apter 1
Properties of Rock

‘Bulk Density

e that a sample of rock is under examination. Perhaps the sample was cut from rock
& quarry, or from an outcrop produced in the course of an engineering project. Call the
e of the sample V; i.e., V is the volume enclosed by the outer surface of the sample.
!Elnme can be calculated from the dimensions of the sample if it has a shape for which
is & formula for the volume (e.g., a cylinder). If the sample has an irregular shape,
the volume may be harder to determine. It might be found from the displacement of
er in a graduated cylinder into which the sample is immersed. Allowance may have to
made for any water absorbed by the sample.
the other hand, the mass M of the sample is easy to measure, with a suitable balance,
example.
,‘m the mass M and volume V the density p of the sample can be calculated. By

== - (1)

*ﬁ density defined by Eq.(1.1) is the average density of the sample: there is no way to
'iﬂ from just the total mass and volume what is the internal distribution of density in the
mple. This average density is also known as the bulk density .

Tn SI base units, mass is in kg (kllogram)and volume in m3 (cubic meter), so that, by
‘Eq. (1.1), the units of density are kg/m®. In the cgs set of metric units, the unit of mass is
- (gram) and of volume cm? (cubic centlmeter), the density therefore has units g/cm®. For

future use, note that

1 kg/m® = (1000 g)/(100 cm)3,
1kg/m® =1X10"2 g/cm?,
1g/cm® =1X 10® kg/m®.

~~ Most of the rocks found near the surface of the Earth have densities in the range from
1.8 g/cm® to 3 g/cm®.
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Specific Gravity l\

ies of substances making up rocks, or of a rock itself, are sometimes expressed in
the density p. of liquid water. The specific gravity G of a substance is defined by

p
==L, 1.2
£ | (12)

 is the density of the substance. Since G is the ratio of two densities, the density
el, 5o that G has no units. (This requires that both densities in Eq.(1.2) must
sed in the same units, either both kg/m? or g/cm?; it would lead to mesaningless
on if one density is in kg/m? and the other g/cm®)

the density of water it is common to use pw = 1.00 g/cm®. The density of water

alightly with temperature (as does the density of other substances), but this variation
(not always) be ignored. In the present work, the density of water will be taken

kg/m® exactly for the purpose of calculating specific gravity.

****************************************

1 . 4 1
k of rock with edge lengths 85.5 cm, 79.0 cm, 43.8 cm has a mass of 953 kg. Find the

gravity of the rock.

yof the data are in SI base units (the mass), the rest are in cgs units (the edge lengths).
ations should be done either with all base units or all cgs units. In engineering, the
‘units are more commonly used. (But not always: sometimes SI base units and cgs
s are mixed!) Using all SI base units means that the edge lengths must be converted to
rs. But this is easy since 1 m = 100 cm. By “block” of rock is implied a rectangular

-

sck whose volume is the product of the edge lengths. Therefore,

V = (0.855 m)(0.790 m)(0.438 m),
V = 0.2958 m®.

Eq.(ll), the density is

_ 953Kkg
P = 0.0058 m®’

p = 3222 kg/m’.

Now use Eq.(1.2) to find the specific gravity C. Since SI base units are being used here, the
ty of water p,, must be entered in these units. Therefore,

o

¢=1,
Pw

S
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_ 3222kg/m®
1000 kg/m®’

G =322

~ Bince the data has 3 signiﬁeant figures (sig fig), the final result can be given to no more than
3 sig fig, although 1 extra sig fig is carried within the calculation to guard against round-off
error. As mentioned previously, the density of water is considered to be exact.
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1.3 Unit Weight

’, The weight W of an object is the gravitational force exerted on it by the rest of the planet
~ Barth. Dividing the weight W of an object by its volume V yields the unit weight «y of the
object or of the material of which the object is made; that is,

Y= -‘7. . (1.3)

" 'The SI base unit of weight is the newton (N). Since the base unit of volume is m®, the SI

~ base unit of unit weight is N/m3. (Note the two uses of the word unit in the last sentence.)

“‘The cgs unit of weight, the dyne, will not be used in this book; therefore, cgs units of unit

. weight will not be encountered in the present work.

