ES486 Petroleum Geology Mid-Term Exam Study Guide Winter 2017

Exam Format

Two-Part Exam, Tuesday February 14, 2017

Part 1 - Closed Book, short answer essay – terms and definitions, draw sketches, long answer essay – "compare and contrast", "discuss", "explain".

Part 2, Open Book, lab-style problem solving, you will be able to use all of your class resources to solve mathbased, lab-style problems.

Study Tips

- go through the web site, look at the figures and slide shows, compare to notes
- review the video resources and exercise review sheets
- -review textbook summary questions / answers
- use study guide in combination with notes
- go back through the in class / lab exercises, make sure you can work the math / units
- spend a couple days studying, the exam will be essay and there is much material.
- don't wait until the last minute!
- carefully go through the notes, some of the material we briefly discussed, but did not spend much time on in class... but the notes will give you the detail
- -finish all your lab exercises before taking the exam!!! Lab questions will appear.
- -Exam format: Part 1. Closed book short answer / essay. Part 2. Open-book lab-style problem solving.

Review Selley "Essentials of Petroleum Geology" Text Chapters (posted on Moodle class site);

Chapter 1 Introduction;

"Creekology" Anticline Theory

Five Conditions of Petroleum

Accumulation

Source Reservoir Trap and seal

Timing

Preservation

Geology and Petroleum

Biology and Petroleum

Exploration vs. Production

Drakes Well, Titusville PA

Chapter 2 Properties;

Hydrocarbon gases

Natural gases

Organic matter

Inert gas

Methane-ethane-propane

Helium

Carbon dioxide

Gas hydrates

Crude Oil

API Gravity

Paraffins-Napthenes-Aromatics-

Asphaltines

"Cracking" Distillation

Sweet crude-sour crude

Chapter 4 Subsurface

Environment

Subsurface water

Connate-meteoric-juvenile

water

Eh - Ph

Concentration

ppt, ppm, ppb

Brine water

Salinity

Total dissolved solids

Subsurface temperatures

Geothermal gradient

Bottom hole temperature

Thermal conductivity

Porosity / compaction Formation temperatures Subsurface pressures Hydrostatic pressure Lithostatic pressure Oil-water contact Pressure gradient Artesian pressure Structural pressure

CLASS NOTE REVIEW NEXT PAGES...

(Web links provided below)	Lithosphere	lithification
Introduction	Hydrosphere	fossil
http://www.wou.edu/las/physci/taylor/es486_pet	Lithosphere-Tectonic Plates	erosion
ro/1_Introduction.pdf	Geothermal-Gravity-Solar	lithification
hydrocarbons	Matter-Energy-Force	compaction
phases: solid-liqud-gas	Kinetic Energy	cementation
crude oil	Potential Energy	Sed. Rock types
	Open System-Closed System	detrital
natural gas	Transfer of Mass	biochemical
kerogen	Transfer of Heat	chemical
gas hydrate	Mass-Energy-Heat Flux	sediment size fractions
tars and resins	Hydrologic Cycle	gravel
sedimentary basin	Carbon Cycle	sand
biogenic sediment	Rock Cycle	silt
geologic time	Tectonic Cycle	clay
thermal maturity	rectome Cycle	grain shape
source rock/sediement	Physical Principles	grain sorting
reservoir	http://www.wou.edu/las/physci/taylor/es486_pet	rock types
seals, cap rock	ro/4A Physical Principles Fluids.pdf	sandstone
trap		
Conditions for Petroleum	Mass-Length-Time-	conglomerate shale
Biogenic sediments	Temperature	
Source Rock	Force-Energy-Work	limestone
Thermogenic Maturation	Motion-Velocity-Acceleration	evaporites
Reservoir-Seal-Trap	Acceleration due to Gravity	crystalline vs. microcrystalline
Dry gas/ wet gas	Pressure	coal
Sweet vs. sour crude	Power	clastic / nonclastic
Inert gases	Density	marine .
Light Oil vs. Heavy Oil	Weight Density = Specific	nonmarine
Hydrocarbon composition Wt%	Weight	fluvial
Paraffin	Viscosity	lacustrine
Napthene	Heat-solid-liquid-gas	glacial
Aromatics	Density-Buoyancy	Sedimentary Features
Asphaltics	Temperature-Density Relations	sedimentary structures
Crude Distillates	Newtons-Joules-Pascals-Watts	methods of transport
Petroleum Engineering	Periodic Chart	bedload
Chemical Engineering	Atomic Model	suspension
"Cracking"	Neutrons-Protons-Electrons	dissolved load
Exploration-Production-	Atomic Number	cross-stratification
Refining-Marketing	Atomic Mass	graded bedding
Historical Perspectives on Oil	Isotope	reverse grading
Drakes Well	Formula Weight	normal grading
	Mole	asymmetric ripples
Basic Principles Intro to Earth		symmetric ripples
System	Review of Sedimentary Rocks	flute casts
http://www.wou.edu/las/physci/taylor/es486_petro/physrevw.pdf	http://www.wou.edu/las/physci/taylor/es486_pet	cast vs. mold
	<u>ro/2_sedimentary_rock_review.pdf</u>	mudcracks
Earth System Science	vyzathanina	raindrop imprints
Environmental Spheres	weathering	paleocurrents
Atmosphere	sediment	
~ P	sediment transport	Overview of Stratigraphy and

Biosphere

Key Words from Notes

sediment burial

Depositional Systems

http://www.wou.edu/las/physci/taylor/es486_pet ro/3_Overview_Stratigraphy_Depositional_Syst ems.pdf

