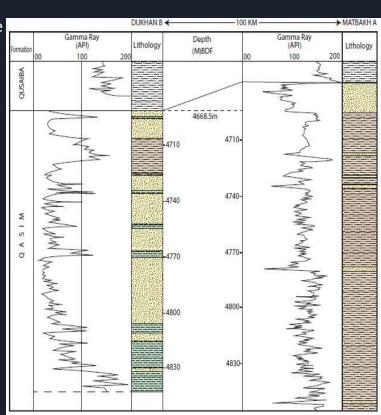


Table of contents

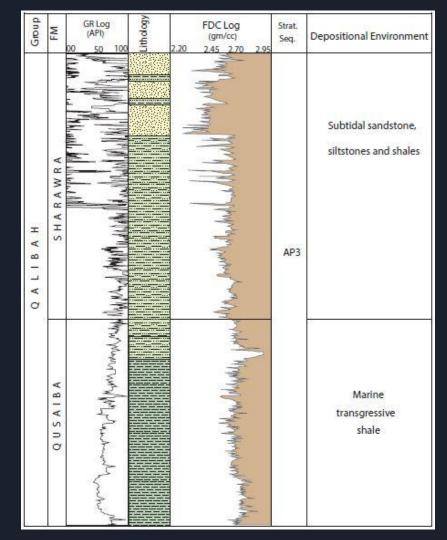
- 3. Where is Qatar
- 4. Wells drilled in Qatar
- 5. Tayma Group
- 6. Qalibah group
- 7. Huj group
- 8. Stratigraphic
- 9. Stratigraphic sequence
- 10. Source rocks
- 11. Sharawa
- 12. Reservoir rocks
- 13. Conclusion

Where is Qatar

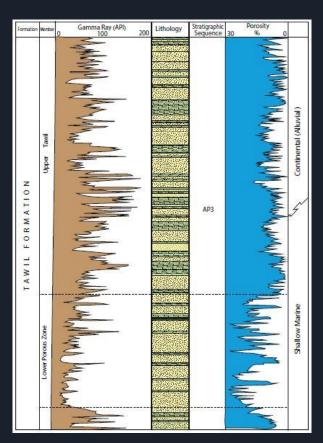
- Located
 - o In the persian gulf
 - East of Saudia Arabia
 - o On the Arabian Plate
- There is little information on the Pre-khuff formation but a lot of information on the permian Khuff
- The hydrocarbon potential of the pre-Khuff has yet to be investigated

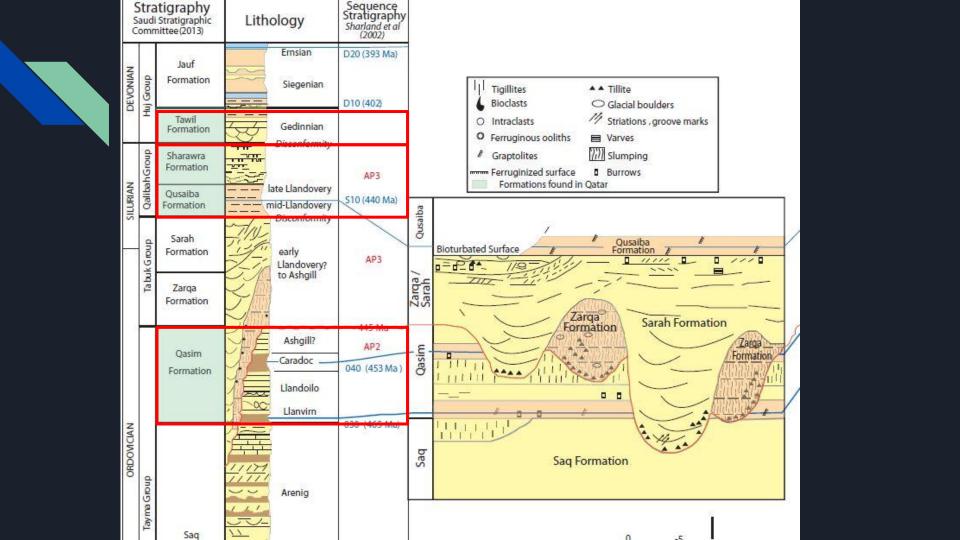

Wells drilled in Qatar

- Three wells were drilled
 - Matbakh A First well drilled (in Qatar) 1983 1500m deep
 - o Dukhham A
 - o Dukham B
 - Well logs, core samples, thin section, and porosity and permeability was measured
 - First evidence of the Pre-Khuff succession
 - Tayma group (Early cambrian) -- later referred to as the Qasim formation
 - Qalibah group (Silurian)
 - Huj group (Late Silurian) -- later referred to as the Tawil formation


Tayma group --- Qasim formation

- Includes all the Paleozoic sediment which were deposited before the late Ordovician glaciation
- Includes four formations
 - Siq
 - o Quweira
 - Saq
 - Qasim which is the only formation found in Qatar
- Age Cambrian late ordovician
 - Due to trace fossils (cruziana and Skolithos)
- Consists of up to 1600m of shallow marine classics ranging from claystone to sandstones
 - No evidence to support fluvial or glacial sediment (found in Saudia Arabia)
- Gamma log
 - Shales have high gamma radiation (Greater than 100)
 - Sandstones have low gamma radiation (less than 100)


Qalibah Group


- Three formations found in group
 - Silurian uglah not found in Qatar
 - Sharawra
 - Upward coarsening
 - Thin bedded sandstones
 - o Qusaiba
 - Fine-grained sandstones
 - Ripple marks
 - Cross Bedding
 - Bioturbation
 - Formation density log (FDC)
 - Sandstone is denser than the shale
 - Shows where fluid is likely residing