-+ Looking back at Eq.(1.1), it can be seen that the unit weight is defined very like the bulk
density, except that the weight W replaces the mass M. (For this reason, unit weight is also

- known as weight density.) There is a relation between weight and mass. From physics,

W = Mg, (1.4)
- where g is the acceleration due to gravity (often called simply gravity). Hence,
v = Mg/V,

= (M/V)g,

v = pg. (1.5)
 Equation (1.5) can be used to calculate unit weight from density, and vice versa. The
numerical value of g to be used is
g = 9.8 m/s?

- This value is often adopted as the value of gravity averaged over the surface of the Eerth.
. For the purpose of evaluating the significant figures in any calculation, this value for g shall
. be considered exact.
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Me that Eq.(1.2) for specific gravity can be written in terms of unit weight:

G = p/pw,
G= pg/pwg’

G =v/%w. (1.6)
The unit weight of water is, by Eq.(1.5), ‘
Yo = Pwg,
Y = (1000 kg/m®)(9.8 m/s?),
Y = 9.8 kKN/m®.
3] prefix k stands for 1 X 10°.
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EXAMPLE 2
Calculate the density in g/cm?® of a rock with unit weight 27.6 kN/m®.

noted just above, the SI prefix k means a factor of 1000. By Eq.(1.5),

v = pg,

27.6 X 10® N/m® = p(9.8 m/s?),
p = 2820 kg/m®,
p =282 g/cm?.

he answer is given to 3 sig fig since the data is given to 3 sig fig (remember that the value
"= 9.8 m/s? is considered to be of infinite precision). Also, the density conversion factor
kg/m® and g/cm? is used in the last step.
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Porosity

Under a microscope, most types of rock are seen to contain small open spaces, called pores.
hese pores can originate in various ways. For example, many sedimentary rocks seem to

sssembled from many small, solid particles, called grains. These grains are irregularly
‘ . However, unlike a jigsaw puzzle in which the irregularly shaped pieces completely




~1.4. POROSITY

interlock leaving no spaces, the grains in rock may not fit together perfectly, leaving the gaps
called pores. See Fig.(1.1).

Fig.(1.1) Section of Rock Showing Grains Enclosing Pores.

Pores may simply be cracks in the rock, the result of mechanical or thermal forces exerted
on the rock sometime in the past. They could be bubbles frozen into the rock when it
‘Whatever the origin of the pores, the truly solid part or parts of the rock are called the
grains or the matriz. The terms grains and matrix often are used interchangeably.
To quantitatively express the degree of porosity (volume of pores vs. volume of rock),
the porosity n is defined by
1= Voarw!V. (17)

In Eq.(1.7), Viores is the total volume of all the pores present in a rock sample whose volume

 is V. It is important to recognize that V is the volume of the rock sample as found in nature

(in the field) and includes both the pores and the matrix; that is

V= Vporee + Vmatrixa (18)

~ where Viyuuix is the total volume of all the truly solid portions of the rock. Put another

way, a8 in the definition of bulk density, V is the volume that would be calculated from

- the external dimensions of the rock sample, with no regard for how much of the volume is

- occupied by grains or pores.

If the sample of rock being examined for porosity has been broken off from a much larger
formation of the rock in the field, then the sample must be large enough to include a great
any pores, to ensure that the sample is representative of the rock formation.
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the total pore volume must be less than the volume of the rock (i-e, Voores < V),
s that n < 1. The situation V,4e = V indicates just empty space (Vinatix = 0, by
1.8), s0 that n = 1 is never realized for a real rock sample. On the other hand, in some
fine-grained rock, the grains can interlock like a jigsaw puzzle, yielding zero porosity.
“the values of porosity actually encountered are in the range 0 < n < 1.
Often, porosity is expressed as a percent (%). However, in the equations in this book
ae Eq.(1.7)), it is always assumed that n is expressed as a decimal. Therefore, if n
jven as a percent, it must be divided by 100 to obtain the corresponding decimal value
we being used in any equation.
The density p of a rock defined by Eq.(1.1), and the unit weight -y (weight density) defined
£q.(1.3), refer to the overall rock sample; i.e., the volume V in both of these equations
joses both grains and pores. These densities are average densities.

