I. OVERVIEW OF RESERVOIR FLUID CONTENT

- a. Introduction
 - i. Dominant Subsurface Fluids within 15,000 20,000 ft of Earth Surface
 - 1. Water most abundant, predominant
 - 2. Oil and gas relatively low volumes comparatively
 - a. Oil and Gas occur in water-rich environment
 - b. Water an important component of oil and gas exploration
 - ii. Water-Oil-Gas mixtures and chemical properties vary according to regional geology
 - iii. Oil and Gas
 - 1. Relatively insoluble in water; gas and oil are miscible with one another
 - a. Gas dissolution / exsolving from solution
 - 2. Lower density than water
 - 3. Buoyant fluids
 - 4. NAPLs Non-Aqueous Phase Liquids
- b. Source of Data
 - i. Drill holes and wells
 - 1. Drilling recovery, well cuttings, drilling mud, core
 - 2. Drill stem tests / fluid recovery
 - 3. Directly drill-hole sampling
 - ii. Direct fluid sampling via wells
 - iii. Borehole Geophysical measurements
 - 1. E.g. conductivity, resistivity
 - iv. Reservoir fluid analysis over production life of well
 - 1. Changing dynamics as production wells are utilized
- c. Fluid Distribution
 - i. Controlling Factors
 - 1. Reservoir Porosity and Permeability
 - 2. Stratigraphic and Structural Relationships
 - 3. Density and Buoyancy Effects of Water, Oil, Gas
 - 4. Anomalous Lensing Possible (e.g. gas trapped below oil)
 - ii. Layered Fluid Occurrence
 - 1. Gas less dense (on top) ----- Oil ----- Water Most Dense (on bottom)
 - 2. Oil-Water Table Contact vs. Gas-Water Table Contact
 - iii. Interstitial Water
 - 1. Distribution of water in pore spaces throughout reservoir
 - a. Range 10 30 %, up to 50%
 - iv. Oil-Gas-Water Separation Process Necessary as part of well-head processing

II. FORMATION WATER

- a. Overview
 - i. Oil Field Water
 - 1. "bottom water" or "edge water"
 - 2. Higher density brine water at base of oil and gas occurrence
- b. Classification
 - i. Meteoric shallower groundwater, circulated from atmosphere
 - 1. Relatively low salinity
 - 2. Oxygen isotope signature
 - 3. High oxidizing potential and acidic
 - 4. Dissolved carbon dioxide + humic acids in near surface environment

- ii. Connate long residence time, reservoir waters; "fossil water" removed from atmospheric circulation
 - 1. "Formation Waters"
 - 2. Characterized by high salinity brine waters
 - a. lonic sodium, postassium,chloride; bromine, calcium, magnesium (mobile cations)
 - b. Sulfates, nitrates, and carbonates
 - c. Reducing and alkaline in general
- iii. Mixed mixed connate and meteoric water
 - 1. Brines and salt common in oil
 - 2. Water forms hydration sheath in pore openings, separating oil and gas from pore walls
- c. Characterization
 - Water Saturation: percentage of effective reservoir pore space filled with water
 Measured by laboratory analysis
 - ii. Salinity / total dissolved solids
 - 1. Measured via borehole geophysics, conductivity, resistivity
 - iii. Depth Relations
 - 1. Zone 1: 0-1 km depth, meteoric water, stable salinity, oxidizing
 - 2. Zone 2: 1-3 km depth, salinity increasing with depth and residence time
 - 3. Zone 3: >3 km, reducing environment, hydrocarbon development
 - 4. Zone 4: depth > 5 km, incipient metamorphism, heat + pressure
- d. Oil Field Brines / Connate Water
 - i. Salinity Ranges (parts per thousand, g solute per L of water)
 - 1. Ocean Water average ~35 ppt (3.5%)
 - 2. Meteoric Water / "Fresh Water" < 1 ppt
 - 3. Oil Field Waters: ranges up to ~300 to ~500 ppt (30-50%)
 - 4. >salinity with > depth and residence time in subsurface
 - ii. Brine Water Salinity and Chemical Composition Greatly Varies with Geology of the Oil Basin
 - 1. Reservoirs characterized by unique brine water compositions
 - iii. Sources of Salinity
 - 1. Long residence times in formation, dissolution of reservoir framework
 - 2. Ion exchanges with clay minerals
 - 3. Evaporation / concentration of formation waters in depositional environment
 - 4. Original composition of marine waters at time of deposition

