CHAPTER

Stress

We have described a variety of structures that can form
in rocks as a result of brittle deformation. Knowing
what structures exist, we are naturally inclined to ask
why they exist. What caused them to form? What does
their existence tell us about the processes operating in
the Earth at the time they formed?

Our experience tells us that things break when too
much force is applied to them. Thus we must consider
what happens when forces are applied to a bedy of
rock. In doing so, we are led to the concept of stress
as a means of describing the physical state of material
to which forces are applied.

Preview

The concept of stress can initially be confusiug, parrly
because quantities that require several numbers to rep-
resent them are upfamiliar, and partly because the no-
tation that we must use to represent these quantities is
unfamiliar. In fact, however, the physical idea of stress
is not difficulr. Using two-dimensional geometry, we
briefly introduce the physical ideas leading to the con-
cept of stress {see Table 8.1).

We starr with the idea of force because it is the
basic concepr and because we all have a physical in-
tuition of what force is from our everyday experience
of pushing and pulling on things. Force is a vector
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quantity which has a2 magnitude (how hard the push is)
and direction {which way the push is), and it is dia-
grammed by an arrow (A in Table 8.1). Tn a given system
of coordinates (x, z) a force vector can be represented
by components parallel to each of the coordinate axes
(see Box 8.1).

The intensity of the force depends on the area of
the surface over which the force is distributed. Ir s called
a traction, and it has units of force per unit area (B in
Table 8.1). The larger the area over which a given force
is distributed, the smaller the traction on that surface.
Thus the weight of a gallon of water produces a higher
traction on the bottom of a tank 0.5 m on a side than
on the bottom of a tank 1 m on a side. The traction is
commonly represented in terms of its components per-
pendicular and parallel to the surface on which it acts.

In order to satisfy the requirements of equilibrium,
any surface must have a pair of equa! and opposite
tractions acting on opposite sides of the surface. This
pair of tractions dehnes the surface stress, which is
commonly represented by a pair of equal and opposite
components acting perpendicular ro rhe surface and an-
other pair acting parallel tothe surface (C in Table 8.1).

For a given system of forces applied to a body of
material, the surface stress at a given point varies with
the orientation of the surface through the point. In
order to know the effect at a point of all the forces
acting on the body, we must be able to determine the
surface stress on any plane through the point, Imagine,



Table 8.1 Development of the Concept of Stress

Diagrams Definitions
A. Force Force components A push or a pull
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B. Tracrion Tracrion components Force per unit area on a surface of a specified

’ orientation {a measure of force intensity}

N

A__‘ ‘_;J_{

C. Surface stress Surface stress A pair of equal and opposite tractions acring
COMPONENTs across a surface of specified orientation

! ‘ E 1 '
D. Stress at a point Stress tensor components Surface stresses on planes of all orientations
{two-dimensional) {rwo-dimensional) through a point (represented by the stress ellipse)

Two of the surface stresses acting cn two per-
pendicular surfaces, respecrively, suffice to define
the enrire ellipse.

Stress ellipse

example, a cube that is compressed perpendicular to its
faces by three vices each applying a different force. The
surface stress on each pair of cube faces would be dif-
ferent, and each is independent of the surface stresses
on the orher two pairs of faces. It turns out thar the
surface stress on any other orientation of plane through
the center of the cube can be determined from rhese
three independent surface stresses. In facr, if we know
the surface stresses on any three mutually perpendicular
planes through a point, we can calculate the surface
stress on any other plane through that poinr. The com-
ponents of these three surface stresses measnred per-
pendicular and parallel to their respective planes make
up the components of the stress tensor. Thus the stress

tensor is a quantity that simply permits us ro calculate
the surface stress on a plane of any possible orientation
at a given point. If we know that, we know complerely
what the material “feels’™ at that point as a resulc of
the forces applied to the body.

In two dimensions, if we plot from a common
origin the surface stresses for all the orientations of

_surfaces at a point, they define an ellipse (D in Table

8.1), which is therefore a complete representation of the
two-dimensional stress tensor. The size, shape, and ori-
entation of the ellipse are completely defined if we know
the surface stresses on any pair of perpendicular planes
through the point. The components of these two surface
stresses are the components of the two-dimensional
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stress tensor (D in Table 8.1).

Fundamentally, thar is all there is to the idea of
stress. In this chapter, we further develop these concepts
and the notation to express them.

Force, Traction, and Stress

Force

Because we are concerned with vectors such as force,
we teview in Box 8.1 some basic properties of vectors.
Forces applied to a body and originating outside the
body are of two types:

1. Body forces act on each particle of mass, independent
of the surrounding material. By far the most impor-
tant body force to a structural geclogist is the Earth’s
fotce of gravity. It exerts on each volume of rock a
force that is proportional to the mass within that
volume.

2. Surface forces arise either from the action of one
body on another across the surface of contact be-
tween them or from the action of one part of a body
on another part across an internal surface. For ex-
ample, if our hand pushes on the end of a block of
rock, we apply a surface force across the area of
contact between our hand and the block. Moreover,
across any internal surface of arbitrary orientation
that divides the block in two, one side of the block
applies a surface force on the other side.

For the present discussion we focus our attendon on
surface forces.
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The Traction: A Measure of Force Intensity

A large force clearly has a greater effect on an object
than a small force. Bur jusc knowing how much force
1s applied to a body does not give us all the information
we need to determine how a deformable bedy will re-
spond. For example, a thick wooden pillar mighe easily
support the force exetted by a large mass (Figure 8.1A});
that same force, however, would break the thin wooden
leg of a table (Figure 8.1B). Because the type of material
supportiug the force is the same in both cases, we expect
that the intensity of the force musc be higher on the
table leg than on the pillar, even though the magnitude
of the force is the same.

The traction L is the force intensity, and it is defined
by dividing the force applied F, by the area A across
which it acts.! It therefore has physical units of force per
unit area. Figure 8.24 shows one force F*F acting on
the top side of the surface whose area is A, and another
Fbotom) 5 cting on the bottom side. Figure 8.2B shows
the corresponding tractions Z¢°F) and 3.6 ™) thhar aet
on the opposite sides of the sutface. In some sources,
the traction is called the stress vector. We avoid this
usage because the quantity IS not a true vector, as
we see below, and because using the same word for
both traction and stress blurs the distinction between
them.

L% generally represent scalars like the area A in icalic type; vecrors
like the force F, and rensors like the stress o, as well as tractions and
surface stresses, in boldface type.

2 The unjts of the traction are the same as for the hydrostatic pressure
on a surface. The two quantities differ in thac hydrostaric pressure
is always perpendicular to the surface on which it acts, whereas the

traction in general is not.

Figure 8.1 The incensity of an ap-
plied force increases as the area
across which it is disrribuced de-
creases. A. A tyrannosaur is happily
supported on a large pillar of cross-
sectional area A;. B. The tyranno-
saur, to her dismay, 1s not supported
by the table leg having a much
smaller cross-sectional arca A;.
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Figure 8.2 Force, traction, and surface stress. A, A force FUOP!
applied to the top of the surface of area A is balanced by an
equal and opposite force FPO1™ on the botrom of the surface.
B. The force intensity is given by the associated rractions %P
and TP which are equal and opposite. Each rraction can
be expressed in rerms of its normal compenent o, and irs
shear component ¢,. The balanced pair of tractions is the
surface stress; the balanced pairs of components are the normal
stress component and the shear stress compenent.

1t is usually convenient to resolve the tracrion into
two componenss, one perpendicular to the surface on
which it acts and the other parallel to that surface. These
components are, respectively, the normal traction com-
ponent g, and the shear traction component g, (Figure
8.2B).

If the force is uniformly distribuced over a large
area A, and F represents the total force, then the traction
on the whole area is given by

F

E
A
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(8.1)

If the force is nonuniformly distributed over the area,
that is, if it changes direction and magnitude across the
surface, then we can define the traction only at a point
on the surface. We represent the point as an infinitesimal
area dA of the surface on which an infinitesimal part
of the total force dF acts.
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(8.2}

The magnitude and direction of the traction can then
vary from point to point across the surface.

The Surface Stress

We require the surface to be in mechanical equilibrium,

which means it cannot accelerate independently of the

material in which it lies. For this to be true, according to
Newton’s second law, opposing forces must exist on
opposite sides of the surface such that all the forces on
the surface sum to zero (Figure 8.24):
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Figure 8.3 The Mohr ciccle sign conventions for the com-
ponenrs of the srress at a point.

We can express this balance of forces in terms of the
tractions by dividing the forces by the area actoss which
they act.

F(rop} F(bonom)

=0
A + A

E([op) + E(boctom) -0
Fitop) — _E(bor(om) {8.3)

Fquation (8.3) asserts that the tractions on the top and
bottom of the surface must be equal and opposite; the
same relationship must therefore apply individually ro
the normal traction and shear traction components (Fig-
ure 8.2B).

O_Sop) — O_Lbotmm) O.-Etop) - _O_Ebo:(om) (8.4)

The surface stress, or each of its components, con-
sists of a pair of equal and opposite tractions, or a pair
of equal and opposite traction components, acting on
a surface. If the two equal and opposite normal traction
components, (J’SOP) and UL_bOtmm , point toward each
other, they define a compressive stress which tends to
press the material together across the surface (Figure
8.3A). If they point away from each other, they define
a tensile stress which tends to pull the matenial apart across
the surface (Figure 8.3B). We consider that compressive
stresses are positive and tensile stresses are negative.

Two equal and opposite shear traction compo-
nents, Jimp) and G(bmmm), define a shear stress or a
shear couple. The shear stress may be clockwise or
counterclockwise, depending on which way a ball would
turn if it were placed between the two arrows repre-
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‘What is a Vector? A Brief Review

A vector is a quantity that has both a magnitude and
a direction. A scalar quantity, on the other hand, has
only a magnitude. Temperature and mass density are
familiar physical quantities that are scalars. These
quantities are each represented by a single number
that has no directional quality associated with it, such
as 35°C and 2500 kg/m?. Familiar examples of vector
quantities include velocity and force. We can define
a vector quantity completely only by giving its mag-
nitude and the direction in which it acts: A plane
travels 400 km/hr in a horizontal northeast divection.
Vectors can be represented diagramatically by ar-
rows. The length of the arrow shaft is made propor-
tional to the magnitude of the vector, and the direction
of the shaft and point indicates the direction of the
vector.

Two vectors can be added using the parallelo-
gram rule. If, for example, we wish to add two forces
V and W that act on a point p, we draw the arrows
representing the forces tail to tail and construct a
parallelogram with the arrows defining two adjacent
sides (Figure 8.1.1). The sum of the forces, called the
resultant force R, is then the vector from the common
origin to the diagonally opposite corner of the par-
allelogram. Thus the effect of applying the forces V
and W to p is the same as if the resultant force R
were applied to p.

In order to specify a direction, it is necessary to
have some frame of reference, such as the geographic
coordinates north, east, and down (which we used
above to describe the velocity of the airplane). The
frame of reference in three-dimensional space is com-
monly taken to be a mutually orthogonal system of
coordinates, and we assume that its orientation is
known. We label the axes x|, x3, and x3 according
to the right-hand rule. By this rule, if the fingers of
the right hand are oriented to curve along the direc-
tion of rotation from positive x; to positive x;, then
the thumb points along positive x3 (Figure 8.1.2).
These axes are also often labeled x, y, and z, but it is
more convenient to use the subscript numbers.

If we consider a vector V to represent, for ex-
ample, a force in three-dimensional space (Figure

e
Figure 8.1.1 The parzlleiogram rule for vector addition.
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Figure 8.1.2 The righr-hand rule defining the orientation
ofaxes in arighr-handed orthogonal Cartesian coordinarce
system.