e density pg of the grains (or matrix) is given by a relation analogous to Eq.(1.1), but
sd to the grains:

Mgrai |

- 1.9
; pg Vgrai ? ( )
2 Mgrains is the total mass of the grains in the rock sample containing a volume Virains

¥f the pores are unoccupied, or filled only with a gas, then Mgrains = M, where M is the
of the rock sample. (A gas contributes negligible weight to the sample.) By Eqgs.(1.7)

1.8),
Vgra.ins =V - v;)orea’
Virains = V — 1V,
Vigains = (1 = n)V. (1.10)
ituting this into Eq.(1.9) and invoking Eq.(1.1) yields
M
= T—n)V’
_ P
Pe= T (1.11)

is equation for the density p, of the grains in terms of the bulk density p of the rock
of its porosity n applies only if the pores are either empty or occupied only by a gas.
practice, it is unlikely that the pores will be found to be truly empty (i.e., enclosing a

mcuum). The term empty implies, therefore, that the pores are filled only with a gas (e-g.

, or methane).

" An equation like Eq.(1.11) can be written in terms of unit weights, rather than mass

ensities. Multiply Eq.(1.11) by gravity g and use Eq.(1.5) to get
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- EXAMPLE 3

A 0.885-m® block of sandstone has a mass of 1752 kg. When the block is crushed just
sufficiently to close all the pores, which are empty, the volume of the rock becomes 0.584
m®. Find (a) the porosity of the sandstone and (b) the density of the grains. (Assume that
the density of the grains is not changed in the crushing process.)

- (@) The original block has a volume V = 0.885 m3. The volume of the crushed rock must

equal the volume of all the grains in the original block, since the crushed rock has zero pore
volume. That is, in the original block, Vg ains = 0.584 m®. Therefore, the volume of the pores
in the original block is, by Eq.(1.8),

| 4
0.885

= Vpores + Vgrains,
3 = Viores + 0.584 m?,

m
Voores = 0.301 m3.
-~ Now calculate the porosity by Eq.(1.7):

n = Voores/V,
n = (0.301 m?)/(0.885 m?),
n = 0.340 (34.0%).

. (b) Since the pores are empty, the mass of the crushed rock is the same as that of the original
- block, 1752 kg. The volume of the crushed rock is 0.584 m®. But the crushed rock is entirely
- grains, and therefore, by Eq.(1.9),

Pg = Mgrains/ Vgrainsv
oy = (1752 kg)/(0.584 m?),
e = 3000 ke/m?,
pg = 3.00 g/cm?®.
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1.6 Dry and Saturated Unit Weights

The pores of in situ rock (rock as found in the Earth, undisturbed by human activity) may
be filled with gas or liquid. The densities of gases found in rocks are very much less than
the densities of the grains or matrix of the rocks. This means that, as already mentioned,

it is safe to ignore the contribution of the gas trapped in the pores to the total weight of a
rock sample. ‘

- A similar statement cannot be made for liquids. The densities of the liquids commonly
ff\ound in the pores of rocks, although less than the densities of the grains, are not very much .
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h H the porosity of the rock is large enough, and a significant fraction of the pores contain
iquid, then the weight (or mass) of the liquid is likely to be an appreciable part of the total
at (or mass) of the rock.
- If all the pores in a rock sample are completely filled with liquid, then the rock is said to
saturated. If all the pores are empty, then the rock is said to be dry. Saturated rock can
be rendered dry by heating the rock in an oven; at sufficiently high temperature the liquid
orizes and the vapor is driven out of the rock.
An important relation is that between the unit weight 7., of a saturated rock sample, the
unit weight 4., of the same sample when dry, and the unit weight 7, of the liquid occupying
e pores of the saturated sample.
(It may be tempting to write Yeat = Vary + 7L, but this is not correct because of the
different volumes involved.)
To obtain the actual relation, note that the weight W,,, of the saturated rock sample is
st the sum of the dry weight W, and the weight W1, of the liquid in the saturated rock:

Weat = Wary + WA

- The volume V of the rock sample is the same whether it is dry or saturated (just as the
mlume of your car’s gas tank, metal with one large pore, is the same whether the tank is
mpty or full). Dividing the preceding equation by V gives
We _ Wiy Wy
|4 | %4 Vv’
4%
Yeat = 7dry + _I'i, (113)
Eq(l3) The unit weight of the liquid -, is