Measuring concentrations of solutes in aqueous solutions

Concentration - measurement of the quantity of solute in a given quantity of solvent (or solution)

Mass Percent = (mass solute / total mass solution) * 100% (percent = "parts per hundred" (%)

E.g. if 5 g of NaCl is dissolved in 95 g of water, what is the mass percent of sodium chloride in the solution? (conversion factors for mass: 1 gram = 1000 mg, 1 kg = 1000 g, 1 gram = 1,000,000 Micrograms)

Parts per Thousand (o/oo) = grams of solute / liter of water

Determine the concentration in ppt for a solution of 200 gram dissolved in 2 liters of water? Determine the concentration in ppt for a solution of 2000 mg dissolved in 1 liter of water?

Parts per Million = milligrams of solute / liter of water

Determine the concentration in ppm for a solution 20 mg of salt per liter of water? What about 20 kg of salt per liter of water?

Parts per Billion = micrograms of solute / liter of water

Determine the concentration in ppb for a solution of 200 micrograms of salt dissolved in 3 liters of water? Determine the concentration in ppb for a solution 200 grams of salt dissolved in 4 liters of water?

III. CRUDE OIL

- a. Overview
 - i. Small percentage of total fluids in reservoir rocks (dominated by water)
 - ii. Crude Oil = liquid oil hydrocarbons
 - 1. Variable in composition and physical properties
 - 2. Dependent upon source rock composition and geologic history
 - 3. Mixtures with dissolved gas and free gas
 - 4. Soluble in organic solvents
 - iii. Solid petroleum

b. Measurement

- i. Volume measurements:
 - 1. barrels, tons, acre-feet
 - 2. 1 barrel = 42 gallons (US); avg.wt. = 310 lbs
 - 3. Abbreviation for "barrel" = bbl
 - ii. Oil recovery
 - 1. Pumped from wells into separator tanks
 - 2. Gas, oil, water separated
 - 3. Pumping and storage rates regulated and gaged
- c. Chemical Properties
 - i. Comprised of over 200 organic compounds
 - ii. Gas, oil, asphalt = primarily hydrocarbons, with minor sulfur, nitrogen, oxygen

Average Elemental Composition by % Weight

Element	Crude Oil	Asphalt	Natural Gas
Carbon	82-87	80-85	65-80
Hydrogen	12-15	8.5-11	1-25
Sulfur	0.1-5.5	2-8	tr – 0.2
Nitrogen	0.1-1.5	0-2	1-15
Oxygen	0.1-4.5		

- iii. Molecular Composition complex variety of over 200 organic compounds due to the versatile nature of carbon bonding with 4 electrons in outermost valence shell
 - 1. Hydrocarbon Compunds in Petroleum
 - a. Paraffins (alkanes) saturated hydrocarbons, all C-H bonds satisfied by single covalent bonds
 - i. General formula: C_nH_{2n+2}
 - 1. n < 5 gaseous at normal temp and pressure

- 2. n ranging from 5-15 liquid at surface temp. and pressure
- 3. n > 15 solid waxes and viscous liquids
- 4. box-chain hydrocarbon molecules
- 5. Common Examples in Petroleum
 - a. Methane CH₄ (simplest)
 - b. butane C_4H_{10}
 - c. Pentane C_5H_{12}
 - d. Hexane C_6H_{14}
 - e. Octane C₈H₁₈

METHANE

 $H=\hat{U}=H$

- ii. stable bonds, less reactive hydrocarbons
- iii. complex variability of bonding combinations in hydrocarbon family
- b. Napthenes (cycloparaffins)
 - i. General formula: C_nH_{2n}
 - ii. Liquid at normal temperatures and pressures
 - iii. Branching ring-shape hydrocarbon molecules
 - iv. Comprise ~40% of crude oil composition
 - v. Common Examples in Petroleum
 - 1. Cyclopentane C₅H₁₀
 - 2. Cyclohexane C_6H_{12}

- c. Aromatics (benzene series)
 - i. Ring shaped hydrocarbon molecules
 - ii. E.g. common in petroleum: benzene C₆H₆

