled over time.

To double-check, plug in some familiar units that
you know well:

miles traveled istance 4

miles per hour ate4= -
P hours of travel ¥ime4

You can see that this will work. This little trick of

checking the units for reasonableness and plugging in
familiar examples as a quick test will help you with all
equations you encounter in all your classes—geology,
math, chemistry, psychology, and so on. If you have any
fear of math, this technique really helps!
Example: Unit Analysis of Formula: Area of a Circle.
Imagine that you are taking a standardized test, perhaps
for placement in the armed forces or admission to a
professional school. This first problem asks you to find
the area of a circle having a radius of r. You aren’t quite
sure you remember the formula for the area of a circle,
but you make an attempt:

area = 27r
(area = 2 X pi X the radius of the circle)

Can this formula be correct? Substitute some units
to see if your equation makes sense. For example:

area = 2 X p X length units

Or you might try specifics:

in? [area] = 2 X p X inches
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In either case, you see that the formula cannot be
correct because it equates (makes equal) a squared
length unit (area) and a plain-and-simple length unit.
In fact, what you remembered was the formula for the
circumference of a circle. The formula for area is

area = 7TT’2

Here you can see that the units make sense, because
the formula says that area—which will be a unit of
length squared—equals a length measurement (radius)
squared.

For the following problems, record your answers on

the Answer Sheet at the end of the unit.
Problem 1.6. Unit Analysis of Formula for Area of a
Triangle. Imagine that you are taking one of those long,
tedious standardized exams. After studying one prob-
lem, you decide you need the formula to find the area of
a triangle. You recall something like

area = %, base X height

Q1.6. In terms of unit analysis, does the formula make
sense?

Problem 1.7. Unit Analysis of Formula for Porosity. A
sponge has many holes or spaces within it, a property
called porosity. For geologists, porosity is a measure of
exactly how much pore space is present in a rock or soil.
You will encounter porosity in your geology course when
you study sandstones, which usually are filled with tiny
pores. You also will see an example of extreme porosity
in pumice, a volcanic rock that has so many open spaces
that it actually floats.

Suppose your geology teacher displays the formula
for porosity:

volume of pore space Zm’ or in.’Bin a rock sample

porosity = =
volume of rock sample Zm’ or in.’B

Q1.7. What is the unit for porosity? (Hint: You may be
surprised by the answer.)

Tool 1.3 Constructing Graphs

Graphs—scientists often call them plots—are useful for
analyzing measurements of natural processes. The most
common plot is the x-y graph (the horizontal axis is for
x values; the vertical axis represents y values). You already
are familiar with this concept, for x-y graphs are com-
monplace on TV and in newspapers and magazines.

As an example, the business pages of a newspaper
might use an x-y plot to show the trend in wheat prices
over several days (Figure 1.1).

In a more geological vein, consider an x-y graph of
the depth of a river at a given time versus the river’s ve-
locity at that time. For example, let’s use the depth and
velocity of the Mississippi River at St. Louis (Figure 1.2).
In this type of graph, you may see error bars, either
generalized ones for all the data or bars that are assigned
to specific data points. The point represents the mea-
surement, and the error bar indicates the range of pos-
sible values for each variable. The figure indicates that
the possible error involved in measuring the velocity of
the river is large compared to the possible error in mea-
suring river depth. '

Note that the figure is not just a presentation of data

points with their associated possible errors. The author
of the graph also has used a statistical procedure to “fit”
a curve through the data. Both curves and straight lines
can be constructed for data using most business and sci-
entific calculators.
Example: Exponential Equation, Logarithmic Graph,
Semilogarithmic Graph. As it happens, in natural sys-
tems like our Earth and the life forms that inhabit it,
many processes are governed by exponential equations.
Such equations involve a variable that is raised to a
power (exponent), like 2* or ¢*. Don’t panic over such
expressions. Just understand that these processes are of-
ten easiest to represent on a logarithmic graph.