8.1.3), using the paralielogram rule shows that it can
be considered the resultant of two [orces: one, Vi,
parallel to the xj axis and the other, W, lying in the
X1—Xx3 plane.

V=W+V; (8.1.1)

Using the parallelogram rule again for W shows that
it can be considered the resultant of two forces V,
and V;, which paralle] the x; and x axes, respec-
tively.

W=V, +V; (8.1.2)
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Figure 8.1.3 A vector V and its vector components {Vy,
V5, V1) (n three-dimensional space. W is the projection
of ¥V on the x{—x; plane,
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Combining Equations (8.1.1) and (8.1.2) shows that
the force V is the resultant of three forces, each acting
parallel to one of the coordinate axes.

V=V1+VZ+V3 (8.1.3)

Vi, V2, and Vj are the component vectors of V. If
we designate their lengths by Vi, V5, and V3, re-
spectively, then these are called the scalar compo-
nents, or just the components, of the vector V in the
given coordinate system. By convention, the com-
ponents are always written in order. Thus the vector
V can be represented by an ordered array of three
scalar components {V}, Va, Vs).

For a fixed vectorial quantity such as a given
force, the values of the components representing that
vector quantity depend not only on the magnitude
and direction of the quantity but also on the orien-
tation of the coordinate system in which the com-
ponents are defined.

The problem is simpler to explain in two dimen-
sions for which the reference ¢oordinates are x; pos-
itive due east and x; positive due north (Figure
8.1.4A). If F is a force of 100 N (newtons) acting 40°
east of north (or, equivalently, 50° north of east), then
the force vector is completely defined by its compo-
nents (Fj, I%) in the x;—xy coordinate system:

(Fi, By} = (64.3, 76.6) N
where
F| = [F| cos 50° = (100){0.643) = 64.3 N
1= [H X ) (8.1.4)
Fy = |F| sin 50° = (100)(0.766) = 76.6 N

If, however, we use a coordinate system. x| —x3,
where x7 is 30° counterclockwise from x) (Figure
8.1.4B)}, then exactly the same force vector F has
components given by

(FYy, FR) = (94.0, 34.2) N
where
F{=|F|cos 20° = (£00)(0.940) = 94.0 N

(8.1.5)
FYy = |F| sin 20° = (100)(0.342) = 34.2 N

Figuce 8.1.4 The dependence of the
scalar components of the vecror on

x5 cootdinare system.

For a given vector F, the components in different
coordinate systems are systematically related. If, in
Figure 8.1.5, we designate the angle between x| and
x| and the angle between x; and x5 by 8, then using
the sides of the shaded triangles, it is not difficult to
show that

Fy=F| cos@ + Fpsin @ (8.1.6)
Fy=—Fysin @+ F)cos B

The same situation exists in the more general
three-dimensional case. Although the equations are
stightly more comphcated, the principle is the same:
The vector F is the physical quantity, such as force,
and it is represented by a different ordered set of
components in each different coordinate system.

Because Equations (8.1.6) enable us to transform
the component values from one known coordinate
system to another, they are called the transformation
equations. For a quantity to be a vector, its compo-
nents must transform according to the rule given m
these equations for two dimensions or in comparable
equations for three dimensions.

the otiencation of the coordinate
system. A. Components (Fy, F;) of
F in the x{—x; coordinace system. B.
Components (Fy, F3} of F in the x]—

Figure 8.1.5 Geomerric relationships between the scalar
components of the same vectot in two differently orienced
cootdinate systems, The sides of the shaded triangles can
be nsed to deduce the values of the componencs (Fj, F3)
frem the components {Fy, F;) and the angle 8.
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senting the shear stress components (Figure 8.3C, D).
We consider thar counterclockwise shear couples are
positive and clockwise shear couples are negative’
Generally, we use the symbol Z to refer to both
the traction and che surface stress, and we use the sym-
bols o, and o, 1o refer to the components for both
quantities. It is important to realize, however, that a
surface stress is defined by pairs of equal and opposite
traction components acting across a surface. The ab-
solute values of the traction components and of the
associated surface stress components are the same; the
two differ, however, in the sign convention for the com-

3 We refer to this sign convention as the Mohr circle sign convention,
because it is used for plotting scress eomponents as a Mohr ciccle,
which we discuss in Section 8.3. The sign convention is not unique,
however, because the same shear stress looks clockwise and coun-
terclockwise when viewed from opposire directions. For this reason,
it differs from the sign convention used for the components of the
stress tensor. We discuss the rensor sign convention in Section 8.4,
and the origin of the vexing but unavoidable difference between che
Mobhr circle and the tensor sign conventions in Section 8.5.
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ponents. For example, a compressive surface stress is
positive, bur it is defined by one positive and one neg-
arive traction component. We will normally deal with
stress components, unless it is impostanr to consider
one particular traction of the pair thar defines the stress.
In that case, we will identify the traction by using a
superscript, such as (top} and {(bottom) in Equartion (8.4).

A Numerical Example

As an illustration, let us calculate the components of
the surface stress acting on two different planes in the
pullar supporting the tyrannosaur in Figure 8.1A. First
we determine the surface stress components on a hor-
izontal cross section of che pillar (Figures 8.14, 8.4A).
Suppose the area of the pillar cross section is
A=Lx L=2m? and the tyrannosaur weighs W =
80,000 N, which is the magnitude of a force acting
downward. The force per unit area that the upper part
of the pillar exerts on the lower part, across the atea
A, is the traction, and the lower part exerts an equal
and opposite traction on the upper parr. The magnitude
of the surface stress is just the same as the magnitude
of the rraction® (Figute 8.4B). We choose the signs of

4 A newten is the amount of force required to accelerate 1 kilogram
of mass at 1 meter per second per second {1 N =1 kg m/s?). Ap-
propriately enough, a force of 1 newron is approximately equal ro
the weight of an apple (1 N = 0.225 1b). Newtons per square meter
{N/m?), pascals (Pa), megapascals {MPa), bars (b}, and kilobars (kb)
are all units of stress—rhat s, force per unit area—rclated by 108
N/m? = 10°Pa = 1 MPa = 10 b = 0.01 kb. The pressure of 1 Pa is
approximately the pressure ereated by grinding one apple into ap-
plesauce and spreading it in an even layer over an area of 1 m?. It is
a rather small pressure. Avmospheric pressure {14.7 Ib/in?) is ap-
proximately 10° Pa, 0.1 MPa, or 1 b.

Figure 8.4 Determination of the stress components on sur-
faces of different orientdtion. A. In snpporting the weight W
of the tyranosaur in Figure 8.14, the upper parr of the pillar
exerts a force W on the lower parr across an arbitrary cross-
secrion plane that has area A normal to the pillar axis. The
lower part of the pillar exerts an equal and opposire force on
the upper part. B. The magnitude of the surface stress & on
the plane of area A is the force divided by the area. The force
and the surface stress are normal to rhe surface, so there is
no shear stress component. C. On a plane that is inclined ar
an angle 8 = 30° through the pillar and has an area A’, the
same force W aces in the same dircerion. Components of the
force normal and parallel 1o the plane are £, and F,. D. The
magnitude of rhe surface stress &' is the same force W divided
by the larger area A”. The magnitude of the normal stress and
shear stress components o), and o are rhe normal and parallel
force componeuts divided by A'.



the surface stress components accotding to the Mohe
circle convention: compressive stress is positive.
W 80,000 N

= = 40,000 Pa = 0.04 MPa (8.5}

L =—
A 2m

Here we are considering only the magnicudes of che
vecrors and surface stresses, so we do nor use boldface
type.

Because the force—and therefore the surface
stress—acts exactly perpendicular to the area A, the
normal stress compornent @, equals che magnitude of
the surface stress T itself, and che shear stress component
o415 zero. Thus,

W
G,y = == Y = 40,000 Pa g, =0 (8.6)
Suppose, now, that we wanted to calculate the
magnitude of the surface stress &’ acting on a plane in
this same column that is inclined at an angle # = 30°
to the left and has an area A’ (Figure 8.4C). We have,

LW _ W _80000N s
== = 7~ 34, a
A" Adcost 2309 m?
= 0.03464 MPa (8.7)

where the areas A and A’ are related by

A=LL A'=L{L/cos 8) = Alcos (8.8}

Notice from Equation (8.7) that although the weight is
the same, the magnitude of che surface stress on A’ is
smaller than that on A, because the area A’ is larger
than A (Figure 8.4D). The force components normal
and parallel to the inclined plane, Fj and FZ, are

Fi=Wcos 8 E.=Wsin 8 (8.9)

and the normal stress and shear stress components o/,
and &; are simply the corresponding force components
divided by the area across which they act:

N ¢
a, =%=%—=E’ cos 8
= 30,000 Pa = 0.03 MPa (8.10)
. Wsin g
a}=%=%—=2’ sin 0
= 17,320 Pa = 0.01732 MPa (8.11)

We can relate the components ), and ¢} on the
surface A’ 1o the normal stress component o, cn the
surface A. In Equarions (8.10) and (8.11), we write the
arca A’ in terms of A using Equation (8.8) and rhen we
use Equation (8.6) ro obtain

_ Weosfl Weosd

‘ 2
= — = = 12
n A Alcos # Iy cO5 8 ®.12)
, Wsin8 Wsind - 0 8.13
g=—""="7""- )
: Al Alcos g On ST Cos ®.13)

This example shows that neicher che tracton nor
the surface scress (a pair of equal and opposite tractions)
is a vector quantity because they are both inseparable
from the area, and thus the orientation, of the surface
on which they act. The transformation equations re-
lating the normal and shear components of the surface
stress on two differently oriented planes (Equations 8.12
and 8.13) are very different from those relating the nor-
mal and tangential components of the force vecror
{Equations 8.9). Equations (8.12) and (8.13) include the
cransformation equations for the force vecror ({the uu-
metators) as well as the equations accounting for the
change in area with otientation (the denominators}.
These two effects result in products and squares of sine
and cosine functions rather than just the first-order
tetms in rhese functions as in Equations (8.9}.

Thus a traction has the characteristics of a vector
only if we consider a surface of fixed orientation. The
force vector, however, is independent of the orientation
of the surface on which it acts. This difference is the
most important distihction berween traction, or stress,
and force.

The Two-Dimensional Stress at a Point

We know the stress ¢ at a point in a body if we can
determine the normal stress and shear stress compo-
nents—written (o, o, )—that act on a plane of any
orfentation passing through that point. There are, of
course, an infinite number of such planes, so we need
to know what minimum amount of information enables
us to determine the stress components on any plane.

For the two-dimensional case, if the ncrmal stress
components on the planes are either all compressive or
all tensile, the stress is particularly easy to visualize be-
cause it can be represented by an ellipse. If we plot all
possible surface stresses as pairs of arrows from a com-
mon origin, the ends of the arrows fall on an ellipse
called the stress ellipse (Figure 8.5A ). States of stress are
possible in which some normal stresses are compressive
and some are tensile; in this situation, the stress ellipse is
not defined. We concentrate on the intuitively simpler
case in which the stress ellipse is a complete representa-
tion of the state of stress g at a point in a body.

In general, rhe surface stresses are not perpendic-
ular to the planes on which they act. Thus both the
normal srress and the shear stress components (g, o,)
onan arbitrary surface are nonzero. The cnly exceptions
are the surface stresses thar are parallel to the major
and minor axes of the ellipse (see the caption that ac-
comparnies Figure §.6A). These two surface stresses are
the principal stresses® &) and &4 (Figure 8.5A). The
planes on which the principal stresses act are the prin-
cipal planes, and coordinate axes parallel to rhe prin-

? Here and throughout the book, we use “‘hats” {circumflexes) above
symbols to indicare principal values or principal coordinates.

