- I. Continuum Models of Material Behavior
 - A. Continua: assumption that rocks behave as cohesive mechanical units, averaging out effects of local anisotropies and polycrystalline nature
 - B. Rheological Models for Rock
 - 1. Elastic Behavior
 - a. linear elastic behavior: material deforms by an amount proportional to the applied stress
 - (1) when stress is released, material strain recovers to original undeformed state
 - (2) Young's Relations
 - (a) Stress = E(strain)
 - b. Similar to Hooke's law for a spring (ideal elastic)
 - (1) Force = k(spring displacement)
 - c. Stress-strain diagram
 - (1) normal stress on y axis
 - (2) lengtening or shortening strain on x axis
 - (3) true elastic solid: linear relationship
 - 2. Viscous Behavior
 - a. example fluid behavior
 - (1) stress applied to fluid: fluid deformation (motion)
 - (a) remove stress, fluid stops, but does not recover to initial state
 - b. Viscous behavior: nonrecoverable strain
 - (1) Newtonian fluid
 - (a) linear relation between stress and strain rate
 - (b) > stress, > rate of strain (dx/dt)
 - (c) Newtonian stress-strain diagram
 - i) stress = y-axis
 - ii) strain rate = x-axis

- iii) as stress --- 0, strain rate ----- 0, but strain does not recover (permanent deformation)
- (2) Bingham fluid
 - (a) exponential relation between stress and strain rate
 - (b) internal shear strength of fluid exists
 - i) at low stress, strain rate is low
 - ii) at high stress, strain rate > exponentially
- (3) Rocks as Newtonian Fluids
 - (a) under higher temps. and press., rocks may behave as viscous materials
- 3. Plastic Behavior
 - a. Plastic materials
 - (1) at low stress, materials undergo elastic deformation until critical yield stress is exceeded (yield strength)
 - (2) yield stress: critical stress (strength) of material, beyond which material undergoes permanent deformation
 - (a) stress < yield strength = elastic deformation relations (linear, recoverable strain)
 - (b) stress > yield strength = plastic deformation relations (non-linear, non-recoverable strain)
 - i) material flow, ductile deformation
- 4. Compound Behavior (Other continuum models)
 - a. Visco-elastic (Maxwell solid)
 - b. Elastic-elastic (Prandtl Material)
 - c. Visco-plastic (Bingham Material)
 - d. Firmo-viscous
- II. Experimental Studies
 - A. Overview and Philosophy of Rheologic Experimentation
 - Procedures
 - a. stress-strain diagram generation
 - b. variables: temperature, pressure, material composition
 - 2. Mathematical Analysis