You'll see that this is simple if we use a concrete ex-
ample. Imagine that you live on a small, grassy island
that has very few animal species. Someone from the
mainland releases five pairs of rabbits on your island.

d ] |

Dollars per bushel
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Date

Figure 1.1 An x-y plot for wheat prices over several
days.
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Figure 1.2 Graph (x-y plof) of river depth versus the
river’s average velocity at a certain point, for example,
depth and velocity of the Mississippi River at St. Louis.
The graph indicates that the deeper the river, the faster it
flows. Note that the data do not lie in a straight line—
they are not linear.

Because rabbits are not a native species on your island,
there are no predators (coyotes, eagles, owls, and so on)
to eat the rabbits. The rabbit population is free to in-
crease at its natural rate, which is exponential.

You decide to count the rabbits and record their
population. Let’s assume that they all were released
when young, that they will live at least four years, and
that none die accidentally. If each pair of rabbits pro-
duced 12 babies per year, with the offspring evenly di-
vided between male and female, your records would
show year-by-year numbers like these:

Year 1: 5 pairs = 10 rabbits

Year 2: (5 pairs X 12 babies) + original 10
reproducing rabbits = 70 rabbits (35 pairs)

Year 3: (35 pairs X 12 babies) + 70 reproducing
rabbits = 490 rabbits (245 pairs)

Year 4: (245 pairs X 12 babies) + 490 reproducing
rabbits = 3430 rabbits

Summarizing:

Year 1: 10 rabbits
Year 2: 70 rabbits (7 times the original population)

Year 3: 490 rabbits (49 (or 7°) times the original
population)

Year 4: 3430 rabbits (343 (or 7°) times the original
population)

To graph this on a normal x-y plot, we must have a
vertical (y) axis high enough to show 3430 (Figure 1.3).
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Figure 1.3 Unlimited rabbits: exponential curve.
Unlimited reproduction of rabbits is represented by an
exponential curve on a graph that has a linear
horizontal scale and a linear vertical scale.

(Note that no error bars are included in this graph be-
cause they aren’t needed in this make-believe example.)

Obviously, as the rabbit population continues its
exponential growth, the y axis of the graph must grow
tremendously. Scientists find it more convenient to rep-
resent this kind of information on x-y graphs that have
one logarithmic scale. This kind of plot is called semi-
logarithmic. The rabbit example is plotted semiloga-
rithmically in Figure 1.4.
Example: Graphing Half-life of Carbon on Linear and
Semilog Plots. Carbon-14 is a form of carbon used to
date recent geologic events and even artifacts from hu-
man history. The method is accurate back to about
55,000 years ago. Carbon-14 is radioactive because the
nucleus of a carbon-14 atom is unstable. Through time,
each atom “decays” by giving off energy and becomes
transformed into a different element.

Scientists have measured the rate at which carbon-
14 decays. Remarkably, under all known conditions of
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Figure 1.4  Unlimited rabbits: the same numbers on a
semilogarithmic plot. Unlimited reproduction of rabbits
is represented by a line on a graph that has a linear
horizontal scale and a logarithmic vertical scale.
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Table

How carbon-14 decays if we start with 1,000,000 atoms (half-life of carbon-14

is 5730 years)

Number of carbon-14 atoms Time
1,000,000 0 (start)

500,000 5730 years later (1 half-life)
250,000 11,460 years after start (2 half-lives)
125,000 17,190 years after start (3 half-lives)
62,500 22,920 years after start (4 half-lives)
31,250 28,650 years after start (5 half-lives)
15,625 34,380 years after start (6 half-lives)
7,812 40,110 years after start (7 half-lives)

. andsoon.!! ...andsoon...

temperature and pressure, carbon-14 decays at a con-
stant rate. One way of expressing this rate is to state the
time required for half of a group of carbon-14 atoms to
decay. This half-life of carbon is 5730 years. Thus, if a
piece of charcoal contained 1 million atoms of carbon-
14, half of them would be transformed into another el-
ement after the passage of 5730 years. From this infor-
mation, we can construct Table 1.1.