Stress 135



A. Stress ellipse
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B. Principal stress components

rlioed {top)
o E, Y

Figure 8.5 Representacion of the state of two-dimensional stress ar a point.
A. The stress ellipse is the locus of all the surface stresses (plotted as pairs
of arrows) that act on planes of all orientations through the poinr. In two
dimensions, those planes are all normal ro the plane of the diagram. All
normal stress components must have the same sign in order o define a
stress ellipse. The principal stresses are the major and minor axes of the
ellipse and are the maximum and minimum of all normal stresses on the
planes. The principal coordinace axes are parallel to the principal stresses,
and the planes normal to the principal stresses are the principal planes,
{See rhe legend accompanying Figure 8.6A for other details.) B. The stress
at a point can be completely defined in the principal coordinate system (%,
%3} by the two principal stresses (¢}, ¢3) thar act on the two perpendicular
principal coordinate planes. We represent the point by an infinitesimal
coordinate square. C. The stress at a point can also be compierely defined
in any other coordinate system (x, z) by specifying rhe surface stresses (L,,
L) or their components (0,,, 0,,), (0., 0. on the two perpendicular
coordinate planes. Superscripts identify specific tractions and traction

components. 5(\
3 Iy
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Principal coordinate axes
and planes
Z
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C. General stress components

n
ol

Arbitrary coordinate axes
and planes

The magnitudes and orientations of the principal

cipal stresses are the principal coordinates or principal
axes® £1 and £3. The principal stresses are the maximum
and minimum of all the surface stresses acting on planes
of any orientation through the point, and by convention
we label them such thar

) = 63 (8.14)

% T'he principal coordinates are labeled £, and #, insread of x and z
so thar they are directly associated wich che principal stresses ¢, and
&4, respectively, to which they arc parallel. The pracrice of disrin-
zuishing coordinate axes by different subscripts is a common one
which we use specifically to label the components of che siress tensor.
We describe the notarion below and in more detail in Section 8.4.
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stresses ¢4 and d3 completely define the stress ellipse—
and therefore the stress ¢ at a point.

The principal stresses are perpendicular to the prin-
cipal planes on which they act, so the shear stress com-
ponents on the principal planes are zero. Thus the
magnitudes of the principal surface stresses are com-
pietely defined by ctheir normal stress components ¢4
and &3. The converse is also true: Any plane on which
the shear stress is zero (such as plane A in Figure 8.4A)
must be a principal plane, and the normal scress on that
plane must be a principal stress. Because the shear
stresses are zero on the principal planes, using the prin-
cipal stresses is a particularly simple way to define the
stress at a point,
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We represent a point in a two-dimensional body
as an infinitesimally smal! squate of material. Opposite
sides of the square represent the opposite sides of a
plane through rhe point; and the perpendicular pairs of
sides therefore represent two perpendicular planes
through the point. Figure 8.5B shows the coordinate
square in the principal coordinate system, with the prin-
cipal stresses 61 and &3, the principal axes % and %3,
and the principal planes, which are the sides of the
square.

One surface stress does not define the complete
state of stress at a point, as is evident from the facr rhat
the length of one of rhe surface stresses in the stress
ellipse does not define the complete shape of the ellipse.
The two principal stresses completely define the shape
of the stress ellipse. The surface stresses that act on any
rwo perpendicular planes through the point, however,
also completely define the shape of the stress ellipse.

We define general coordinates x and z perpendic-
ular ro the sides of a square of any specified orienration.
We refer to planes perpendicular to x as x planes, and
we refer to planes perpendicular to z as z planes. We
can then label each stress component according to both
the plane on which it acts and the coordinate to which
it 1s parallel {Figure 8.5C). The components of the sur-
face stress X, acting on the x plane of the coordinate
square are ., and &,,. The first subscript x shows rhar
both components act on the x plane; the second sub-
script shows thar the components are parallel to the x
and z coordinates, respectively. Thus o, is the normal
stress component, and ¢, is the shear stress component
(in Figure 8.5C, each of the tractions and traction com-
ponents is labeled individually). Similarly, for the sur-
face srress L, acting on the z plane, 0., is the normal
stress component, and ¢, is the shear stress component.

Thus the stress @ at a point is completely defined
either by the principal stresses (64, &3) and their ori-
entations, or, in the x—z coordinate system, by the sur-
face stresses L, and L or their components (g,,, 0,,)
and {04, 04

O-Al Ex: (Uxxa ze)
= = 8.15
{ o {z (GO ®.19)

I zx)

The only case for which one surface stress is sufficient
to define the stress ata point s for a hydrosraric pressute,
in which case the srress ellipse is a circle.

We require that the coordinate square be in me-
chanical equilibrium, which means that its acceleration
parallel to each of the coordinate axes must be zero and
that its angular acceleration musr be zero. Thus both
the forces and the moments of these forces acting on
the square must sum to zero.

We know from Equation (8.4) that the normal trac-
rion and shear traction components on opposite sides

of a plane must be equal and opposite (Figure 8.28).
Accordingly, from (Figure 8.5C),

(ry _ {1foy {op) __ {bot)
G =70k 0TS0k (8.16)
o = ol P = —ol

The product of a traction component and the area on
which it acts defines a force component acting on the
coordinare square. Using Figure 8.5C, we sum all the
force components that are parallel to the x axis, and
separately we sum all force components rhat are parallel
to the z axis. Thus we require

1 b
e o4, + o004, 4 oloPta, 4 oA = 0 (8.17)

|z U&DP)AZ + 0’920‘)}\1 + GJ(;Z‘)AI + Uﬂ:')Ax =0

[f we use Equations (8.16) to eliminate one of each of
the traction component pairs irom Equations (8.17), we
obtain the identity 0 = 0. Thus Equations (8.16) are the
conditions that must be met if the forces are to sum to
ZEro.

Taking moments of the forces about the origin—
or, in essence, about the y axis—involves only the shear
tracrion components, because the moment arms for the
normal traction components are all zero. From Figure
(8.5C), the infnitesimal dimensions of the square are
2dx and 2dz, whereby taking all the moments and re-
quiring their sum to be zero gives

oi:)Ardx + GSZH)AI( —dx) + agf"’)Azdz
+a®A(—dyy=0 (8.18)

Because A, = A, and dx = dz, we can eliminate rhese
quanriries from the equation by division and, using
Equation (8.16), show thar the shear tractions, and
therefore the shear stresses, are relared, respectively, by

(if) _
Cap =

{ —o® and o= -0, (819

Thus of the four stress components in the x—z
coordinate system (second equation 8.15), only three are
independent: 0, 03z = — 04y, and 0y

The Three-Dimensional Stress at a Point

The description of the stress in three dimensions is a
direct exrrapolation of its description in two dimensions.
In rhe simple case for which all normal stress compo-
nents have rhe same sign, the stress at a point is rep-
resented by a stress ellipsoid (Figure 8.6A). The major,
intermediare, and minor principal axes of the ellipsoid
are parallel to the principal coordinare axes. They rep-
resent the maximum, inrermediate, and minimum prin-
cipal stresses, respectively, which we label in accordance
with the convention

&1 =0y =4y (8.20)

The principal stresses are rthe surface stresses acting on
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C. General stress components

the three mutually perpendicular principal planes
through a point. On the principal planes, normal stresses
have extreme values and shear stresses are zero. We
represent the point as an infinitesimal cube whose faces
are parallel to the principal planes and perpendicular
to the principal axes £, X, and #; (Figure 8.6B).
The stress ellipsoid can also be defined by the sur-
face stresses Iy, L, and L, and their components that
act on any three mucually perpendicular planes through

133 BRITTLE DEFORMATION

Figure 8.6 The state of three-dimensional stress at a point. A. The
stress ellipsoid is defined by the surface stress(es) that act on planes of
all possible orientations through a point. Shaded planes are the
principal planes. Stress components are the principal stresses. For
the representation of stress to be an ellipsoid, the normal components
of the surface stress{es) must all be either compressive or tensile. The
onentation of the plane on which any particular surface stress(es) acts
is not imnediately obyious from the stress ellipsoid. The components
of the outward unit normal vector n ro the plane, however, are
{(ny, ny, ny) = (Ehg")/é"l, ff,_"’/é"l, ﬁg")/é"3); where (f(l”), fg_”), and
fg”)) are the components of the parricular surface stress parallel ro
the rhree principai axes of the ellipsoid, and &, &, and &; are the
principal stresses that parallel those three axes. B. Representation
of the stress in principal coordinates. C. Representation of the stress
in general coordinates.

Principal
coordinate planes

hZ

Arbitrary
coordinate planes

a point (Figure 8.6C). The coordinate axes x, ¥, and z
are parallel to the mutual intersections of those three
planes, and the point is represented as an infinitesimal
cube whose faces are parallel to the three planes. The
surface stress acting on each face of the cube has three
components, one parallel to each of the coordinate axes
(compare Figure 8.1.3). One compenent is a normal
stress; the other two are shear stresses. Each stress com-
ponent is composed of a pair of equal and opposite



traction components that act on opposite faces of the
cube. We label the components of these three surface
stresses by using the same convention we used for two-
dimensional stress. Each component with two identical
subscriprs is a normal stress; each component with rwo
different subsctipts is a shear stress.

Thus the stress eilipsoid, which defines the stress
at a point, 1s uniquely described by the three principal
stresses ¢, 2, and &3 and their orientations (Figure
8.6B) or by three surface stresses £, £, and £, or their
components acting on three mutually perpendicular sur-
faces through the point (Figure 8.6C).

& )
g= & or c=<L; {0y Ty, 0yg)  (B21)

) Ly 0z, 0o, 0g)

i {Gxm Txys Tog)

In general, nine components are required to define the
three-dimensional stress at a point. Of these nine com-
ponents, only six are independent however, because the
moments of the forces acting on the cube taken about
each coordinate axis must sum to zero, giving (compare
Equations 8.18, and §.19) ’

Ory = = Oyy Oy = — Ozx Oyy = = Opy (8.22)

In order for us to analyze a problem as a two-
dimensional case, the plane in which the problem is
analyzed must be a principal plane conraining two prin-
cipal stresses—for example, & and §3—and it must be
perpendicular to the third principal stress—for exam-
ple, 6.

Stress Tensor Notation

In continuum mechanics, the stress is defined by a math-
ematical quantity called the stress tensor, which we
discuss in Section 8.4 (see Box 8§.2). The srress tensor
components have the same numerical values as the Mohr
circle stress components, but the signs of the compo-
nents are determined by a different convention, and in
particular, the signs of the shear stress components may
be different. To distinguish the components of the stress
tensor from the Mohr circle stress components discussed
above, we label the three orthogonal coordinate axes
x1, x3, and x3 iastead of x, ¥, and z, and we labe!l the
components of the stress tensor with numerical sub-
scripts. The first subscript is the number of the coor-
dinate axis that is perpendicular to the plane on which
the stress component acts, and the second subscriprt is
the number of the coordinate axis that is parallel ro the
stress component.7 For example, the stress component
013, 1s @ shear stress component that acts on the xq plane

7 Using two different norasions to distinguish between the Mohs circle
sign convention and the tensor sign convention for the stress com-
ponents is 2 convenience we adopt for this boak; it is not a distinction
that is gencrally observed.

{first subscript) and is parallel to the x3 axis {second
subscript). The component o1y is a normal stress cont-
ponent that acts on the x, plane {first subscript) and is
parallel to the xj axis (second subscript). As before, the
normal stress components have two identical subscriprs,
and the shear stress components have two different
subscripts.

