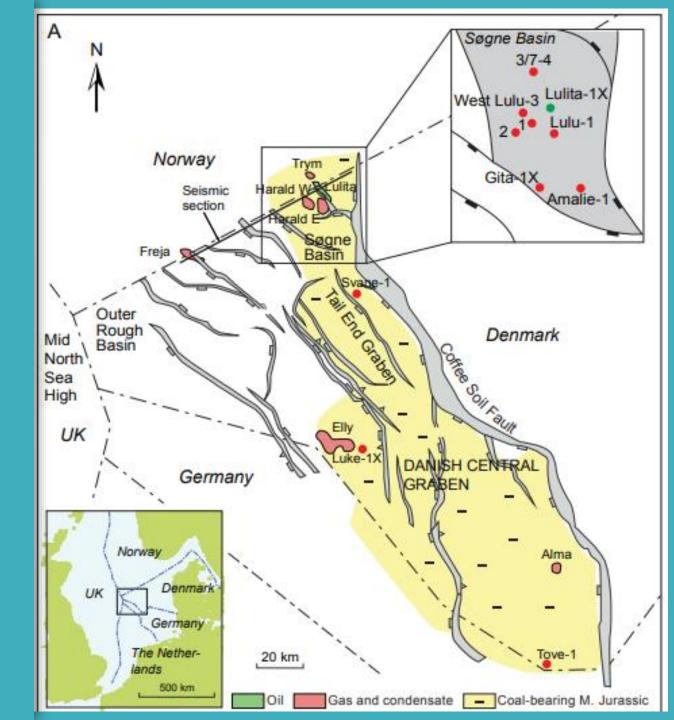
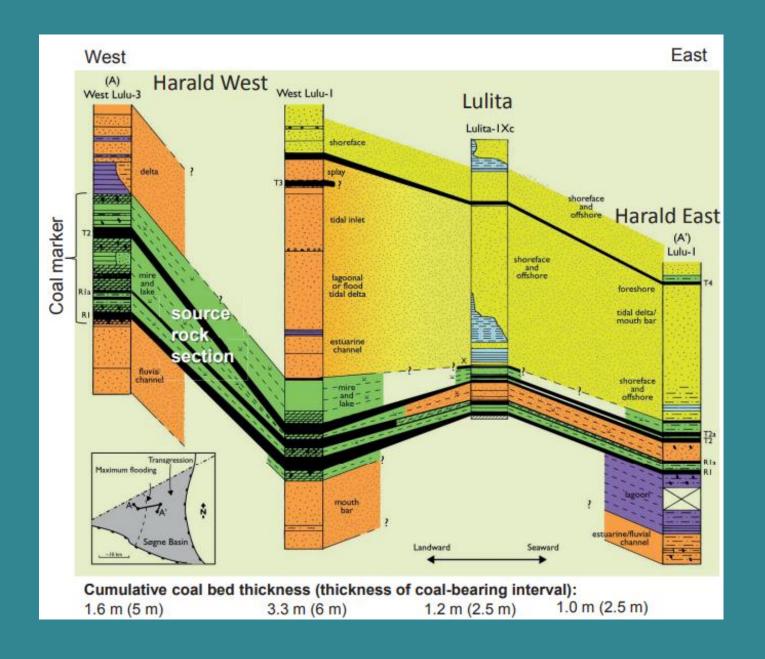
Danish North Sea: An Underexplored System

Authors: H.I. Petersen and M. Hertle


Presentation by: Hunter Collins

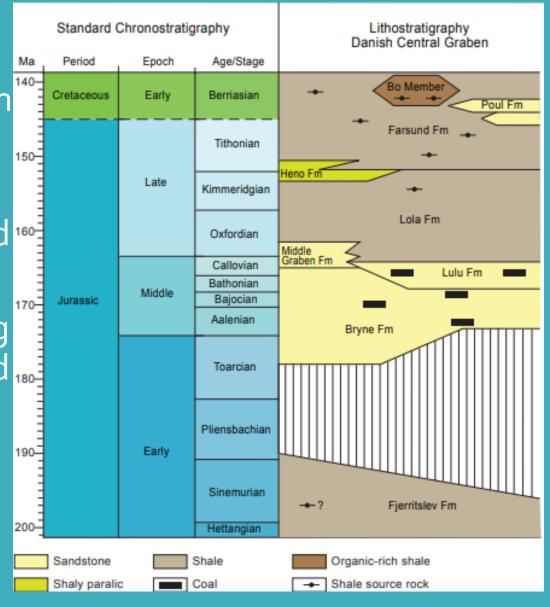

Abstract

- Middle Jurassic petroleum system in Danish Central Graben
- Primary Source rock composed of Upper Jurassic-lowermost Cretaceous marine shales
- Most have been drilled into already
- Further research/discovery of E&P methods needed for additional exploration
- Coaly source rock of Mid Jurassic age creates distinct oils and gases
- Coal bearing unit has regional distribution and can be mapped seismically as the "Coal Marker"

