I. Introduction

- A. Rock Fabric = secondary planar and linear penetrative structures associated with strain.
- B. Foliation: homogeneously distributed planar structure in rock
 - 1. examples
 - a. sedimentary bedding
 - b. imbricate pebbles in conglomerate
 - c. schistose foliation with parallel alignment of platy phyllosilicates
 - d. slaty cleavage
 - e. gneissic banding
- C. Lineation: homogeneously distributed linear structure
 - 1. surficial lineations: linear features on discrete surfaces only
 - a. slickenlines on fault
 - b. groove marks on sedimentary bedding plane
 - 2. penetratitive: linear features occur throughout the body of rock
 - a. hinge lines of crenulations in foliation
 - b. preferred alignment of elongate minerals
- D. Primary vs. secondary features
 - 1. primary: occur as result of sedimentary or igneous process of rock formation
 - 2. secondary: originate as result of tectonic deformation or metamorphism

E. Other terms

- 1. S-surfaces: penetrative planar features designated as S1, S2, etc.
- 2. Rock cleavage: tendency for rock to break along surfaces of weakness
 - cleavage is a type of foliation in terms of rocks
- 3. banding: compositional zonation in rocks
- 4. Structural domains: units of rock with similar structural characteristics
- 5. Foliation morphology
 - a. spaced foliations spaced at 10 um or more
 - b. continuous fine, closely spaced foliation, < 10 um spacing.

II. Foliation

- A. Compositional Foliations
 - 1. Defined: banding = mineralogic zonation in rock
 - 2. Types

- a. Diffuse foliations: weakly zone mineral concentrations
- b. Banded foliations: strong compositional layering
 - (1) e.g. gneisses

B. Disjunctive Foliations

- Defined: disjoined or detached foliations characterized by seams of minerals
 - microlithons: localized, seam-like accumulations of minerals of differing composition from rest of rock

2. Types

- a. Stylolitic foliation: toothed, jagged cleavage common in limestones, and marbles
- b. Anastomosing foliation: wavy cleavage
- c. Rough foliation: blocky foliation
- d. smooth foliation: e.g. slaty cleavage

C. Cenulation Cleavage

- crenulations: harmonic, small-scale chevron folds that develops in a preexisting foliation
 - a. e.g. crenulated cleavage on a schistose foliation

D. Continuous Foliations

1. continuous foliation of mineral grains at microscopic level

E. Relationship of Foliation to Other Structures

- 1. Fold-related foliation
 - a. axial plane cleavage: foliation oriented parallel to axial surfaces of folds

F. Nomenclature of Foliations

- 1. Slaty cleavage: fine continuous foliations characteristic of slates (comprised of finely crystalline phyllosilicates)
- 2. Phyllitic cleavage: similar to slaty, only in coarser grained phyllites
- 3. Schistosity: foliation in coarse-grained mica-rich schist
- 4. Gneissic foliation: compositional banding in gneisses

III. Lineations

A. Introduction

1. Structural lineations: preferred orientation of linear structure in rock

- a. discrete lineations: deformation of pre-existing features
 (1) e.g. lineation of pebbles, fossils etc.
- b. Constructed lineations: lineations formed as result of deformation itself
- 2. Mineral Lineations: preferred alignment of mineral grains in rock
- B. Structural Discrete Lineations (stretching of pre-existing materials)
 - 1. Examples
 - a. stretched pebbles
 - b. distorted ooids, fossils
- C. Structural constructed lineations (originate during deformation)
 - 1. Intersection lineation: linear fabric formed by intersection of two planar features
 - a. e.g. intersection of bedding plane (So) with foliation plane (S1)
 - b. Pencil cleavage: common in shales, breaks rock into elongate prisms
 - 2. fold-hinge lineations: microfold hinges in crenulations
 - 3. Boudins (boudinage) = "sausage"
 - a. pinching and squeezing of planar layer, may separate or remain attached by neck
 - b. common: stretching of shale layer
 - 4. Structural slicken lines
 - a. grooved striae found on slicken sides (the surface)
 - 5. Mullions: fluted elliptical columns
- D. Mineral Lineations
 - 1. Polycrystalline Mineral Lineations
 - a. mineral streaks and alignments
 - 2. Mineral grain lineations
 - a. fibrous vein fillings
 - b. slicken-fibers (at microscopic level)
- IV. Formation of foliations and lineations

A. Primary Processes

- 1. Ductile flattening and elongation of rock
 - a. rock squeezing complimented by stretching at 90 degrees
 - (1) e.g. result in boudinage (pinch and swell structure)
- 2. Mechanical rotation
 - a. shear mechanisms rotate minerals into alignment
- 3. solution and precipitation
 - a. foliation via mineral mobility in rock
 - (1) mobilization of mineral components by breakdown into solutions
 - (2) e.g. stylotilization
 - (a) common in limestones
 - i) comprised of calcite plus insoluble impurities (e.g. clay, carbonaceous matter)
 - ii) Riecke's principle (pressure solution)
 - a) calcite will go into solution at points of maximum compressive stress
 - b) pressure-point solution
 - c) remineralize at minimum compressive stress points
 - (b) stylolites
 - i) lines where calcite dissolved and mobilized out of system (volume loss)
 - ii) insoluble residuum accumulates along pressure-solution boundary
- 4. recrystallization
 - a. process of mineral transformation, recrystallization during metamorphism
 - (1) associated with attendant change in shape
 - (a) development of foliation
- 5. Slickensides and mineral fabric alignment
 - a. process: microscopic alignment of mineral fibers in shear-fracture

zones

- b. aspirites: irregularities or rough bumps on fault surface that give rise to slickenlines via scratching.
- B. Developmental stages of Foliation (with increasing tectonic pressure
 - 1. cleavage stage=volume loss by porosity reduction (bedding fissility) and pressure solution)
 - 2. pencil cleavage
 - 3. rough to moderate cleavage (handcock stage)
 - 4. strong cleavage stage = well dev. bedding-cleavage lineations and crenulations
 - 5. passive folding (axial planar foliation)
 - 6. transposition (rotation of layers into parallelism with cleavage)
 - 7. Recrystallization
 - a. preferred orientation of deformation and new minerals