The components of the stress tensor are written in
a specific order to form a matrix. The surface stresses
that act on the three coordinate surfaces are written in
a column, in order of increasing subscript from top to
bottom. The components for each of those surface
stresses are then written in a row, the rows being in the
same order as the surface stresses. Thus the first sub-
script is the same in each row, and it increases in each
column from top to bottom; the second subscript in-
creases in each row from left to right. The components
of the three-dimensional stress tensor are written in
principal coordinates %, %, and %3 or in general co-
ordinates xy, x3, and xj, respectively, as

AY

g = E‘Z = 0 62 Q or
£y 0 0 &
- - N PRINCIPAL DIAGONAL
\ N
N (8.23)
r)31 ﬁCfn T2 o1z
o=1%) =10y 0p 0n
LX) Lou oy a3y

N
N PRINCIPAL DIAGONAL

The normal stress components appear along the prin-
cipal diagonal of the matrix, and the shear stress com-
ponents appear in the off-diagonal positions. With the
tensor sign convention, Equation (8.22) becomes

Ty = 071 g3 = 031 033 =03 (8.24)

The three relationships in Equation (8.24) define the
symmetry of the stress tensor, a term thar refers to the
equality of the shear stress components that occur, in
the matrix, in symmetric positions relative to the prin-
cipal diagonal, as in Equation (8.23). Note that with
this sign convention, the symmetrically related shear
stress componests are equal, not opposite_(compare
Equation 8.22}, even though one is a clockwise and the
other a counterclockwise shear stress (Figure 8.6C). The
notation for the principal stresses is unchanged, but the
matrix shows explicitly that all the shear stress com-
ponents associated with the principal stresses are zero.

In two dimensions, we have only two coordinate
directions, which we generally take eicher to be £y and
%3 or to be xy and x3, in which case the x;—x3 plane
must be perpendicular to the intermediate principal axis
%. Thus the state of two-dimensional stress is specified
only by the two surface stresses that act on the two
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coordinate surfaces, and each surface stress has only
rwo components. The marrix represenring the rwo-
dimensional stress at a poinr therefore has only four
components.

(8.25)

[\

=[ 1}=[Gu 013}
L; G31 33

Here again the matrix is symmetric because 013 = o3

We use the stress tensor notation throughout this
book in applications of stress to the study of defor-
mation in the Earth. Table 8.2 presents a convenient
refefence to the notation we use for discnssing stress.

Table 8.2 Notation for Stress”

The Mohr Diagram for Two-
Dimensional Stress

For simplicity, we restrict our discussion in this section
to two-dimensional stress. The extension to three-di-
‘mensional stress is discussed in Box 8.4.

The stress ellipse indicates that the normal stress
and shear stress components on a plane must change
progressively with the orientation of the plane. The
relationship between the orientation of the plane and
the values of normal stress and shear stress on the plane
is difficult to extract from the stress ellipse (see the legend
that accompanies Figure 8.6A). That relationship is re-
markably simple, however, when the stress is plorted

z Tracrion or snrface stress acting on a planar
snrface of specified oriencation.

Ty Gy Normal and shear components respectively
for both the surface stress and the traction.
L, L, I Surface stresses or tractions acting on the co-

L ordinate surfaces thar are normal, respec-
tively, ro the cootdinare axes x, ¥, z {(or to
axes xj, where k& takes the values 1, 2, and
3.

o The stress aca poinr: a second-rank symmetric
tensor quanticy.

dy Principal stresses (maximum, intermediate,
and minimum for k=1, 2, and 3, respec-
tively), which are normal stress components
acting on coordinare planes in the principal
coordinate system #3. The shear stress com-
ponents on these plaues are zero. Because
these values are the lengths of the principal
axes of the srress ellipsoid, they define the
stress ¢ ar a point.

Mohr circle stress components defining the
stress ¢ at a point in the {x, y, z) coordinate
system. Each row contains the components,
one of the surface stresses, or rractious, %,
2.,.2,, respectively. The first subscript is the
axis normal to the coordinare plane on which
rthe component acts; the second subscript is
the axis parailel to the stress component. In
defining o, compressive normal stress and
counterclockwise shear stress components
are positive, rensile normal srress and clock-
wise shear stress components are negative.

Cxxy Oxyr Txz
Fyxs Tyyr Tye

Gras Tzyn Oz

Components the stress ¢ at a point. These
components are the same as the components
for the three surface stresses or tractions %,
that act on the three coordinarce surfaces, re-
ferred to the x;, coordinace system. For each
value of subscript A =1, 2, and 3, snbscript €
takes on cthe values 1, 2, 3, which indicate the
three components of each surface stress; x is
normal ro the coordinate surface on which a
component acts, and x, is parallel to the di-
rection of the componenr. Normal compo-
nents have & = ¢; shear components have
k # ¢, These componenrs differ from the
Mohr citcle sctess components only in the
sign convention. For the geologic tensor sign
convention, tensot components have the
same sign as the traction components thar act
on the negative side of the cootdinate surface,

Ohe

Do The differencial stress. A positive scalar quan-
tity equal to the difference between the max-
imum and minimum principal stresses.

The mean normal srress: the average of the
normal stress components of the stress tensor
in any coordinate system. It is a scalar invart-
ant of the stress tensor.

al
x

The deviatoric stress components, equal to the
stress rensor components with the mean seress
subtracted from each of the normal stress
componenrs.

aCks

The effective stress components, equal to the
components of the srress tensor with rhe pore
fluid pressure subtracted from each of the nor-
mal scress eomponents.

ECke

4 Boldface type, cither with or without subseripts, indicates veetors
and tensors; normal type with subscripss indicates scalar components
of vecrors and rensors. We use the same notation for che tracrion and
its components as for the stress at a point aud its components, even
though the stress is actually defined by the pair of equal and opposite
tractions acting on opposite sidcs of the surface. The sign of a com-
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ponent may be different, depending on whether it is a traction com-
ponent or a component of the stress, zlthongh its absolute value is
the same. Where the distinction is imporrant, the context makes the
intent clear. In some cases, however, we specify a particular traction
by using additioual superscripts whose meaning is self-evident.




on a Mohr diagram® for which the horizontal axis is
the value of the normal stress g, and the vertical axis
is the value of the shear stress o..

For a given stress, we can show {see Section 8.5)
that on the Mohr diagram, the normal stress and shear
stress components on planes of all possible orfentations
through a point plot on a circle called the Mohr circle.
The center of the circle lies on the normal stress axis.
As before, compressive normal stresses and counter-
clockwise shear couples are considered positive. Char-
acteristics of the Mohr circle show clearly how the stress
at a point i5 related to the surface stresses on planes
through the point. We number these characteristics to
provide a convenient means of referencing them in sub-
sequent sections.

1) The Mohr Diagram

{i) The diagram has axes that are values of stress.
1t is therefore very impottant to distinguish the Mohr
diagram from a diagram of physical space, whose axes
are spatial coordinates. It is always necessary to draw
a scparate diagram of physical space, along with the
Mohr diagram, and o transfer data carefully from one
diagram to the other (Figure 8.7).

8 Named afrer Christian Otte Mohr (1835 -1%18), a German professor
of mechanics and civil engineering.

Plane P

A. Physical space

(i) The Mohr circle is a complete representation
of the stress at a point, because the normal stress and
shear stress components of the surface stress on planes
of all possible arientations through the point are in-
cluded on the circle. Each point on the circle represents
the surface stress on a different plane.

2) Principal Stresses

{i) The maximum and minimum normal stresses
have values defined by the intersection of the Moht circle
with the ¢, axis (Figure 8.7B8). Note that these two points
are the only surface stresses on the Mohr circle for which
the shear stress is zero.

3) Surface Stress and the Orientation of Planes

{1} The orientation of a plane in physical space is
defined relative to known coordinate axes by the ori-
entation of its normal n, not the orientation of the plane
itself (Figure 8.7 A}. For example, the angle & in physical
space (Figure 8.7A) is measured between %; and the
normal n to a plane P. # is also the angle between the
normal stress components on the %7 coordinate plane
(c1) and on the plane P (O’LP)) because & is parallel to
xq and ULP) is parallel to n.

(i) Angles measured in physical space are doubled
when plotted on the Mohr diagram. Angles are mea-
sured in the same scnse on the Mohr diagram as in

3 Q

.
(o) o)

Y

T

A A
g~ ¢

3
B. Monr diagram g o082

Figure 8.7 Plorting on a Mohr diagram the stress ar a point. A. Relationships in physical space
among the stress components, rhe principal coordinate axes, and the plane P with irs normal n.
B. Stress ar a point represented on a Mohr diagram by the Mohr circle. Superscripes (P} identify

sIress components acting on a plane P.
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physical space. As 8 takes on values from 0° to 1807,
the angle plotted on the Mohr diagram 28 takes on
values between 0° and 360°, and the entire Mohr circle
15 swept out (Figure 8.7B). All planes have two normals
which are 180° apart. Therefore in physieal space, the
angles 180° < § « 360° are redundant because they
merely duplicate the orientations of the plane defined
by the angles 0° < 0 < 180°.

{i1i) The normalstress and shear stress compenents
(JEF), Jim) acting on a plane P have a simple relationship
on the Moht diagram ro the orientation in physical space
of the normal n to the plane. In physical space, suppose
that n (or GE:D)) makes an angle @ from the axis of
maxunum principal stress £ (or ;) (Figure 8.74). On
the Mohr citcle, the surface stress components on plane
P, (o)) JE,P)), plot at the end of the radius that lies at
the angle 20 from the radius to the maximum principal
stress (g, 0) (Figure 8.7B).

{iv} If there are two arbitrary planes in physical
space P and P’ whose normals are n and i’ (Figure 8.84),
and if the angle from £ to n is a counterclockwise angle
# and the angle from n to n’ is a counterclockwise angle
o, then on the Mohr diagram there are two points on
the Mohr circle, (O’S)), cfgp)) and (JS)'), Uip’)), that define
the normal stress and shear stress components on P and
P’, respectively (Figure 8.8B). The angle between radii
to those points is 2a, measured countetclockwise from
(Jip), aip)) o (CFLP’), oi‘p')). If the angle in physical space
is measured from n’ to n, it is clockwise and therefore
a negative angle —u, in which case a clockwise {(neg-
ative) angle — 2 is plotred on the Mohr ciccle from the
radius at (JLP'), {7 to the radius at (af), aﬁp)).

(v) The surface stress components that lie at op-
posite ends of any diameter of the Mohr circle (20 =
180°) are the components acting on perpendicular planes
in physical space (& = 90°} (Figure 8.94, B). Thus the
principal stresses 6 and &4, which act on perpendicular
planes, plot at opposite ends of a diameter of the ciccle,
as do the two pairs of components (g,.,, 04,) and (g,,,
7,,) that specify the surface stresses acting on the per-
pendicular coordinate planes of an arbitrary coordinate
system. Fundamentally, this statement is a corollary to
the fact that angles measured in physical space are dou-
bled when plotted on the Mohr diagram (item (ii)
above).

4) Comjugate Planes of Maximum Shear Stress
(i) The stresses on the planes whose normals lie

at # = £45° to the maximum principal stress &7 in
physical space (Figure 8.104) occur on the Mohr circle
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A. Physical space
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B. Mohr diagram

Figure 8.8 The geomerricrelationship berween planes in phys-
ical space and the stress components on those planes. A. The
otienrations of the planes P and P’ in physical space are de-
termined by the orientarions of rheir normals n and n', re-
spectively. B. The geomerry on the Mohr diagram of rhe stress
components acting on the planes shown in part A. Note that
the angles plotred are double rhe angles measured berween
normals to the planes in physical space bur thar che sense of
rotation in measuring rhe angles is the same.