Danish Central Graben

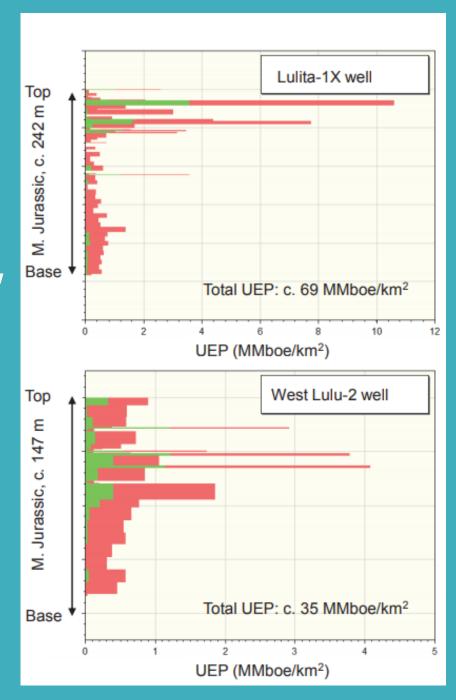
- Triassic and Jurassic sandstones charged from coaly Middle Jurassic source rocks
- In Danish-Norwegian Søgne Basin Harald and Trym fields produce gas/condensate
- Oil produced form the Lulita field
- In UK giant Culzean gas condensate is under development
- Coaly source rock is from Bryne/Lulu Formations (in Denmark)
- Pentland Formation (in UK)
- Sleipner and Hugin Formations (in Norway)

Coal Marker


- Coal beds in the Danish Central Graben
- Correlated West-East across 4 well cores
- Starts thicker in the West thins Eastward
- Closer to paleoshoreline causing more frequent flooding events

Introduction

- Primary source rock in North Sea are Upper Jurassic-lowermost Cretaceous
- Marine shales from Farsund, Mandal, and Kimmeridge Clay formations
- In the DCG source rocks have charged chalk field to create 150k BO and 71k BOE of gas daily
- DCG also has Mid Jurassic coaly-sourced sandstones
- Only been commercially viable in Søgne Basin up till now
- Discovery of Alma, Amalie, Elly, and Svane sandstone reservoirs


Geologic Setting

- Part of 500km long Central Graben, Southern part of the Jurassic North Sea rift complex
- System of NW-SE trending half grabens and bounded by Coffee Soil Fault to East and Mid North Sea High to the West
- Activity along Coffee Soil Fault caused rifting in the East in Bajocian time, Søgne Basin and Tail End Graben started to subside
- Fluvial sandstones of Bryne overlain by Marine upper part of Lulu with numerous separate coal beds

Source Rock Quality

- Marine shales of DCG have proven economically viable, is there another area which is also viable?
- Cryne and Lulu frmtns divided into coals, coaly shales, and carbonaceous shales (based of WT% TOC)
- ¾ of coal and coaly shale samples had generation potential
- Unlike other coals in N Sea the Mid Jurassic coals are not just gas prone but can produce liquids as well (oil and condensate)\
- Mixing between marine shales and the mid Jurassic coals lead to unique oil/gas signatures

Trym Middle Jurassic sandstones: Gas and oil/condensate.

Harald West Middle Jurassic sandstones: Gas and oil/condensate. API: 46°-48° Average CGR: 80 stb/MMscf. Cretaceous chalk: Terrigenousinfluenced marine oil.

Harald East Middle Jurassic sandstones: Oil/gas shows (Lulu-1 well). Cretaceous chalk: Mixed oil/condensate.

Lulita Middle Jurassic sandstones: Waxy oil with gas cap. API: 31°-33°. GOR: 1395-2135 scf/brl.

Amalie-1 Middle Jurassic sandstones: Mixed oil/condensate.
L. Cretaceous "Kira sandstones": Mixed oil/condensate.

Gita-1X Middle Jurassic sandstones: Coal-related gas.