W. is the volume of the liquid with weight Wy.. But, since the liquid fills all the pores,
Vi = Vioree. (1.15)

Hence, by the definition of porosity n
t W =nV. (1.16)

this last equation for V (easy!) and substitute into Eq.(1.13). Then use the definition
given in Eq.(1.14) to obtain

W
Yeat = Ydry + n—L—,

Yeat = Yary + YL,
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A similar relation holds between the mass densities. By Eq.(1.5), Eq.(1.17) becomes

Peatd = Paryd + n(pLY),

Paat = Pary + NpL. (1.18)
Example 4 below describes how these relations can be used to determine the porosity of
- & rock sample by injecting it with mercury Hg. Liquid mercury is much denser than water:
- Gug = 13.6 compared with G,, = 1 for water. This implies that, even if the porosity of the
rock sample is quite small, saturating the rock with mercury could change the unit weight
- significantly, making accurate laboratory measurements of the weights and their differences
~ relatively easy. A disadvantage is that liquid mercury is a hazardous substance, mainly
. because of its vapor; great care must be exercised with its use.
AR KRR AR KRRk sk kR ok kR

. EXAMPLE 4

A test cylinder of rock has a diameter of 12.6 cm and a length of 14.0 cm. When dry its

©  weight is 50.3 N. When saturated with mercury the weight of the sample is 62.8 N. The
- specific gravity of mercury is 13.6. Find the porosity of the rock.

. The volume of the rock sample is
V =xD?L/4,
V = m(0.126 m)?(0.140 m)/4,
V=1746X10"° m®’
.- 'Therefore, the dry and saturated unit weights are
| Yary = Wary/V,
Yary = (50.3 N)/(1.746 X 10~3 m3),
Yary = 28.81 kN/m?3;
Yeat ==VVLn/‘/;
Yeat = (62.8 N)/(1.746 X 103 m3),
Yoat = 35.97 kN/m3.

The unit weight of the liquid mercury 7y, follows from Eq.(1.6):
N = GLYw,
7 = (13.6)(9.8 kN/m?3),
7, = 133.3 kN/m3.
Note that the unit weight of the mercury is greater than the unit weight of the rock, whether

dry or saturated. Now use Eq.(1.17) to solve for the porosity n. Note that the units of unit
weight cancel, so that

Yeat ==7Hnr4'7V7L,
35.97 kN/m® = 28.81 kN/m?® + n(133.3 kN/m?),
n = 0.0537 (5.37%).
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8  Subsidence
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Fig.(1.2) Consolidation and Subsidence

ee that loose, unconsolidated, rock (or soil) is dumped into a rectangular trench of
h L, width w, and depth Hp, as shown in Fig.(1.2a). Initially the material, of porosity
fills the trench. However, because of an applied external load (such as the weight of a
g constructed thereon), the material is compacted, or consolidated. That is, its pores
ally collapse, squeezing out any water that might have occupied them (this requires that
water has a place to go, and that the consolidation is not so rapid that the water cannot
there). Eventually, the consolidation ceases, with the porosity reduced to n < ng. It
be presumed that the density of the matrix is unaffected; this is reasonable, since the
nieeded to shrink the pores is much less than that needed to densify the matrix. The
rial now occupies a region of smaller volume, so that it fills the trench only to a height
¢ Hy. This means that the surface of the material (the ground) is lowered by an amount
[ = H — Hy. See Fig.(1.2b). A lowering of the ground surface is called subsidence . It
occur for reasons other than a change in porosity, and can take place slowly or quickly.
~The task now is to calculate the subsidence AH due to a reduction in porosity. To do
§8, write expressions for the volume of the matrix before and after the consolidation. Since,
sssumption, the density of the matrix is unchanged, its volume is also (provided there
‘0o loss of matrix). Hence, the two expressions must be equivalent. By the definition of
4
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porosity, they are
Vmatrix = (1 - 'no)(Ho'LUL),

Vaatrix = (1 — n)(HwL).
e Setting these expressions equal gives

(1 — no)(HowL) = (1 — n)(HwL),

(1 —no)Ho = (1 —n)H,

(1 —ng)Hp = (1 — n)(Ho — AH),
ng —n
= . 1.19
AH = Ho[7—] (1.19)
Equation(1.19) applies only to a trench with a rectangular cross section, since the volume of
the material was presumed to be given by the product of the three edge lengths.
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EXAMPLE 5
A layer of clay with a porosity of 47.0% and saturated with water is deposited into a rect-

angular trench 260 m long and 17.5 m wide to a depth of 2.72 m. Later, it is found that the
clay has settled by 15.0 cm. Find the volume of water squeezed out of the clay.