Benzene, C₆H₆ Mol. wt. 78.11 B.P. 80°C

- d. Complex Residues Asphaltics
 - i. High molecular wt., solid to semi solid
 - ii. Petroleum residue
 - iii. High in sulfur, oxygen, nitrogen

- 2. Mixed compounds / other constituents
 - a. Crude oil contains low percentages of oxygen, nitrogen, sulfur, trace metals
 - b. Sulfur occurs as free S or dissolved hydrogen sulfide gas H2S
 - c. "sour crude", degrades quality of petroleum for use
 - i. <0.5% low sulfur crude
 - ii. >0.5% high sufur crude
 - d. Nitrogen low amounts in crude, inert constituent in natural gas
 - e. Oxygen minor component
 - f. Organic matter, fossil materials, microscopic, mixed as solids in crude oil
- 3. Average Organic Composition of Crude Oil

Molecular Type	Weight Percent
Paraffins	25
Napthenes Aromatics	50 17
Asphaltics	8 Total 100

FIGURE 5-19 The relations of constituents of various crude oils. [Redrawn from Gruse and Stevens, Chemical Technology of Petroleum, 2nd ed (1942), pp. 6 and 7, Figs. 1 and 2.]

FIGURE 5-22 The percentage composition by volume of the chief products obtained from United States crude oils. [Redrawn from Shaffer and Rossini Proc. Amer. Petrol. Inst., Vol. 32 (1952), p. 64.]

- d. Physical Properties of Crude Oil
 - i. Density
 - 1. Mass density = mass / volume

- 2. Specific Weight = weight/volume = (mass)(g)/volume
 - a. $g = acceleration due to gravity = 9.8 m/sec^2$
- 3. Specific Gravity = mass density of substance / mass density of water
 - a. Temperature dependent
 - b. Dimensionless ratio, units cancel
- 4. Volume a function of temperature: heat energy and kinetic molecular energy a. > temp, > volume: directly proportional
- 5. American Petroleum Institute (API) Gravity Index Classification
 - a. High API gravity values = low specific gravity, Low API gravity values = high specific gravity
 - API 10 = density of water, API values > 10 = floaters; API values < 10 = sinkers

API GRAVITY INDEX EQUATION:

Degrees API = 141.5 - 131.5 where S.G. = specific gravity of oil sample S.G. at 60°F

Example, given an oil sample with a density of 900 kg/m3 and density of water of 1000 kg/m3 at a given temperature, calculate the API gravity index for the oil sample.

S.G. = $D_{oil} / D_{water} = (900 \text{ kg/m}^3) / (1000 \text{ kg/m}^3) = 0.9$

Degrees API = [141.5 / (0.9)] - 131.5 = 25.7

 c. API Gravity Classification of Oils Light Oil – API > 31.1 Medium Oil – API between 22.3 and 31.1 Heavy Oil – API < 22.3 Extra Heavy Oil – API < 10.0

- d. API Gravity Range of Crude Oil on average 15-57 degrees
 - i. Varies according to source region, geology
- ii. Volume pressure dependent
 - 1. Gas commonly dissolved in oil within reservoir at depth, under high pressure
 - 2. Extraction of oil results in < pressure and temperature at surface
 - a. Gas exsolves from oil as it reaches surface, net fluid volume decreases in remaining liquid ("inflated oil")
 - b. 1 barrel oil in subsurface = 0.8 barrel at surface (shrinkage factor)
 - 3. > Depth, > Pressure, > capacity for dissolution of gas in oil
- iii. Viscosity
 - 1. Measure of fluid resistance to flow
 - a. High viscosity thick liquid, highly resistant to flow; vice versa
 - 2. Range: Liquid oil and gas; Plastic petroleum compounds
 - a. Highly variable range in viscosities
 - b. Temperature dependent; > temp < viscosity, < temp > viscosity
 - c. > gas content < viscosity; < gas content > viscosity