2{6 + 90)

A. Physical space B. Mohr diagram

Figure 8.9 Transferring stress components from a diagram of physical space to a Mohr diagram.
A. Diagram of physical space showing srress components in two coordinate systems (£, £3) and
{x, 2). The different sers of stress components represent the same stress and are shown on different
sized coordinate squares for convenience. B. Representation on a Mohr diagram of the principal
stresses as well as the stress componenrs in the general coordinate system shown in part A.
Components of surface stress acring on two planes thac are perpendicular to each other in physical
space plot on rthe Mokhr circle at opposire ends of a diameter. The rwo scalar invarianrs of the
stress are the center of the Mohr circle, defined by the mean of the normal stresses ar opposite
ends of a diameter, and by the lengch of the diameter, which is relared by the Pythagorean theorem
ro the sum of the squares of 20, and (0., — o.4).

o] T
X1’ A°
Planes of maximum L
shear stress |05| -
Counterclockwise
~ Ve
e
o, 5, X p 8, &,
— — l— — — o, [e—
/ \ )
CounterclockwiseT T Clockwise
shear stress I ' shear stress
Clockwise
A, Physical space : B. Monr diagram

Figure 8.10 Planes of maximum shear stress. A. Relationships in physical space between the
planes of maximum absolute shear stress aud the principal stresses. The two planes are said to
be coujugate shear planes. B. Mohr diagram showing the plot of rthe maximum absolute shear
stresses and rheir relatiouships to the principal stresses.

Stress 143



ar 20 = +90°, measured from (&4, 0} (Figure 8.103).
On these planes, the absolute value of the shear stress
|og| is a maximum. These planes are the conjugate planes
of maximum shear stress, and in physical space, the
planes themselves lie at 4 45° to the maximum com-
pressive stress d7. The stresses on these planes plot at
opposite ends of a diamerer of the Mohr circle, and
therefore in physical space the normals to the planes
are perpendicular, as are the planes chemselves.

5) Scalar Invariants of the Stress

(i) The magnitude of the stress at a poinc is
nniquely-characterized by two scalar invariants of the
stress, which are defined by the location of the center
of the circle 7,, called the mean normal stress, and by
the radius of the circle », which is also the maximum
possible absolute value of the shear stress, |0|may) (Fig-
ure 8.7B). These two gnantities are, respectively, half
the sum and half the difference of the principal stresses.

— C?l + & g, — d3
Ty T r= iasl(max) = 1—2— (8.26)

il

T, and r are called scalar invariants because they are
scalars whose values are the same for any set of com-
PONENLS (T rxs Tiz)s {Tays Uay) that define the same stress.
In other words, if we know the end points of any di-
ameter of the Mohr circle, we can construct the whole
circle, because 7, and 7 can always be determined. For
the end points of an arbitrary diameter {gyy, 0uz)s (0,
T,) (Figure 8.98),

— Ty + 0y
" 2 (8.27)
0510 — T2)* + (20,71%*

l

T

The second Equation {8.27) results from setting up a
right triangle in Figure 8.9B with sides parallel to the
axes and the diameter of the Mohr circle as the hy-
potenuse and then applying the Pythagorean theorem
to calculate the diameter, which is twice the radius. In
principal coordinates, the normal stresses become the
principal stresses and the shear stresses are zero, so
Equations (8.27) reduce to Equations (8.26). Qur ability
to construct the entire Mohr circle knowing only the
surface stress components at the two end points of one
diameter shows that the stress is completely defined by
the surface stress components on any two perpendicular
planes.

The scalar invariants of the stress describe fun-
damental geometric characteristics of the stress ellipse
(Figure 8.5A). The mean normal stress @, is proportional
to the mean radius of the ellipse, and the square of the
radius of the Mohr circle, #2, is proportional to the area
of the ellipse.
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6) Equations of the Mohy Circle

{i) The formulas for calculating the normal stress
and shear stress components ou any plane in physical
space whose normal n is at an angle d from che max-
imum principal stress &1 are easily determined from the
geometry of the Mohr circle (Figure 8.7B).

O =0, + rcos 20

[U‘ : 53] + [a‘ ~ “3] cos 20 (8.28)

s =rsin 20 = [K-z_ﬂ] sin 28

Q
I

Note that Equations {8.28) are written in terms of the
scalar invariants of the stress.

The Mohr circle provides a very quick and con-
venient method for obtaining solutions to stress prob-
lems, and in Appendix 8.1, we give examples of some
of the problems that can be solved by this means. Be-
cause it provides a simple way to visualize the stress at
a point, we will use the Mohr circle repeatedly in our
applications of stress to understanding brictle defor-
mation in rocks.

The Stress Tensor

The, stress at a point ¢ belongs to a group of mathe-
matical quantities called second rank tensors, and it is
therefore called the stress tensor (see Box 8.2). A second
rank tensor can always be represented by a martrix of
nine numbers in three dimensions, such as in Equation
{8.23), or by a matrix of four numbers in two dimen-
sions, such as in Equation (8.25).

Although the stress components (0.y, Txyls (T4,
Tt that we defined in Section 8.2 are required for Mohr
circle problems, the sign of the shear components is in
fact not precisely defined. For example, a shear stress
that is counterclockwise when viewed from one direc-
tion is clockwise when viewed from the opposite di-
rection. Thus its sign in the Mohr circle convention
depends on the direction from which it is viewed. This
ambiguity does not cause us difficulty in solving two-
dimensional Mohr circle problems, as long as we in-
terpret the solution to a stress problem by using the
same diagram of physical space in which the problem
was defined. The ambiguity is intolerable, however, for
more complex problems and for mathematical com-
putation. In order to have an unambiguous definition
of sign, we must use the set of stress components that
represent the stress tensor (see Box 8.2).

To distinguish the components of the stress tensor
from the Mohr circle stress components, we use a




| €. B What Is a Tensor?

A tensor is a mathematical quantity that can be used
to describe the state or the physical properties of a
material. We represent a tensor by a set of scalar
components referred to a particular coordinate sys-
tem. Tensor components must change in a prescribed
way if the coordinate axes are rotated (see Box 8.1
for this effect in vectors).

The rank of a tensor indicates how many scalar
components are required to describe it completely.
The number of components ¢ equals the dimension
d of the physical space raised to the power given by
the rank r.

’ c=d"

In three-dimensional space (d = 3), for example,
a scalar is a tensor of zero rank (r = 0) and so has
30=1 component. Commeon examples include tem-
perature, mass, and volume. Scalars are defined sim-
ply by their magnitude and are invariant under a
change of coordinates. We represent them mathe-
matically by a single symbol, such as T for temper-
ature and »1 for mass.

A vector is a first-rank tensor (r = 1) with 3! = 3
components in threedimensional space (d=3).
Force, velocity, and acceleration are all vector quan-
tities. Vectors describe physical quantities that are
characterized by magnitude and a single direction.
The values of the vector components change under a
rotation of coordinates as prescribed by Equations
8.1.6. The components are represented mathemati-
cally by a symbol with a single subscript, such as F.
The subscript k is understood to take on the values
1, 2, and 3 in three-dimensional space and the sub-
scripted symbol represents the three components
{(F1, F2, F3), each of which is parallel to one of the
coordinate axes. In two-dimensional space, k takes
on just two values, such as | and 2.

A second-rank tensor (r = 2)in three-dimensional
space (d=3) has 32 =19 compenents; the most im-
portant examples of these in structural geclogy are
stress, introduced in this chapter, and strain, intro-
duced in Chapter 15. Second-rank tensors are used
to describe physical quantities that have magnitudes
and are associated with two directions. For the stress
tensor, for example, the two directions associated
with each component are the orientation of the nor-
mal to the plane on which the stress component acts
and the orientation of the stress component acting on
that plane. The transformation equations for two of
the components of the second-rank stress tensor are
given in essence by Equations (8.36) for transfor-
mation from principal coordinates and by Equations
{8.3.3) and (8.3.4) for transformation from general

coordinates. Second-rank tensors, such as the stress
oy ave Tepresented by a symbol with two subscripts.
For three-dimensional space, both & and ¢ indepen-
dently take on the values 1, 2, and 3. Thus for each
value that k can have, £ can take on any of its values,
thereby providing distinct symbols for each of the nine
components. In two dimensions, k and ¢ take on only
two values each, such as 1 and 2.

Note that for vectors, the terms in the transfor-
mation equations (Equations 8.1.6) involve the first
power of the sine and cosine functions, whereas for
second-rank tensors, the terms in the transformation
equations (Equations 8.36, 8.3.3, and 8.3.4) involve
the products of sine and cosine functions. The differ-
ence is due to the fact that transformation of vector
compenents involves transformation of a single di-
rection, whereas transformation of second-rank ten-
sor components involves transformation of two
directions. Thus tensors of different rank are char-
acterized by different types of transformation equa-
tions for their components.

The magnitude of any physical quantity described
by a tensor must be independent of the coordinate
system in which we choose to describe it. Thus for
each rank of tensor, there are a certain number of
scalar invariants that define the magnitude of the
quantity. For scalars, this fact is self-evident; the scalar
is itself a magnitude and is invariant for any change
of coordinate systems. Vectors have one scalar in-
variant, the magnitude, which we represent by the
length of an arrow. This length is independent of the
coordinate system in which we describe the vector.
For second-rank tensors in three dimensions, three
independent scalar invariants are needed to define the
magnitude of the physical quantity; in two dirmen-
sions, a second-rank tensor has two scalar invariants.
We discuss these invariants in Sections 8.3 and Box
8.4 as properties 5.1 and 5.ii respectively.

Physical quantities that are described by tensors
of higher rank also exist. For example, the piezoelec-
tric material constants are represented by a third-rank
tensor whose components can be symbolized by 4y,
and the elastic constants of a material are defined, in
general form, by a fourth-rank tensor symbolized by
Agike. These tensors are associated with three and four
directions, respectively. In particular, the piezoelec-
tric material constants describe the relationship be-
tween the stress on a material (two directions) and
the associated electric field (one direction). The elastic
constants describe the relationship between the stress

-on a material (two directions) arnd the associated

strain (two directions). These higher-rank tensers, do
not concern us in this book.

Stress
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slightly diffetent notation, which is explained art the end
of Section 8.2. As a short hand notation for the stress
tensor components, we refer to the three coordinate axes
collectively as x;, where the subscript & can take on the
value 1, 2, or 3. The nine stress components are written
collectively as g, where for each valueof & =1, 2, or
3, £ can take on the value 1, 2, or 3 (compare Equation
§.23).

The surface stress on any of the coordinate surfaces
consists of a pair of equal and opposite tractions or,
equivalently, sets of equal and opposite traction com-
ponents, which we represent as acting on opposite faces
of an infinitesimal cube. We define the positive sides of
the cube to be the ones facing in a positive coordinate
direction, and we define the negative sides to be the
ones facing in a negative coordinate direction {Figure
8.11A). The values of the stress tensor components are
then defined to be equal either to the traction compo-
nents acting on the negative cube faces, which gives che
geologic sign convention, or to the traction components
acting on the positive cube faces, which gives the en-
gineering sign convention.” We use the same symbol for
both the tcaction components and the stress tenser com-
ponents, becanse they have the same absolute value and
differ only in sign convention. As noted before, we will
distinguish the traction components, whete it is nec-
essary, by using appropriate superscripts.

Using the geologic tensor sign convention, we see
that the stress tensor component g,5 in Figure 8.11B is
positive because the normal traction component acting
on the negative side of the cube, ¢33, points in a positive
coordinate direction. By the same token, ¢y, in Figure
8.11C is negative because g3; points in a negative co-
ordinate direction. Thus compressive states of stress are
positive, and tensile states of stress are negative. This
convention gives the same sign as the Mohr diagram
sign convention that we defined for 0.y, gy, and g ,
(Section 8.2), so cthere is no ambiguity for the normal
stress components. If the coordinate axes x, y, and z
are parallel to xy, x3, and x3, respectively, then
Gxx = 11, Oyy = 022, and ;= g33.