Graphing these values on a regular grid gives the re-
sult shown in Figure 1.5. Because this illustrates a
known principle, the graph includes no error bars. As
you can imagine, for some purposes it can be useful to
plot such numbers on a semilog graph (Figure 1.6).
Problem 1.8. Gold Nuggets—Size versus Silver Content.
A geologist studies gold nuggets found by prospectors in
Canada’s Yukon Territory. He finds that each nugget con-
tains at least some silver. He wonders if any systematic
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Figure 1.5 Half-life of carbon-14: linear graph. Both

scales are linear.

relationship exists between nugget size and silver per-
centage. The easiest way to find out is to plot the two
variables. You can do so using the geologist’s analytical
results, shown in Table 1.2.

Q1.8. In Figure 1.12 on your Answer Sheet, plot the
nugget weight versus the silver percentage.
Decide how to mark the x axis (the horizontal
axis) to accommodate the data.

Q1.9. Looking at your plot, would you say that there is
a relationship (even a rough one) between
nugget size and proportion of silver in the gold?

Problem 1.9. Exponential Growth of Dalmation Dog
Population. Dalmatian dogs (age 3 years), one male and
one female, are released on a huge tropical island where
they find plenty to eat and no animals prey on them or
their offspring. If the female comes into heat twice a

1,000,000
100,000 =

10,000 =

Number of
carbon-14 atoms

Time (years)

Figure 1.6 Half-life of carbon-14: semilogarithmic
graph. The horizontal scale is linear; the vertical axis is
a logarithmic scale.
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Gold nuggets found by prospectors in Canada’s Yukon Territory

Weight of Percent of Weight of Percent of
Nugget nugget silver in the Nugget nugget silver in the
number (grams) gold number (grams) gold
1 17:2 33 11 15.0 30
2 8.0 17 12 91 18
5 1.1 13 2.0 4
4 129 3 14 0.6 1
5 0.9 2 15 0:9 2
6 8.3 15 16 1.4 3
7 0.8 2 17 2.1 4
8 1.1 5 18 1.3 2
9 127 4 19 1Ll 2
10 2L 4 20 11.7 21

year and has 8 viable puppies in each litter, and if each
pup is fertile by age 6 months, how many Dalmatians
will there be on the island at the end of 2'/, years?
(Assume that 50% of all puppies are female and that
adult Dalmatians live for 12 years.) To help you with this
problem, start by completing Table 1.3.

Q1.10. Plot your results on the normal (linear) grid in
Figure 1.13 on your Answer Sheet. Determine
how to mark the y axis to accommodate all the
Dalmatians. When you have plotted your dots,
connect them with your best hand-drawn
curve.

Table

QIL.11. Plot your results on the semilog graph paper in
Figure 1.14 on your Answer Sheet. The plot has
been started for you. When you have plotted
all the dots, connect them with a line.

Q1.12. Describe the curve in Figure 1.13 in your own
words.

Problem 1.10. Graphing the Decay of an Isotope
(Focus on the Parent Element). Uranium-235 has a
half-life of 704 million years. Imagine that a certain
mineral (for example, zircon) contains 1024 atoms of
uranium-235.

Exponential growth of Dalmatian dog population

Number of adult Number of Total number of
Time Dalmatians puppies Dalmatians
Dogs released 2 (1 female) 0 2
', year later 2 (1 female) 8 (4 females) 10
Full year later 10 (5 females) 40 (20 females) 50

1 Y/, years later 50 (25 females)

2 years later

2 '/, years later
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Q1.13. On each of the two graphs in Figures 1.15 and
1.16 on your Answer Sheet, construct a curve
to indicate the decreasing number of atoms of
uranium-235 in the mineral over time. Both x
and y axes have been clearly labeled for you on
the linear graph paper (Figure 1.15) and the
semilogarithmic graph paper (Figure 1.16).

Tool 1.4 Constructing
Histograms

Another valuable graphical tool to geologists is the his-
togram, a type of plot that shows the frequency distribu-
tion of a measurement. You are probably familiar with
histograms that show the distribution of class grades. In
a class of 12 students, for example, the grade distribu-
tion might look like Figure 1.7.