The subsidence and the original height must be expressed in the same units, so that these
units will cancel. Choosing meters, and remembering to express the porosity in decimal
form, Eq.(1.19) becomes, after substitution of the data,

: 0.470 —n
0.150 = 2.72[——

[ 1 —-n ]’
n = 0.4391.

- Since the clay was saturated, the volume V,, of water squeezed out equals the loss of pore
space in the clay due to the compaction. Therefore,

Vo = ng(HowL) — n(HwL),
Va = (noHp — nH)wL.
Now H =272 m - 0.15 m = 2.57 m, so that
Vo = [(0.470)(2.72 m) — (0.4391)(2.57 m)](17.5 m)(260 m),

Vi = 682 m3.
ook ok ook ks koK sk skok ok sk ok ook ok ok
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1.7 Multimineral Rock

Suppooe that the porosity of a particular rock specimen is to be found by measuring the
-bulk density p, the grain density p; and then applying Eq.(1.11). The bulk density is easy
40 measure. What about the grain density?

If all of the grains in the rock are of the same mineral, and the density of the mineral as
it occurs in nature is known (many have been measured in the laboratory), then the grain
- density simply equals the density of that mineral.

- For arock that contains several minerals, the value of pg to use in equations like Eq.(1.11)
is the average of the densities of the individual minerals present. As an example, consider a
- rock made up of three minerals, the densities of the minerals grains being denoted by pi, p2
_and ps. The bulk grain density pg will not, in general, be simply %(P1 + ps + p3), because the
minerals may be present in different amounts. A weighted average must be used, the precise
-nature of which must now be deduced.

" Let the total mass of all the grains in the rock sample be M, and the total volume of all
- the grains V;. By Eq.(1.9),

M, = pgVe.

¥ M, be the total mass and V; the total volume of mineral 1 in the rock, with similar notation
for the other two minerals present (assuming that the rock contains three minerals), then
since

‘ Mg=M1+M2+M3,

it follows that
. peVe = p1V1 + p2Va + psVs,

W Va Vs
- Finally, write ”
| fi=— (1.20)

" for the fractional volume abundance of the first mineral, with similar notation for the other
- minerals), so that the bulk grain density becomes

pe = fipr + fap2 + faps. (1.21)

- Equation (1.21) is the relation sought for the bulk grain density; it is a volume-weighted
~average of the densities of the individual minerals present.
Writing equations like Eq.(1.20) for the three minerals and then adding gives

fi+fatfs=1 (1.22)

The volume abundances can be measured in the laboratory by examining a representative
- piece of the rock with a microscope powerful enough so that the individual grains can be

o
P
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- seen and distinguished from each other. The number of grains of each mineral present must
- then be counted and their total volume estimated.
Identifying a mineral by name does not necessarily specify its chemical composition. For
- example, a grain of the mineral olivine can contain some or all of the molecules FezSiOy,
 FeMgSiO4, and Mg2SiO,. Different olivine grains will include these molecules with varying
~ abundancies.

This leads to the expectation that different olivine grains have different densities. This is
indeed the case. However, the variation in densities is fairly small, between about 3.2 g/cm®
and 3.6 g/cm?.

This is the situation for many other (but not all) minerals. Although the densities of their
grains shows some variation, the variation is small enough that, to a good approximation,
the average of these densities can be taken as the density of all grains of the mineral. Table
(1.1) lists some minerals which show small variation in density and their average density.