The same argument yields the signs for the shear
stress components. Figure 8.11D shows that ¢4 and a3,

? The engincering sign convention gives tensor stress components with
the opposite sign from those given by the geologic sign convention.
This convention is used in engineering and physics and for most
analyric applications of continuum mechanics, so it is also common
in the geologic literature. Thus for the stress components, we have
four different sign convenrions: the geologie and the engineering con-
ventions for the Mohr diagram, and the geologic and the engineeri‘ng
conventions for the srress rensor. Unfortunately, all are found in the
geologic literatnre, and to avoid confusion, one must always be careful
to derermine which convention is employed. Often the convention is
not stated cxplicicly.
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are both positive because the traction components acting
on the negative side of the coordinate planes—o33 and
g43, respectively—both peint in positive coordinare di-
rections. By the same roken, Figure 8.11F shows thar
023 and a3; are both negative because 033 and 033 both
point in negative coordinate ditections. Here we see the
difference from the Mohr circle sign convention (Section
8.2). In Figure 8.11D, for example, even though both
shear couples are positive in the tensor sign convention,
o33 Is clockwise and g3, is counterclockwise, which in
the Mohr convention means negarive and positive signs
respectively. In Figure 8.11E also, both shear couples
are negative in the tensor sign convention, even though
they are of opposite shear sense.

The tensor sign convention does not depend on the
direction from which the diagram is viewed, and rhus
it is unambiguous.'® In order to plot tensor components
on a Mchr diagram, however, we must adopt special
conventions to circumvent the ambiguiry of sign for the
shear stress components as defined for the Mohr dia-
gram. We review these conventions in the next section.

Equations (8.24) show that the shear stress com-
ponents in the stress tensor are not all indepeudent.
These equations are equivalent to Equations (8.22), as
we can show if we equate the axes x, y, and z with x;,
x7, and x3, and then when we change to the Mchr circle
notation and sign convention. Because of Equations
(8.24), the stress tensor ¢ is called a symmetric tensor
of second rank (compare Box 8.2), and it is necessary
to specify only six of the nine numbers in the matrix
in order to define completely the stress at a point.

We can gain some appteciation for the significance
of a second rank tensor by comparing it with a vector.
A force is a vector quantity thac has a directional quality
and is represented by a row array of three scalars. A
stress 1s a second rank tensor quantity that has a bi-
directional quality and is represented by a column array
of three surface stresses, each of which is in turn rep-
resented by a row array of three scalars. The three

10 & machematically more precise mechod of defining the geologic
rensor sign convention is with reference to the inward unit normal
vectors, which are vectors of unit lengeh chat arc normal co the cube
faces and point inward toward the center of the cube. If on any
particular face, the traction component aud the inward unit normal
both poinr in positive coordinate directions oc both point in negative
coordinate dicections, the stress tensor component is positive. If the
component and the inward unir normal point in opposite coordinate
senses, that is, one posttive and the other negative, the stress tensor
component is negartive. This definition gives consistent results for any
of the ctracrion companents on any face of the coordinate cube, so
the sign need not be defined just in rerms of the traction components
on one side of the cube. For the engincering sign conventdion, the
outward unit normal—that is, the unit normal veetor 1o the cube
faces that points away from the center of the cube—is used as a
rcference.
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Figure 8.11 The geologic sign conven-
o tion for stress tensor components is de-
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rermined by the direction of the tracrion
component acting on the negative side
of the coordinate surface. In all dia-
, grams, the pairs of opposing traction
components are labeled with a super-
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surface stresses are those that act on the three coordinate
surfaces, and the two directions involved in each stress
component are the orientation of the surface on which
each stress component acts and the orientation of the
srress component itself (see Box 8.2).

For a given stress at a point, the stress tensor ¢ is
a fixed physical quanticy described, for exampte, by the
stress ellipsoid (Figure 8.6A). The representation of that
tensor in components such as in the macrix in Equation
(8.24), however, requires the specification of a particular
coordinate system. In two differently oriented coordi-
nate systems, the three surface stresses on the three
coordinate planes are in general different, as can be seen
from the stress ellipsoid. Thus the scress components
{Equation 8.24) also generally have different values. Be-
cause the scress ellipsoid is the same, however, the stress
at the point is the same, and it is always possible to
calculate one set of components from another, given the
angular relationships between the coordinate frames
(see Section 8.5 and Box 8.3). The situation is analogous
to chat for the components of a vector as described in
Box 8.1, but the equations we use to calculate one set
of components from another for vectors are different

from those we use for second-rank tensors (compare
Equations 8.1.6 with 8.3.3 and 8.3.4).

E. Negative v and o,

script + or —, depending on whether
they act on rhe positive or the negative
side of the coordinate surface as defined
in part A.

For any vector, it is always possible to define a
coordinate sysrem in which all components of the vector
are zero exceptone. This is the case when one coordinate
axis is parallel to the vector. The analogous situation
for the stress tensor, as for any symmetric second rank
tensor, is that there always exists a coordinate system
of a particular orientation for which all che shear stresses
on all three coordinate surfaces are simultaneously zero,
and the normal stresses on these coordinate surfaces are
extrema—that is, maximum, minimum, or minimax!!
{Box 8.3). This special coordinate system is the principal
coordinate system, and in these coordinates, the stress
tensor is completely represented by the three normal
stress components that are the principal stresses. The
axes of the principal coordinate system are parallel to
the principal axes of the stress ellipsoid (Figure 8.6 A4),
and the principal stresses are the surface scresses paraltlel
to those axes.!?

I A minimax is a quantiry tharis a minimum in the plane that contains
the maximum and the minimax and is a maximum 1, the perpen-
dicular plane that eontains the minimum and the minimax.

12 For those familiar with linear algebra, the principal swesses and
principal directions are the eigenvalues and eigenvecrors, respectively,
for the marrix of stress componenrs.
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Derivation of Principal Stresses in Two Dimensions

In order to show that principal stresses must exist for
any stress tensor, we need to derive equations anal-
ogous t¢ Equations {(8.36) in terms of the stress com-
ponentsin a general coordinate system. The principles
of the derivation are the same as those used to obtain
Equations (8.36), and we merely outline the proce-
dure here.

We limit ourselves to considering planes parallel
t0 £ so that our diagrams of physical space are only
in the £)-%; plane. We assume we know the orien-
tation of the reference coordinate axes x; and x3, both
of which are normal to £,. Both normal and shear
stresses act on the faces of the coordinate square (Fig-

“

—,

43 1"

o

A. Surface stress components

B. Traction components

ure 8.3.14). The normal n to the plane P on which
we determine the normal stress and shear stress com-
ponents (¢, o,) makes an angle @ with x;. All stress
components are drawn as positive components; « is
drawn as a positive angle.

We isolate the shaded triangular element m Fig-
ure 8.3.15 and then construct a diagram of the forces
acting on the triangular element {Figure 8.3.1C),
where

Filp=op14; Fp=0334y Fy=

Flg=o134, Fis=03143

T

F1 COS @
n

C. Force components

Figure 8.3.1 Geometric telationships used to deduce the transformation equations for components
of two-dimensional stress. A. An infinitesimal coordinate square in an arbitrary coordinare system,
showing the components of stress on the coordinate surfaces and on an arbitrary plane P. All
quantities are shown as positive quantities. B. The traction companents acting on the exceriot
surfaces of the shaded triangle in parr A. Tractions are labeled with the associared stress com-
ponents, because we want the transformation equations in rerms of stress. Sign differences ate
accounted for in formulating rhe equations. Arcas A, A, and A; can be thought of as the areas
of the sides of a triangular prism of unit dimension notmal to the diagram. C. Forces acting on
the isolated triangular element, showing their components pzrallel and perpendicular to plane P.

A Closer Look at the Mohr Circle
for Two-Dimensional Stress

In this section, we derive the equations for the Mohr
circle. From this derivation, the relationship between
the stress tensor components and the Mohr circle be-
comes evident. We restrict the following discussion to
two-dimensional problems. Manipulation of the equa-
tion for two dimensicns is significantly less complex
than for three dimensions, and reraining the third di-
mension adds lictle to intuitive understanding. The anal-
ysis in three dimensions proceeds along similar lines, as
summarized in Box 8.4 (readers should finish this section
before reading the box).
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In order for us to analyze a stress problem in two
dimensions, che third dimension must be parallel to one
of the principal stresses. Because the principal stresses
are mutually perpendicular, two of the principal stresses
must then lie in the plane of the analysis. In terms of
the scress ellipsoid (Figure 8.6A), the surface stresses in
a two-dimensional stress analysis must all lie in one of
the principal planes, and the planes on which they act
are all parallel to the third principal stress.

Figure 8.12A shows the most common geometry
for a two-dimensional analysis of stress. If x; = £, (the
intermediate principal stress axis), then o33 = &5, and
the x; plane must be a prineipal plane. Thus the shear



and where,

Ay =Acosa Az =Asing (8.3.2)

We resolve each force vector into two components
parallel to F,, and F, respectively, and then require
equilibrium by setting the sum of the forces m each
of these two directions equal to zero. Then, expressing
forces in terms of stresses with Equations {(8.3.1),
rearranging the equations to isolate ¢, and o; on the
left, substituting Equations {(8.3.2) for 4; and A3, di-
viding through by A to eliminate it from the equations,

The result is
- 20’13

tan 2e¢g = tan 2(ag + 90°) =
1) — 033

(8.3.7)
Thus Equations (8.3.5) shows that for planes on which
0, is a maximum or a mipimum, o, is zero. Equation
(8.3.7) shows that there are two such planes. The
normals to these planes make angles of oy and
(g + 90°) with x;. The planes are therefore perpen-
dicular to each other (Figure 8.3.2), and their normals
are the orientations of the principal axes of stress.

and using the symmetry condition of the stress tensor
Equations (8.24), we find that

2

Gn= || COS% & — 203 5N € COS & + a33 sin? @ (8.3.3}

as=(0)] —o3)sinecos ¢ + ojalcos? @ —sinfa)  (8.3.4)

We now wish to determine the orientation oq of
i planes on which ¢, is a maximum or a minimum. To
this end, we differentiate Equation (8.3.3) with re-
spect to o and set the result equal to zero.

ds,
= =
= (g1] — #33) sin g cos g + o13(cos® ag — sin? ag) X
(8.3.5)
where we have used &g mstead of « to indicate that
the angle is no longer arbitrary. The right sides of
Equations{8.3.5} and (8.3.4) are identical. This means
that the condition for o, to be extreme is also the
condition for ¢ to be zero.
We solve Equation (8.3.5) for ag by using the \
trigonometric identities:
Figurc 8.3.2 Stress compenents for a single stress shown
cos 2ag = cos? ap — sin® ag on infinitesimal coordinare squares for a general coor-
sin 2ag = 2 sin @ cos ag dinare system x;-x3 and for the principal coordinare sys-
) (8.3.6) tem ¥1—%;. Both squares are infniresimal, bur they are
tan 2ag = sin 2ug/cos 2z drawn in different sizes for clarity. The angle oy is ob-
tan 2ag = tan 2(xzg + 90°) tained from Equation (8.3.7).
A |,\r1 ~ |X1 Figure 8.12 Geometry thar
X, X permits a two-dimensional
: o, \ o, analysis of stress. A, If one
! \ coordinate axis, for example,
i A A x3, is parallel to one of the
: Ve X3 L‘Ju-m %, principal coordinates, for ex-
f o / v 7 ample, %3, then the x{—x3 co-
i ] T 3 N J 5 _ - N ordinare plane conrains the
1 » ) A - 3 . et 5 principal axes ¥ and #4, and
! o B /.l /I A Taa the stresses can be analyzed
Uszgy/ e P \ 8t in two dimensions in the xj—
5 7 A x3plane. B. Appropriate rwo-
: /A( \ dimensional diagram for an-
X=Xy \ alyzing the rwo-dimensional
y stress for the geomerry shown
A B. ' in part A.