From this histogram, you know instantly that more
students (4 of them) earned a C than any other grade.
One student flunked, two earned an A, and so on. Also,
you can see that more students earned grades above C
than below C. Thus, the distribution is not uniform but
is skewed slightly. Still, for a small class, the grade distri-
bution is close to a normal curve (also called a bell
curve for its bell shape). An even more strongly skewed
distribution of grades is shown in Figure 1.8.

Occasionally, a group of students ends up with

quite a few high grades and quite a few low ones but few
in the middle. Figure 1.9 is a histogram of such a bi-
modal distribution, that is, a distribution that has two
distinct peaks.
Example: Histogram Showing Distribution of Sand
Dune Grain Size. Geologists who study sand dunes use
histograms to plot the distribution of sand grain sizes in
a dune. Studying samples from one dune might yield a
histogram that looks like Figure 1.10.

X

X

Number of students

w| X X X
X
X

A G D F

Figure 1.7 Histogram of grade distribution among 12
students. Each X represents a student.

Number of students

X X X

X X
A B C D

X X X
nf X X X X

Figure 1.8 Histogram of skewed grade distribution
among 12 students. Each X represents a student.

A geologist interpreting this histogram would rea-
son as follows:

« The wind blew grains of sand around, perhaps blow-
ing a lot of sand across many miles.

- Where this particular dune sits, the grains deposited
measure mostly 1/8 to 1/16 inch.

* Smaller grains, being lighter, were carried onward to
another location.

« Larger grains, being heavier, settled out sometime ear-
lier at another location.

A histogram from a sand dune in another area
might be quite different. By studying distributions of
sand grain sizes, geologists have learned a great deal
about how the wind moves particles. Work on many
topics in other branches of geology has been aided by
constructing histograms.

Problem 1.11. Grade Distribution in Percent. In a fresh-
man geology class of 200 students, grades at semester’s
end are as shown in Table 1.4.

Q1.14. Convert the number of students who received
each grade into a percentage of the whole
group. Then draw a histogram for the grade

4]

5| X X
)

2

21 X X
(o)

2l X X X
£

z|l x XX X X X

A B c D F

Figure 1.9 Histogram showing bimodal distribution
of grades among 12 students. Each X represents a
student.
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’ e distribution of the class on the grid in Figure
1.17 on your Answer Sheet.

Q1.15. What is the name for this type of distribution?

Problem 1.12. Gold in Parts per Million from 18
Samples in a Mine. Deep underground in a gold mine,
a geologist takes 18 samples of rock. He sends the sam-
ples to an assay lab, and the lab returns the results
shown in Table 1.5.

The term ppm means parts per million by weight.
This means that for every weight unit of gold in the
rock, there are 1 million weight units of rock (for exam-
=) ple, 1 pound of gold in 1 million pounds of rock). The

g term ppm is common in the gold industry. Rocks that

Total weight of sand grains of each size
(kilograms or pounds)

Less /16 !/sto More contain at least 1 ppm gold generally are worth mining.
than  to l/l6  than Another way to say this: the value of gold is high com-

1/32 1/32 in. I/8

o pared to lots of other Earth materials.
n. n. ;

Dismeter of sand grains Q1.16. Using an X for each rock sample, construct a

Figure 1.10 Histogram showing distribution of sand histogram of the geologist’s results in Figure

grain sizes in a sand sample from a dune, by weight. 1.18 on your Answer Sheet. If you find a value
that has a second or third sample for it, simply
stack the Xs atop one another.

Table 1.4

Grade distribution for 200 students

A+ 4 students B+ 6 students C+ 10 students D+ 30 students
A 24 students B 5 students C 18 students D 10 students
A— 46 students B— 5 students C— 22 students D— 15 students

F 5 students

Table 1.5
Gold content in 18 samples from a mine
Rock Gold content Rock Gold content Rock Gold content
sample (ppm) sample (ppm) sample (ppm)
1 1.1 7 0.6 13 0.7
2 1.2 8 0.9 14 1=3
3 0.9 9 1.1 15 1.4
b 4 1.3 10 1.2 16 1.1
\ 5 1.1 11 2.2 17 0.8
6 0.8 12 1.0 18 0.9
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One rock sample has an unusually high gold con-
centration. In the science of statistics, such a misfit sam-
ple is called an outlier, because it lies outside the range
of most other samples. Gold particles, due to their
chemical nature, have a strong tendency to clump to-
gether, so such high-concentration outliers are not un-
usual in gold mining. This phenomenon is called the
nugget effect.