Huj group ---- Tawil formation

- Includes three formations
 - Jauf
 - Jubah
 - Tawil only formation found in Qatar
 - Divided into three sections
 - Lower unnamed
 - Middle Lower porous zone
 - 100m thick
 - Represents important gas reservoir in the pre-Khuff succession
 - Cross bedded sandstones wavy and flaser bedding
 - Upper Upper Tawil
 - Low angled sandstones
 - Plant remains, Mica flakes, Cemented quartz and siderite
 - No major fossils age controversial
 - Possibly early Devonian
 - Microflora from well samples
 - Jauf formation (which overlays Tawil) middle Devonian
 - Shallow marine and continental (fluvial) depositional environment
 - Low gamma rays high porosity (graphs are mirrored)

Stratigraphic sequence

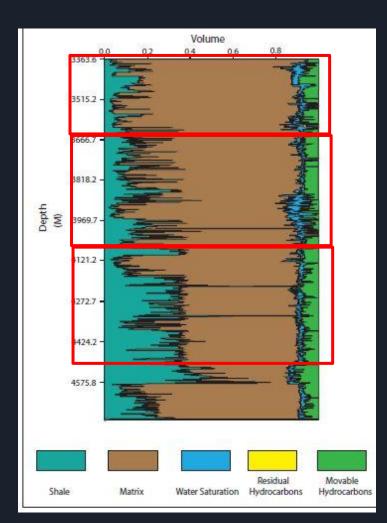
Tectono Stratigraphic Sequence (TMS'S)

Large scale layering of rock sequences

- AP2 Megasequence
 - Early Cabrian to late Ordovician
 - Qasim Formation
 - Two maximum flooding surfaces
 - O30 Based of Qasim formation (basel shale unit)
 - O40 Middle shale unit
 - During deposition
 - Qatar broad / shallow water shelf
 - Received continental clastic material
 - Consisted of 2 cycles
 - Sag not in Qatar
 - Under the O40 MFS (Base of Qasim)

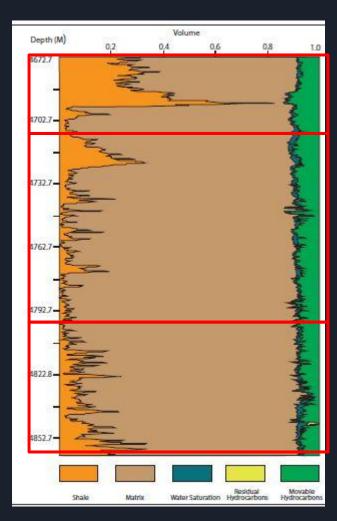
Maximum flooding surfaces (MFS)

<u>Transition from transgressive</u> to regressive


- AP3 Megasequence
 - Upper Ordovician to Upper Devonian
 - Placed above the Ashgill unconformity
 - Consists of
 - Qalibah group
 - Tawil formation
 - Two Maximum flooding surfaces
 - S10 Based of Qusaiba group
 - Second order deposition
 - S20 Based of Tawil formation

Source rocks in Qatar

- The source rocks are found in the Qusaiba and the Sharawra formations
 - Qusaiba formation
 - Hydrocarbon generated during late permian
 - Generated oil until late Jurassic
 - Then began to expel gas and condensates (continued until present day)
 - Sharawra formation more in depth on next slide
 - These source rocks consist of
 - Grey-black sandstones and claystones
 - Intervals contain sapropelic organic matter
 - The total organic carbon content ranges up to 7.3% weight


Sharawa Formation

- Contains organic matter
 - Ranges up to 7.3% rate
 - Good porosity and permeability (mouldic)
 - Organic material weathered away leaving holes in the rock
 - Porosity 3 to 21% (average 10%)
- Upper (3330-3630m)
 - Shale volume 2 to 40% (average 12%)
 - Matrix volume between 52 and 92%
 - Movable hydrocarbons vary from 0 2%
- Middle (3630-4080m)
 - Shale volume 1 to 95% (average 21%)
 - Matrix volume 0 69%
 - Movable hydrocarbon constituent 15%
- Lower (4080-4668m)
 - Shale volume 4 to 99% (average 32%)
 - Matrix 0 88%
 - Movable hydrocarbon reach 15%

Reservoir rocks

- Qasim formation
 - o Deposited in shallow marine Locally deltic setting
 - Upper section (4668-4710m)
 - Matrix between 1 and 88 (average 67%)
 - Movable hydrocarbons volume rangers from 6 to 13% (average 9%)
 - Middle section (4710 -4800m)
 - Shale volumes between 4 and 34%
 - Matrix average around 84%
 - Movable hydrocarbons average 8%
 - Lower section (4800-48630)
 - Shale volume average 10%
 - Matrix average 91%
 - Movable hydrocarbon averages 10%
 - Porosity ranges from 4 to 14% (average 9%)
 - Permeability 0.5mD
 - Pores small in size & not connected
- Poor reservoir characteristics due to thin laminations of sandstone beds (<5cm thick)

Conclusion

- Qatar is an Arabian country
 - Has petroleum of paleozoic age (Rare)
- There were three wells drilled which helped to learn the stratigraphics of the country
 - o Matbakh A
 - o Dukhham A
 - Dukham B
- These well gave evidence of the pre-khuff succession through three formations
 - Qasim Reservoir rocks
 - Qalibah Source rocks
 - Tawil
- The Qusaiba Shale is an important source rocks that generated oil until the Late Jurassic and then started to generate gas
 - This discover has paved the way for other exploration into petroleum in the Paleozoic era.

Thank you