Stress 149




The Mohr Diagram for Three-Dimensional Stress

In Section 8.5 we discuss determination of the surface
stress acting on planes that are parallel to £, The two-
dimensional stress components are parallel to the £, -
%3 plane. For the stresses in the other coordinate
planes, exactly the same properties of the Mohr circle
that are discussed in Section 8.5 apply. For planes
parallel to any of the principal axes 2, a two-dimen-
sional diagram of the %% plane is used, where
ks#i<jsk Thus (i, j, k) can take on the values
(1, 3, 2) (Figure 8.4.14), (1, 2, 3) {Figure 8.4.18), or
(2,3, 1) (Figure 8.4.1C). The general forms of the
equations analogous to Equations (8.38) and (8.41)
are

for (47, k=C(01,32),(1,23),0c(2,3 1) (841
Gi+6; i &
Ip= [2 ’+ : ICOSZHk
P (8.4.2)
g = 5 sin 28;(

A

G4 N2 65—6“-2
l:an—( ‘2 ’ﬂ +a§=[ - I} (8.4.3)

where here 8y is positive, measured counterclockwise
about the %y axis from £; in the £;-%; plane (Figure
8.4.2A). When (4, j, k) = (1, 3, 2), we recover Equa-
tions (8.38) and (8.41).

To the main properties of a single Mohr circle
discussed in Section 8.3, we append the [ollowing
properties that apply to a Mohr diagram of three-
dimensional stress.

1) THE MOHR DIAGRAM

(iii) The three-dimensional stress plots on a Mohr dia-
gram as a set of three Mohr circles each of which is
a graph of the surface stress components on sets of
planes parallel to one of the principal axes (Figure
8.4.2). The three circles are defined by Equations
{8.4.2), with Equation (8.4.1), and each invelves cne
pair of the principal stresses. All the properties 1-6
discussed in Section 8.3 apply to each of these circles.

2} PRINCIPAL STRESSES

(iii) All three principal stresses plot on the o, axis.
Each principal stress plots at a point that is common
to two of the Mohr circles. If all the principal stresses
are unequal, there are no other commoen points
among the circles. Each of the principal stresses is at
the opposite end of a Mohr circle diameter from each
of the other two principal stresses, which is consistent
with the fact that the three principal stresses in phys-
ical space act on three mutually perpendicular sur-
faces (cf. property 3v in Section 8.3).

3) SURFACE STRESS AND THE
ORIENTATION OF PLANES

(vi}) Planes that are not parallel to one of the principal
axes have normals that do not lie in any of the prin-
cipal coordinate planes (Figure 8.4.34). The compo-
nents of the surface stress on all such planes must
plot on the Mohr diagram within the largest Mohr
circle and outside the two smaller circles in the area
shaded in Figure 8.4.28. The construction on the
Mohr diagram for determining the stress compenents
on such a plane is indicated in Figure 8.4.35, for
which the geometry in physical space is shown in
Figure 8.4.3A4. The complexity of such three-dimen-
sional problems is beyond the scope of this book, and
our interest is confined to problerms mvoelving planes
that parallel one of the principal axes.

4) CONJUGATE PLANES OF MAXIMUM
SHEAR STRESS

(i) The maximurn absolute values-of the shear stress
on any plane in three-dimensional space plot on the
§1-63 Mohr circle at 20, = +90° (Figure 8.4.44).
These stresses occur on a conjugate set of planes in
physical space that are paralle]l to % and that have
normals lying in the £;—%; plane at ff; = £45° from
2 (Figure 8.4.458}. Thus although each Mohr circle
individually has maximum absolute values of the
shear stress (Figure 8.4.2B), the maxima for the &~
&, and the &#-d3 Mohr circles are maxima only for
the particular set of planes that are parallel 1o %3 and
%y, respectively. The true maxima for planes of all
possible orientations cccur only at the maxima for
the §1—d3 Mohr circle (Figure 8.4.44).

A A A
Xy X X,
A A
%a X
A B. C.

Figure 8.4.1 The pairs of principal coordinate axes for
the rhree Mohr circles in three-dimensional stress. The
axes must be oriented such that there is a clockwise
rotation from the positive axis parallel to the larger nor-
mal stress roward the positive axis parallel to the smaller
normal stress. This convention standardizes rhe change
between Mohr circle convention and rensor sign conven-
tion for the shear stress components.

o
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(continued) o,

Normal and -
shear stresses ~ T =y—
on the plane P 3 I

A. Physical space B. Mohr diagram

Figure 8.4.3 Moht diagram for sttess components on a plane of arbitrary ori-
entation in three dimensions. A. Physical space: The normal n to the plane P (not
shown) is defined by the angles & from %; and ¢ from #;. Counterclockwise
angles measured in the principal coordinate planes are positive when the coor-
dinate axes are viewed according to convention 1 in Section 8.5 (Figute 8.4.1).
The f is negative (elockwise} in both the £;—%; plane and the £,—%; plane; ¢ is
positive (counterclockwise) in bath the #1-#; plane and the £;—%3 plane. B. Mohr
diagram: The angles in past A are transferred to the Mohr diagram to derermine 3
the normal stress and shear stress acting on the plane P. Families of dashed curves

are arcs concentric with the two smaller Mohr circles.

>

-
US
% Counterclockwise
0,=—45%"
io-sllrnax)
¥
8'1 g “t \P +
< '
»a,
A
X‘i
B,= +45°
- lo:sj(rnax) z
Clockwise N n*
A. Mohr diagram B. Physical space

Figure 8.4.4 Planes of maximum shear stress in rhree dimensions. A. Mohr diagram showing
maximum absolure values of the shear stress. B. Diagram of physical space showing the conjugate
planes of maximum shear stress and their relaticnship to the principal stresses.
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stress components on that plane must be zero (03, =
673 = 0). The mattix of stress components must there-
fore include at least one row and, by symmerry of the
stress tensor {Equations 8.24), one column in which the
shear-stress components are zero.

ay 0 op
G=au=|0 & 0 (8.29)
gy 0 03

All the nonzero stress components are shown in Figure
8.124, and all except g55 = & lie in the x;—x3 plane.
Under these conditions, the surface stress on any plane
parallel to x; = £ 15 completely determined by the com-
ponents of the stress tensor that lie in rhe xy—x3 plane
(Figure 8.12B). Thus none of the stress components with
a 2 in the subscript affects the stress on the planes parallel
to £5. This fact justifies our use of a two-dimensional
analysis.

The matrix of componenrs for the most common
two-dimensional scress tensor is obrained simply by
eliminating from the matrix in Equation (8.29) all com-
penents having a 2 as one of the subscripts, leaving

6=y = [J“ G”:l (8.30)

Gi1 033

In order to derive the relarionship among the nor-
mal stress and sheac stress components and the orien-
tation of the plane on which they act, we pose the
following question: If we know the orientation of the
principal axes, and we know the values of the principal
stresses at a point, how can we derermine the compo-
nents of the surface stress thar act on a plane of ar-
bitrary orienration through that point? Consider the
infinitesimal cube (Figure 8.13A) centered on the origin
of the principal axes with faces parallel to the principal
planes. The plane P is parallel to £; buc is otherwise of
arbirrary crientation. Wich this geometry we can use a
two dimensional analysis to determine the surface stress
on P. The two dimensional stress tensor expressed in
principal coordinates (the first Equation 8.25) is ob-
tained from the first Equation (8.23) by deleting all stress
components that have a 2 as a subscript.

50
c=c?,l,=[‘” } (8.31)

0 (251

Figure 8.13B is the diagram of the stress components.
The following conventions, which we used in con-
structing Figure 8.13B, are crucial for establishing a
consistent relationship between the stress tensor com-
ponents and che values plotted on a2 Mohr diagram.

M
X‘I
I ]
T ' 5
[ A
! £ - — X,
P
N /
Xz Plane £
A.
A .
Aa =Asin g,
Ay
93
A, =ACos 9,

&

1

N

A
Fi=08,A,

D. Force components

C. Traction components

Figure 8.13 Geometry for derer-
mining the normal stress and shear
stress on a plane P of any given ori-
entation rhrough a poinr. A. The
plane P rhrough the principal co-
ordinate cube is parallel ro £, but
otherwise of arbitrary orientarion.
B. Two-dimensional view of the ge-
ometry in part A, showing the dis-
triburion of stress components. All
srress components and angles are
drawn as posirive in rhis diagram.
C. The triangular element shaded in
parr B, showing cnly those traction
componenrs rhat act on the exterior
of the element. D. Diagram of the
forces and force components de-
rived from rhe tracrion components
shown in part C.
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Convention 1. The general convention for orient-
ing any pair of coordinate axes requires that there is a
clockwise sense of rorarion from the positive coordinate
axis paralleling the greatest normal stress component to
the positive coordinate axis paralleling the least normal
stress component, regardless of whether, for example,
11 O Ga3 Is the largest. This convention fixes the direc-
tion from which we view the diagram and thereby elimi-
nates the ambiguity about whether a shear couple is
clockwise or counterclockwise. Thus the principal axes
are drawn such that the 90° rotation from positive %, to
positive 3 is a clockwise rotation.

Convention 2. The orientation of the plane P is
defined by the angle 8, between the positive £; axis and
n, where n is the vector of unit length that is rormal
to P. Positive angles are measured counterclockwise,
and we construct the diagram with a positive angle &;.
The subscript 2 on the angle &, indicates chat the angle
measures a rotation about the %; axis.

Convention 3. We draw the diagram with positive
stress tensor components, according to the geologic sign
convention. The normal stress and shear stress com-
ponents on P are drawn as positive stress tensor com-
ponents, considering that the vectors n and p (normal
and parallel, respectively, to the plane P) are positive
coordinate directions that coincide with the positive
directions of x; and #3 when &, = 0 (Figure 8.13B).

Note thar with this convention, the positive shear
stress component is automatically a counterclockwise
shear couple, regardless of the value of @. Thus on any
two perpendicular planes for which 85 differs by 90°,
counterclockwise shear couples are always positive.
This result conflicts with rhe stress tensor sign conven-
tion (Figure 8.11D, E), which dictates cthat shear couples
on perpendicular faces have equal values and opposite
shear senses. Thus unavoidably there are different shear
stress sign conventions for the Mohr circle and for the
stress tensor. The need to shift from one convention ta
the other when plotting or determining stress tensor
components on a Mohr circle is a commou source of
error.

We want to determine the normal and shear com-
ponents (¢,, d,) of the surface stress acting on P. To
this end, we isolate in Figure 8.13C the shaded triangular
element shown in Figure 8.13B, and we draw only rhose
traction components that represent the action of the
surrounding material on the triangle. Because the infin-
itesimal square in Figure 8.13B is in equilibrium, the
triangular element in Figure 8.13C must also be in equi-
librium, and we can determine the surface stress com-
poments on P by applying Newton’s first law, which
requires that the forces exerted on the triangular element
be balanced.