Geologic time / Earth History

Age of Earth Stratigraphy

Stratigraphic Record Geologic Column / Time PreCambrian Era

> Archeozoic Proterozoic

Paleozoic Era

Cambrian
Ordovician
Silurian
Devonian
Mississippian
Pennsylvanian
Permian

Mesozoic Era Triassic Jurassic Cretaceous

Cenozoic Era Tertiary Quaternary

Law of Original Horizontality

Law of Superposition
Law of Uniformitarianism
Law of Cross-Cutting Relations
Law of Faunal Succession

Walthers Law

Relative Geologic Dating Absolute (numerical) Dating

Half Life

Parent-Daughter Isotopes

Radioactive decay

Horizontal/vertical bed relations

Dike-Sill-Fault Lithostratigraphy Biostratigraphy Seismic Stratigraphy

Index Fossils Unconformity

Angular Unconformity

Nonconformity Conformable Strata Interfingering Strata

Diastem Lacuna Paraconformity

Transgression-Regression

Onlap-Offlap Eustacy

Sedimentary Basins

Facies Formation Member Bed

Marine-NonMarine

Fluvial
Lacustrine
Deltaic
Littoral
Beach-Barrier
Lagoonal-Estuarine

Tidal Flat Shelf Slope

Abyssal Plain

Reef

Subsurface Fluids and

Conditions

http://www.wou.edu/las/physci/taylor/es486_petro/4_Reservoir_Fluids.pdf

Water-Oil-Gas

Connate-Meteoric-Juvenile Fluid Density-Buoyancy

Brines

Formation Water

Salinity-Concentration-Total

Dissolved Solids

Mass Percent-PPT-PPM-PPB

Solute-solvent Crude Oil C-H ratios

Parrafin-Napthene-Aromatics

Asphaltine Barrels- bbl

Example Parrafin compounds Example Napthenes-Aromatics

Molecular models Oil Composition

Density-API Gravity Index Viscosity-Temperature

Temperature-Volume-Density Heat Content (BTU, Calorie)

Natural Gas Dissolved vs. Free "inflated oil" Ideal Gas Law

Hydrocarbon Properties

http://www.wou.edu/las/physci/taylor/es486_pet ro/Hydrocarbon_Properties_Heat_Density_Visc_ osity.pptx

Heat-Energy Calorie Joule BTU

Thermal heat value Density-specific gravity API gravity index

Viscosity

Volume - bbl = barrel = 42 gal

Subsurface Temperature and

Pressure

http://www.wou.edu/las/physci/taylor/es486_pet ro/4B_Subsurface Temperature and Pressure.pdf

Heat-Energy Heat flux Heat flow

Geothermal gradients Thermal conductivity

Pressure

Overburden pressure Lithostatic pressure Hydrostatic pressure Pressure gradients Formation temperature Formation pressure Bottom hole temperature Bottom hole pressure Thermal maturation

Quantitative / Lab Skills

Quantitative Methods

Perform basic unit conversions-unit algebra-solve quantitative word problems

Process Rate Calculations

calculate potential energy, kinetic energy, force, weight, stress

pressure-depth calculations

application of idea gas law to subsurface gas accumulations

calculation of basic engineering properties of rocks

porosity-density-specific weight

Sedimentary Rocks

what about the three diff. types of sed. rocks?

Can you estimate: grainsize? sorting? grading? angularity?

What about basic paleocurrent directions? How can you tell which way the fluid was moving when the sediment was deposited?

What about recognizing some basic sedimentary structures?

Associating a specific rock type to a possible sedimentary environment?

How does transport energy relate to grain size of deposits? (e.g. would you find boulders in the deep ocean?)

What are the basic marine and nonmarine sedimentary environments?

What are sedimentary structures and how are they used to reconstruct sedimentary environments?

What type of environment do the various sed. rock types form? e.g. sandstone, conglomerate, evaporites, coal, mudcracks, limestone, etc. where would these rocks form at the earth's surface?

Review the lab answer keys on class web site!

Big Concepts for Long-Answer Essay Questions

What are the primary types of hydrocarbons?

What are the criteria necessary for the generation and accumulation of hydrocarbons in subsurface?

What compounds are petroleum and natural gas composed of? What are the basic carbon families and their general molecular compositions? What is the process necessary to find and produce petroleum-related products for industry? What is the basic refining process? How does transport energy relate to grain size of deposits? (e.g. would you find boulders in the deep ocean?) What are the fundamental energy sources of the earth system How do force-energy-pressure relate to the subsurface environment? What are the temperature and pressure conditions like in the subsurface environment?

What are the fundamental components of the Earth System?

How do the study of sedimentology and stratigraphy relate to petroleum geology?

What are the basic laws and principles of stratigraphy used to analyze sedimentary rocks?

What are the basic marine and nonmarine sedimentary environments?

What are sedimentary structures and how are they used to reconstruct sedimentary environments?

What type of environment do the various sed. rock types form? e.g. sandstone, conglomerate, evaporites, coal, mudcracks, limestone, etc. where would these rocks form at the earth's surface?

How do sediments accumulate over time? How is time recorded in the rock record?

What are the primary fluids contained in the subsurface environment? Relative abundance and composition of each? What is the chemical composition of formation water? Crude oil? Natural gas?

What are the key properties used to characterize petroleum and natural gas?

How is petroleum generated? What are the geologic conditions necessary? Discuss the global carbon cycle in the context of petroleum geology. What are the sources of organic materials in petroleum? Chemical composition? What are the steps in petroleum generation? The thermal maturation process?