Determining the average gold content of rock in a
mine can be extraordinarily difficult, in part because of
the nugget effect. To put it another way, never invest in
a gold mine on the basis of just a few assay samples—
many samples must be assayed to getan accurate picture
of an ore!

Q1.17. In the table, which sample is the outlier, and
what is its gold content in ppm?

Tool 1.5 The Le Chatelier
Principle

Scientists use the term closed system to describe some
part of the universe that is not exchanging matter with
its surroundings. For example, a sugar cube sitting on a
table could be considered a “closed system” because the
sugar molecules are not wafting away into the air.

However, a drop of water on the same tabletop
would not be a closed system. In this case, water mole-
cules leave the drop, evaporating into the air. Note that
this evaporation also absorbs a slight amount of heat
from the tabletop, cooling it slightly. This is an example
of an open system, in which both matter and energy
move into or out of the system.

Scientists use the term equilibrium for systems in
which a balance exists between forces or processes such
that no net change occurs. For example, consider a cup
of hot coffee. It is not at equilibrium for two reasons. Its
temperature is not at equilibrium because the coffee is
hotter than its surroundings—it is cooling down. Its
volume is not at equilibrium because the water is evap-
orating. Thus, the cup of hot coffee is an open system
and it is not at equilibrium because it is experiencing a
net change (evaporation of water and loss of heat).

However, suppose we seal the open cup of coffee
with plastic wrap. Now it will reach an equilibrium with
respect to temperature and volume—eventually. The
temperature will reach equilibrium with the coffee cup’s
surroundings as the coffee cools and the surroundings
warm ever so slightly. The volume will reach equilib-
rium when the rate of evaporation of the coffee equals
the rate of condensation dripping from the plastic wrap.

Under equilibrium conditions, the temperature and vol-
ume of coffee do not change even though individual
water molecules in the coffee are not at rest.

A French chemist named Henry-Louis Le Chatelier

developed a valuable concept in the 1800s. It states: “A
system at equilibrium will respond to any new change
applied to it in such a way as to lessen (minimize) the ef-
fect of the change” This is called the Le Chatelier
principle.
Example: Equilibrium of Water Molecules in the
Oceans and Atmosphere. Generally speaking, water nei-
ther leaves planet Earth nor is added in significant
quantities to our planet from space, so we say that Earth
is a closed system for water. Within this closed system,
vast volumes of water exist as liquid in the oceans and as
water vapor in the atmosphere. The oceans and the at-
mosphere are in constant contact, so water molecules
are free to travel between the two. In one direction, wa-
ter evaporates from the ocean into the atmosphere,
whereas in the other direction, water from the atmo-
sphere falls as rain and snow into the ocean. This ex-
change of water occurs constantly worldwide.

What is important to us here is that equilibrium ex-
ists in the proportion of water molecules that reside in
the ocean and those that reside as water vapor in the
atmosphere.

Adding heat to the oceans would increase the num-
ber of water molecules that evaporate to join the water
in the atmosphere. This would disturb the equilibrium.
But because the evaporation process absorbs heat en-
ergy from the ocean, it also would slightly reduce the
ocean temperature, thus minimizing the effect of the
change. This is an example of the Le Chatelier principle.
Example: Equilibrium of Sugar Dissolved in and
Precipitated from Coffee. Considering a system closer
to home, imagine that you stir a large quantity of sugar
into a cup of hot coffee. You add so much sugar that not
all of it can dissolve, so some accumulates on the bot-
tom of the cup. When you are finished stirring, the
sugar crystals at the bottom are in equilibrium with the
sugar molecules that are dissolved in the coffee.
However, as the coffee cools, it can hold fewer dissolved
sugar molecules. This forces the sugar molecules in so-
lution to precipitate, joining the sugar at the bottom of
the cup. This precipitation reaction releases heat, thus
lessening the effects of the cooling, another illustration
of the Le Chételier principle.