Mineral Density (g/cm")
Gypsum 2.35
Orthoclase 2.55
Chalcedony 2.62
Quartz 2.65
Plagioclase 2.70
Chlorite 2.80
Muscovite 2.85
Anhydrite 2.95
Pyroxene 3.40
Barite 4.45
Pyrite 5.05
Galena 7.54

Table (1.1) Average Density of Some Minerals
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EXAMPLE 6

A shale consists of 34.1% chlorite and 65.9% pyrite, and has a porosity of 38.8%. Find the
bulk density of the shale.

First, use Eq.(1.21), suitably modified for a rock that consists of only two minerals, and
Table (1.1) to calculate the bulk grain density:
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- Pg = JenPeh + foyPoys
pg = (0.341)(2.80 g/cm®) + (0.659)(5.05 g/cm?),
pg = 4.283 g/cm?.

From Eq.(1.11) the rock’s bulk density p is

p= pz(l - n),
p = (4.283 g/cm®)(1 - 0.388),
p =262 g/cmd.
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.8 Triangular Composition Diagrams

Ihe mineral composition of a rock is specified by giving the abundances of all the minerals
that it contains. In many rocks, it is sufficient to give the abundances of just three min-
erals, either because the rock contains only three minerals, or that if it contains more, the
" sbundances of the others are so small that they can be ignored.

. For example, many igneous rocks contain mainly the minerals quartz, alkali feldspar,
and plagioclase. The rocks are classified into different named groups in part on the range of
:abundances of these three minerals.
" For these three-mineral rocks, it is fashionable to display the abundances of the minerals
in the associated rock groups on a triangular composition diagram. In this way, the compo-
sitional relationships between the various associated rock groups can be visualized without
_examining tables of their mineral abundances.
~* " To see how the compositional display can be constructed, it is only necessary to become
donvinced of this, otherwise rather obscure, property of equilateral triangles: From any
peint inside the triangle, draw perpendiculars to the three median lines; the sum of the
three distances from the midpoint of each side to the foot of the perpendicular drawn to it
- equals the length of a median line.

~ Figure (1.3) shows an equilateral triangle with one vertex at the origin of an z,y coordinate
system. Each side of the triangle has the same length L and each vertex angle is 60°. The z,y
coordinates of the vertices and of the midpoints of the three sides are given. An arbitrarily
eelected interior point is shown, labelled with its coordinates z;, yp. The dashed lines 4,
g, r3 mark the perpendiculars from the interior point to the three median lines, and also
represent the lengths of the perpendiculars. The distances from the foot of each perpendicular

the midpoint of the side of the triangle that the associated median line is drawn to are
:Dl:: D27 D3-

Now the length of each median line is L cos 30° = Lv/3/2. Hence, the property referred

to above, in equation form, is

Dy + Dy + D3 = LV/3/2. (1.23)
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L/2,L/3/2

M\3L/4,1V/3/4

Fig.(1.3) An Equilateral Triangle

To establish this, first recall from algebra and analytic geometry that the perpendicular
distance r from a point on the z,y plane with coordinates zp,yp to the line whose equation
is y = mx + b is given by

r=:typ_(mp+b)

vmZ+1l
where the choice indicated by & is made such that r is positive.
Determine D first. To do this, draw the line marked, and of length, d; from the interior
,point to the midpoint of the side intersected by the median line to which r; is drawn; see

(1.24)
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PLE 7

&m a triangular composition diagram for rocks consisting of the three minerals called R,
and T. On the diagram, locate rocks with compositions (a) 50% R, 50% S; (b) 7T0%R, 10%

w an equilateral triangle; label the vertices R, S, T in any order. Draw the three median

 and divide into convenient intervals from 0% at the intersection with the side to 100%

the vertex. See Fig.(1.5). (a) A composition 50% R, 50% S means that the abundance

is 100% - 50% - 50% = 0. Hence, the composition point falls at the 0% mark opposite

he T vertex, on the side of the triangle that connects the R and S vertices. (b) Through

s medians from the R and S vertices, draw perpendiculars through the marks at the

peoper percentages. The composition point sought must be at the intersection of these

rpendiculars. That point will automatically indicate a T abundance of 100% - 70% - 10%

20%. (c) All rocks with composition 60% T must lie on the perpendicular through the T

median at the 60% mark. Since neither the R nor S composition is given, a specific point on
this perpendicular cannot be identified.

Fig.(1.5) Example 7
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