- d. Measurement using a rolling ball viscometer; relative index
 - i. Units: poise (p) and centipoises (cp)
 - ii. Viscosity ranges
 - 1. Water = 0.894 cp
 - 2. Motor oil 40W = 319 cp
 - 3. Tar = 2.3×10^{11} cp
- iv. Optical Properties
 - 1. Reflectance measurement of the degree to which light is reflected from organic matter
 - a. Vitrinite immature organic matter, derived from lignin and cellulose in plant material
 - b. Vitrinite Reflectance predictor of petroleum potential in source rock, a measure of thermal maturation
 - i. Calibrated to reflectance of crude oil; Ro index = 1.0 (fully mature hydrocarbarbon)
 - 1. Ro >0.8 thermally mature organic matter, in oil and gas present
 - 2. Ro < 0.55 thermally immature organic matter
 - 3. Ro 0.55-0.8, organics in petroleum/gas producing range
 - 2. Refractive index
 - a. Measurement of refraction or bending of light as it passes through an oil sample
 - b. Measured as an index compared to transmission light through air; the higher the density, the more angle of refraction, the higher the index of refraction
 - c. Refractometer petroleum R index average ~1.4 compared to air
 - Fluorescence petroleum fluoresces under black light (Ultraviolet radiation)

 Useful test for petroleum occurrence in drill cuttings
- v. Other Properties
 - 1. Color, smell
 - 2. Flash and boiling points temperature at which petroleum vaporizes and flashflames
 - 3. Coefficient of expansion and volume change upon heating / cooling
 - 4. Heat Content / Calorimeter Values
 - a. Heat Potential / Measurement

- i. calorie the heat required to raise one gram of water, 1 degree Celsius
- ii. KiloCalorie (used for food labels) = 1000 calories
- iii. British Thermal Unit amount of heat necessary to raise the temperature of 1 lb of water by 1 degree Fahrenheit
 - 1. 1 BTU = 252 calories = 0.252 Kcal
- b. Crude Oil ~ 19,000 BTU per lb
 - i. Variable controlled by hydrocarbon composition and geology, degree of thermal maturation
- c. Bituminous Coal ~13,000 BTU per lb
 - i. Variable controlled by composition and geology, degree of coal development

IV. NATURAL GAS

a. Components and Classification

- i. Low-boiling point hydrocarbon gases
 - 1. Range: small percentage dissolved in oil up to 100% of hydrocarbon fluids
- ii. Mode of Occurrence
 - 1. Free Gas (free product)
 - a. Common to occur as free gas cap over oil, and water
 - 2. Gas Dissolved in Oil
 - a. Under subsurface pressures, gas dissolves in oil
 - b. Range: a few cubic feet up to 1000's of cubic feet per barrel of oil
 - c. Gas exsolves from oil as it reaches the surface
 - i. Gas-water-oil separation at well head
 - ii. Flaring disposal vs. capture, depending on economics
 - 3. Gas Dissolved in Water
 - a. Natural gas dissolved in oil field brine waters; up to 20 cu. ft / bbl of water
 - b. Lower solubility in water, compared to oil (6% comparatively)
 - 4. Liquified Gas
 - a. High pressure conditions > 5000 psi
 - b. Liquified gas resemble oil in liquid state
- b. Measurement of Natural Gas
 - i. Volumes =
 - 1. Measured in cubic feet or millions of cubic feet Mcf
 - 2. Temperature and Pressure Dependent
 - a. Ideal Gas Law PV = nRT

PV = nRT

where *P* is the <u>pressure</u> of the gas, *V* is the <u>volume</u> of the gas, *n* is the <u>amount of substance</u> of gas (measured in <u>moles</u>), *R* is the ideal, or universal, <u>gas constant</u>, and *T* is the <u>temperature</u> of the gas. P = pressure in atm V = Volume in liters n = mass in moles T = temperature in degree Kelvin

- R = 0.0821 liter-atm/°K-mole
 - 3. Formation Pressures: 1000's of PSI range, decrease with production
 - c. Composition
 - i. comprised mostly of Paraffins (alkanes)
 - 1. Methane CH₄ (simplest and most abundant)
 - 2. butane C_4H_{10} (low percentage)
 - 3. Pentane C₄H₁₂ (low%)
 - 4. Hexane C_6H_{14} (low%)

- ii. Classification
 - 1. Dry gas vs. Wet gas (content of liquid vapors)
- d. Impurities / additional gas mixtures: hydrogen sulfide, nitrogen, carbon dioxide
 - i. Helium derived as part of radioactive decay process in minerals
 - ii. Hydrogen Sulfide problematic from a processing standpoint, corrosion agent