Example: Equilibrium of Solutes in Hot Springs. The
situation described in the previous example also exists
with dissolved salts in hot springs (Figure 1.11). Where
a spring releases water at the ground surface, the hot wa-
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Figure 1.11 Hot spring pool with surrounding mineral precipitate, Yellowstone National Park,
Wyoming. Note the minerals that have precipitated around the spring as the water cools and
evaporates. (Fritz Polking/Visuals Unlimited)

ter spreads out. This allows the water to cool, forcing
dissolved chemicals to precipitate. An example is silica
(the common ingredient in opal, flint, and chert). This
precipitation releases heat. It explains the buildup of sil-
ica you see around the spring in the photo.

Many precipitation reactions release heat. This
makes sense, because you know that in the reverse situ-
ation, when you dissolve powdered detergent, salt, or
sugar in water, adding heat to the water allows a lot
more of the solid to dissolve. This implies that when de-
tergent, salt, and sugar dissolve, they absorb heat.

Of course, other processes can be significant in the
chemistry of hot springs. For example, some of the wa-
ter is evaporating into the air, thus concentrating salts in
the water, which also promotes precipitation.

As you will see, the Le Chatelier principle allows us
to predict changes that occur when systems at equilib-
rium are disturbed. Note that the principle doesn’t tell
us how much heat will be consumed or how much solid
will precipitate. It just tells us in what direction changes
in the system will move.

Example: Equilibrium of Glaciers. Imagine that
Switzerland experiences three unusually warm summers
and winters in a row. How can the Le Chatelier princi-
ple be used to explain what will happen to Switzerland’s
famous glaciers? When ice melts, heat is consumed—as

you know simply from holding an ice cube in your
hand. The melting ice absorbs heat from your hand,
leaving your skin quite frigid. Thus, if Switzerland is un-
usually warm for several years, the local glaciers will re-
spond to lessen this increase in temperature. Glacier
ice will melt, a process that consumes heat, and
Switzerland’s glaciers will shrink, “retreating” up the
mountain valleys.

Problem 1.13. Le Chatelier Principle Explains Why
Adding Heat Allows Saturated Saltwater to Hold
More Salt. Imagine that you have a cold glass of water
into which you have dissolved all the salt you can. After
stirring and stirring, a thin layer of salt crystals re-
mains on the bottom of the glass. Now imagine that
you carefully immerse the glass in a large pan of hot
water, thus heating your glass of saltwater. You see that
as the water warms up, the salt crystals on the bottom
of your glass disappear entirely, dissolving into the
warmer water.

Q1.18. How does this event illustrate the Le Chatelier
principle?

Problem 1.14. Le Chitelier Principle Explains Whether
Diamond or Graphite Forms, Depending on Pressure.
Geologists know that the element carbon occurs as the
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soft, slippery mineral graphite near Earth’s surface, but
the same element forms hard diamonds deep within
Earth. Imagine that a geologist puts a piece of graphite
into a tightly sealed cylinder that has a plunger. He then
exerts enormous, constant pressure on the graphite.
Eventually, he produces a cylinder of carbon that is 90%
graphite and 10% diamond. No further change oc-
curs—in other words, the system is in equilibrium un-
der some particular constant pressure.

Q1.19. If at this point the geologist increases the pres-
sure even more, what will happen? How does
this illustrate the Le Chatelier principle? (Hint:
Diamond is a denser structure of carbon mole-
cules than graphite.)
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Ql1.1. liters

Q1.2. metric tons

Q1.3. US$

Q1.4. cubic feet

Q1.5. US$

Q1.6. (circle one) yes no
Q1.7. porosity unit:

Q1.8.
Figure 1.12 Percentage of silver in the gold nuggets.
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Figure 1.13 Linear plot of exponential population.
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’ Q1.12.

Q1.13.
Figure 1.15 Half-life of uranium-235 shown on linear graph.
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Q1.14.
Figure 1.17 Histogram of grade distribution for the class.
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Figure 1.18 Histogram showing distribution of gold concentration (ppm) in rock samples.
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