Oil families

- 3b(B), Marine
- 4(B-D/E), Marine/Terrigenous
- 5(D/E-B), Terrigenous/(Marine)
- 6(D/E-F), Coaly
- Coal-derived gas

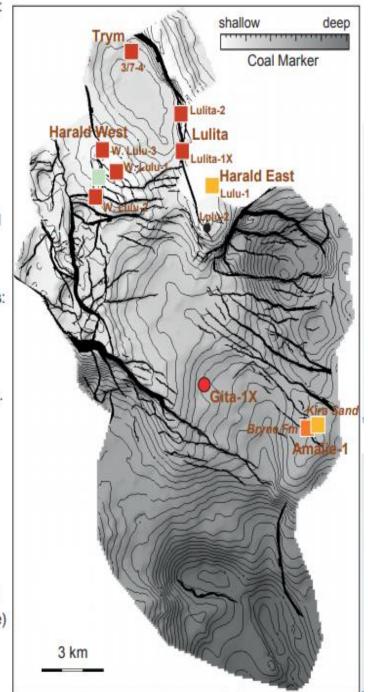
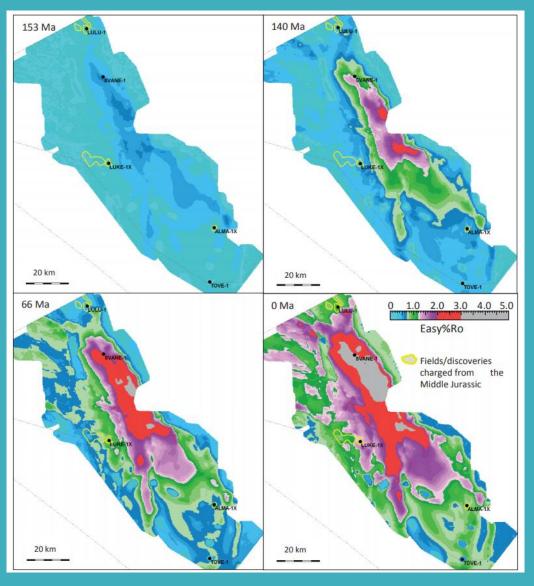
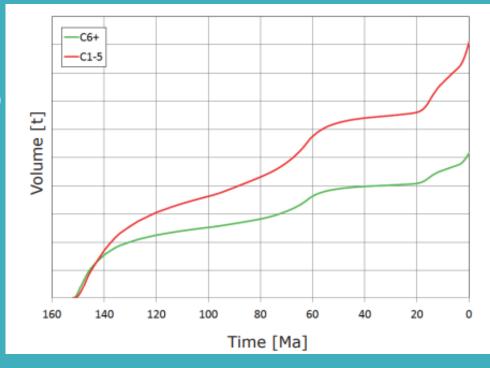



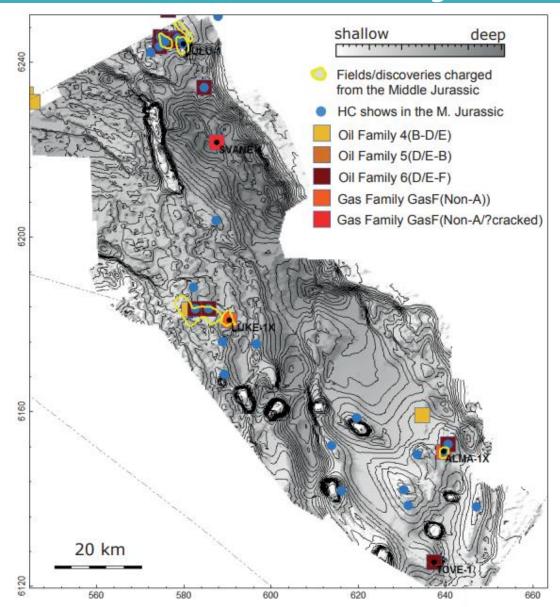
Table 1. Coal-derived oil and gas families in the Danish Central Graben.

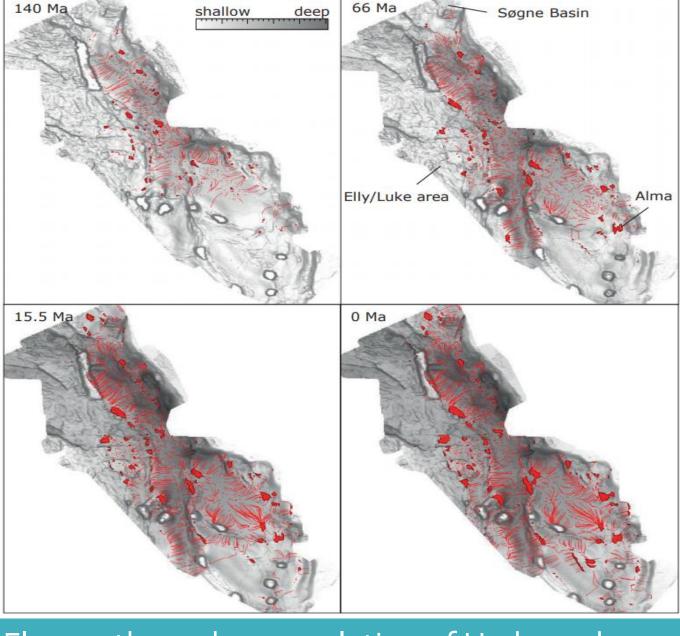
HC families (Danish Central Graben)	Source rock type	Geochemical characteristics	Likely source rock unit
Oil family 6(D/E-F)	Coaly source rocks	High Pr/Ph, on average 3.5; strong predominance of C ₂₉ over C ₂₇ regular steranes, typically isoSt27/isoSt29 is <0.8; C ₃₀ steranes <4%; low H35/H34, on average 0.5; heaviest isotopic composition, δ^{13} C ₅₀ on average -26.21‰, δ^{13} C _{8at} on average -27.00‰	Middle Jurassic coaly Bryne and Lulu Fms
Oil family 5(D/E-B)*	Mixture of terrigenous and marine sources	High Pr/Ph, slight dominance of C ₂₇ over C ₂₉ regular steranes; isotopically relatively heavy	Middle Jurassic coaly Bryne/Lulu Fms + minor Upper Jurassic Farsund Fm contribution
Oil family 4(B-D/E)	Mixture of marine and terrigenous source rocks	Relatively high Pr/Ph, on average about 2; dominance of C ₂₇ over C ₂₉ regular steranes; C ₃₀ steranes 5-6%; relatively low H35/H34, on average 0.65; isotopically slightly heavier than marine shale derived oils	Middle Jurassic coaly Bryne/Lulu Fms + some Upper Jurassic contribution, likely lower Farsund Fm and/or Lola Fm
Gas family GasF(Non-A)	Coaly source rocks	Heavier $\delta^{13}C$ methane (> -43‰), ethane, propane and butane isotope values than the oil-associated gas derived from the Upper Jurassic marine shales	Middle Jurassic coaly Bryne and Lulu Fms
Gas family GasF(Non-A/Oil- A)	Mixture of terrigenous and marine sources	Heavier $\delta^{13}C$ methane isotope values than the marine shale-derived gas, but slightly lighter than pure coalderived gas [GasF(Non-A)]	Middle Jurassic coaly Bryne/Lulu Fms + minor Upper Jurassic Farsund Fm contribution
Gas family GasF(Non- A/?cracked)*	Most likely coaly source rocks	Very heavy $\delta^{13}C$ propane isotope value (-20%), heavy δD methane (-155%), high i-butane/n-butane ratio (i/nC4)	Likely high mature Middle Jurassic coaly Bryne and Lulu Fms; potentially cracked gas

Generation, Expulsion, Migration


- Mid Jurassic 'Coal Marker' was immature until 153MA
- between 140MA-153MA Tail End Graben became mature enough to expel hydrocarbons
- Deepest part reached dry gas maturity level
- In Cretaceous 140-66MA mature coaly source rocks expanded up basin flanks
- Cenozoic to Present day (66-oMA) entire area became mature
- During this period Tail End Graben became overmature and exhausted its gas potential

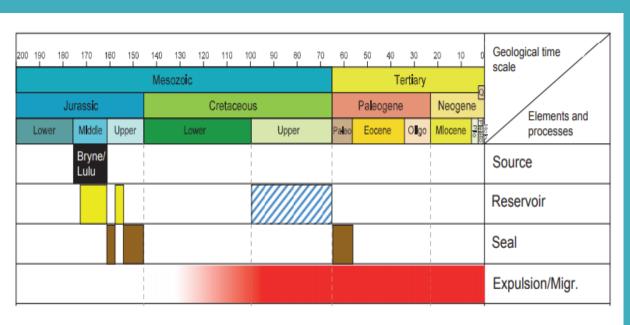
Expulsion Cont'd


 Expulsion began in Late Jurassic for coaly source rocks in deepest part of DCG


Continuous expansion with hydrocarbon expulsion in Cretaceous

- Low expulsion rates in Paleocene and Late
 Oligocene, due to chalk being compacted on top
- Expulsion resumed in Miocene to present
- Only on flanks of basin in S W and N
- To this day Coal Marker reaches upwards of 150 degrees Celsius, helps prevent biodegradation

- Map of observed hydrocarbons in Mid Jurassic section
- Distribution of "shows" is regional



Flow paths and accumulation of Hydrocarbons from coaly source rock over time

Conclusion

 Mid Jur coaly sourced petroleum system has been economic in Danish, UK, and Norwegian N Sea sectors

- Need to explore more widespread conventional plays
- Expulsion from Coal Marker initiated in Late Jurassic in deep Tail End Graben
- Mature coaly source rocks expanded in Cretaceous
- Cenozoic to present etnrie area became mature
- Low expulsion rates in Paleocene and Late Oligocene followed by signicant expulsion