We convert the traction components into force
components by multiplying each traction by the area of
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the surface on which it acts (Figure 8.13D). Although
we are dealing with tractions in this derivarion, we will
persist in using the components and sign convention fot
the surface stresses, taking care to account for the ori-
entations of the tractions when we add or subtract the
forces. In this way, our analysis will give the appropriace
value for the surface stress on P. The areas of P and of
the sides of the triangular element normal to %) and £
are A, Ay, and Aj, respectively, so the forces acting on
the triangular element are

F,=0,A F,=0A F =6A F5 =3dA; (832

The force on A; can be resolved into a pair of com-
penents parallel to F, and to F,, which are the normal
and tangential forces, respecrively, on P (Figure 8.13D),
The same is true of the [orce on Aj3. Equilibrium of the
triangular element is maintained if all forces perpen-
dicular to P sum to zero and if all forces parallel to P
sum to zero. From Figure 8.13D, these conditions imply
that

Fn_Fl Cos 814F3 sin 92-‘_‘0 (8-33)
FS—F]_ sin 82+F3C0562=0

where forces acting in the same direction as F,, or F in
Figure 8.13D are added, and those acting in the opposite
direction are subtracted. Rearranging Equation (8.33)
to isolate F,, and F, on the left side, and subscituting
for the force components from Equation (8.32), we get

0,.A = 61A| cos 8 + G343 50 &, (8.34)

JSA = UAlAI sin 62 - 5314.3 <os 61
We can eliminate the area terms from these equations

by substituting the following relationships (Figure
8.13C)

A= Acos G Ay = Asint; (8.35)

into Equation (8.34) and dividing through by A. By these
manipulations, we express the force balance (Equations
8.33) stricely in terms of che stress components so that
they give the results we seek.

a,

It

n = 0y cos’fy + &3 5in? 8, (8.36)

o, = (&, — &3) sin 8; cos

Note that all the terms with 8, involve products of sine
and cosine functions. One of the trigonometric terms
comes from resolving the force vectors (Equation 8.33)
and the other from resalving the areas (Equation 8.35).
The need to resclve both of these quantities to determine
stress gives the stress the bi-directional quality thac dis-
tinguishes it from the unidirectional quality of vectors
such as force. Equations (8.12) and (8.13), derived in
our numerical example, are the same as Equations (§.36)
if in Equations (8.12) and (8.13} we replace o, and ;
on the left sides with ¢, and o, respectively, and on
the right side we take ¢, = ¢ and realize thar 63 = 0.




Thus, given the orientation of any plane defined
by 83, we can calculate the noomal stress and shear
stress components on that plane if we know only the
principal stresses. These equations, then, justify our ear-
lier assumption that the components of the stress rensor
at a point are necessary and sufficient for decermining
the normal stress and shear stress components on a plane
of any orientation through that point.

We can put the equarions in a more easily Inter-
preted form by using the standard trigonometric ident-
ities:

cos2 8, =0.5(1+cos 20)  sin? 8, =0.5(L—cos 20,) (8.37)
sin f; cos 8; = 0.5 sin 20,

Substituting Equations (8.37) into Equations (8.36) and
rearranging gives

Si+dy| [6,—-¢
a’n=|: I 63J+|: 17 63:|c05262
2 2 (8.38)
as=|:gl_g_§} sin 26,

Here (61 + 63)/2 is the mean normal stress, and
(61 — d3)/2is the maximum possible shear stress, as can
be seen from the face that sin 28; in the second equation
can be no greater than 1.

Equations (8.38) are identical to Equations (8.28),
which we deduced from the geometry of the Mohr circle.
Thus Equations (8.38) are the parametric equations for
the Mohr circle, with ¢, and &, as the variables and #;
as the parameter.

We can obtair a more familiar form for the equa-
tion of a circle by eliminaring 8;. We rewrite the first
Equation (8.38) as

s .
Gy — [“1 . "3} - [a‘ - ﬂ cos 28,  (8.39)

then square both sides of rhe seeond Equation (8.38)
and Equation (8.39), and add rhe resulting two equations
together. Applying the trigonometric identity

sin? 28, + cos? 260, = 1 (8.40)

yields the resule

&+ a\ P [&-a&T
|:c=,, — (——2 )] + et = [—2 ] {8.41)

This equation has the form
(x—a)? +y*=r? (8.42)

which is the equation of a circle that has its center a
distance a along the x axis and has a radius 7.

We recommend the following procedure for plot-
ting stress tensor compenents on the Mohr diagram:
Draw a diagram of the coordinate square in physical
space, with the coordinate axes oriented relative to each
other according to convention (1) above and the stress

components appropriately otiented according to the ten-
sor sign convention. Make a table listing the values of
the stress rensor components, and then, opposite each
component, list its value according to the Mohr diagram
sign convention. Normal stress components have the
same sign as the tensor components. Determine the sign
for the shear srress components by using the diagram
of the coordinate square. A shear stress component is
positive if it is a counterclockwise couple on the co-
ordinate square, negative if it is a clockwise couple.
Finally, plot the values of the components thus deter-
mined on the Mohr diagram (see the example given in
Appendix 84).

EX Terminology for States of Stress

A number of rerms thart refer to certain specific states
of stress are common in the literature. They all have
special characteristics, which are easy to describe in
tetms of the relevant stress tensor components and Mohr
circle diagrams {Figure 8.14).

Hydrostatic pressure, 6| =&, = §3=p (Figute
8.14A). All principal stresses are compressive and equal.
No shear stresses exist on any plane, so all orthogonal
coordinate systems are principal coordinates. The Mohrt
circle reduces to a point on the normal stress axis.

Uniaxial stress. The Mohr diagram for the three
dimensional stress is a single circle tangent to the or-
dinate at the origin. There ate two possible cases:

1. Uniaxial compression, d;> 6, =6d3=0 (Figure
8.14B). The only stress applied is a compressive stress
in one direction. This geometry is commonly used
in testing the strength of rock samples in the labo-
ratory.

2. Uniaxial tension, 0 = 6 = &, > &3 (Figure 8.14C).
The only stress applied is a tension in one direction.
Engineers often use this geometry to test the me-
chanical properties of metals.

Axial compression or confined compression,
G1 > &, = &3 > 0 (Figure 8.14D). A uniaxial compres-
sion of magnitude (61 — &3) Is superimposed upon a
state of hydrostatie stress (& = &3). This state is fre-
quently used in laborarory experimenrs on the high-
tempetature, high-pressure properties of rock.

Axial extension, extensional stress, or extension,
G = &5 > d3 > 0 (Figure 8.14F). A uniaxial tension of
magnitude {61 — &3) is superimposed on a hydrostatic
stress (§1 = &). This srate is also sometimes used in
high-temperature, high-pressure laboratory deforma-
tion experiments. It is unfortunate that the term exten-
sion has a different meaning when applied to strain,
and the distinction should always be made clear.
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(Three examples)

Figure 8.14 Mohr diagrams for special states of stress. The tensor components are shown for
the principal coordinate system, wirh the principal stresses written in standard order from top
lefr ro botrom righr along rhe principal diagonal. Here p, a, &, and ¢ all take on positive values,

and we assume @ > & > c.
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Triaxial stress, &1 > &, > &3 (Figure 8.14F). The
principal stresses are all unequal and can be of either
sign. The stress plots on the Mohr diagram as three
distinct circles (see Box 8.4).

Pure shear stress or pure shear, 6, = — &5 and
¢; = 0 (Figure 8.14G). The maximum and minimum
principal stresses are equal in magnitude and opposite
in sign; the intermediate principal stress is zero. The
normal stress on planes of maximum shear stress is
zero—hence the name. The Mohr diagram is centered
on the origin. The term pure shear has a different mean-
ing when applied to strain, and the ambiguity can cause
confusion.

Deviatoric stress {Figure 8.14H). The components
of the deviatoric stress 404, are defined by subtracting
the mean normal stress 7, from each of the normal
stress components in the three or two-dimensional stress
tensor. In three dimensions,

gy C12 013 o, 0 0
aOpe =021 022 63|—|0 o, 0
| €31 933 ©O33 0 0 o,
258 Mt Eﬂ T2 713
a0 =| Gy — T, 023 {8.43)
L on 63 Gy —0,
where
- o +op+o
G, = L_;-,z_i (8.44)

In two dimensions in the x;—x3 coordinate plane, the
components of the deviatoric stress tensor are given by

61— O g
ks = [ He o B_ } (8.45)
031 G33 — Oy
where
—_ g+ T 3
g, =12 (8.46)

For the deviatoric stress in two dimensions, the center
of the Mohr eircle is shifted to the origin of the graph

so that it appears to be a pure shear stress (Figure 8.13H}.
The deviatoric stress is useful in describing the behav-
lour of a material that depends only on the size of the
Maohr circle, which is a measure of the maximum shear
stress, and not on rhe location of the Mohr circle along
the normal stress axis, which is a measure of rhe average
pressure.

Differential stress (Figure 8.14I). The differential
stress pa is the difference between the maximum and
minimum principal stresses:

Do = 61 - C?3 (847)

It is always a positive scalar quantity that is twice the
radius of the largest Mohr circle and therefore twice
the maximum shear stress. For a two dimensional stress,
it is rhe diameter of the Moht circle (27; see the second
Equation 8.26) and is therefore a scalar invariant of the
stress tensor (Section 8.3, ptoperty 5). For a state of
axial compression or axial extension (Figure 8.14D, E),
it is the uniaxial stress that is applied in addition ro the
hydrostaric stress.

Effective stress {Figure 8.14f). The components of
the effective steess tensor goyy ate defined in three di-
mensions by

o1 O 013 Y
E0 =021 0n ox|—|0 pr O
931 03 O3 0 0 p
(14 — by Y] 913
=| on =P On (8.48)
L “n 0312 033 — Pf

where oy, are the components of the applied stress, and
pris the pressure of the pore fluid in the rock. As shown
in the diagram, the effective stress is the result of a shift
of the Mohr circle toward lower normal stresses by an
amount equal to rhe pore fluid pressure pr. We discuss
the effective stress in grearer detail in Section 9.5, where
we show that the mechaniccal behavior of a brirrle
material depends on the effective stress, not on the ap-
plied stress.

Additional Readings

Eringen, A. C. 1967. Mechanics of continua. New York: Wiley.

Fung, Y. C. 1965. Foundations of solid mechanics. Englewood
Cliffs, N. J.: Prentice-Hall.

~ Hubbert, M. K. 1972, Structural geology. Hafner Publishing
Co.
Means, W. D. 1876. Basic concepts of siress and strain for
geologists. New York: Springer-Verlag.
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Appendix 8A: An Illustrative Problem

In this appendix, we discuss a specific numerical prob-
lem to illustrate the technique of using the Mohr circle
and to illuscrace the types of problems that one can solve
using a Mohr circle. Students who have not read Section
8.4 should ignore, for each question, the discussions
about the change from tensor to Moht diagram sign
convention and should simply start with the values of
the stress components given for the Mohr diagram sign
convention.

Consider a faulc block thar is 5 km thick and rests
on a horizontal detachment associared with a listric

normal fault. The coordinate system is shown in Figure
8A.1A. Figure 8A.1B shows a free body diagram of a
section of the detachment sheet. The action of the ma-
terial that originally surtounded the free body is indi-
cated by a distribution of traction components, These
tractions arise from the force of gravity (the overbur-
den), the applied tectonic stress (which we assume to
be an east—west horizonral tensile stress), and the fric-
rional resistance to sliding on the detachment. We de-
termine the stress at the bottom left corner of the free
body, where we know the tractions acting on both co-

{Up)
Z A X,
(North)
Y X,
LEa)
l-_/{_. ._~..7'-¥..:
Skrn"_
" Detachment surface .. © .y . -
A.
2 A
X
4 ;‘ b
.Xl
+ = = +
e—| - Friction
.—»——r—r*—vv-:——,—'—.-—v-ﬂ-—,u
Tectonic  Qver- \ Over- Tectonic
stress burden  Net Net burden stress
stress Overburden stress
B.
e
o,z 0, =132.3 MPa
3= O = 79.4 MPa
o, =0, =-103MPa
X
0y= -0, = 79.4 MPa

Figure 8A.1 Simplified model of a fault block resting on a
detachment. A. A fault block bounded below by a horizonral
derachmenr fault. The coordinate axes are used in the analysis.
B. A free-body diagram of an isolared parr of the fault block.
C. The coordinate square from rhe lower-left corner of rhe
isolated body of the faulr block. C.

158 BRITTLE DEFORMATION




ordinate planes. The corner is shown enlarged in Figure
3A.1C.

The vertical normal stress ¢33 Is the overburden
pressure due to gravity, and it equals che weighr per
unit area of the overlying rock. This is

033 = pgh (8A.1)

where p 15 the mass density of the rock, g is the grav-
jrational acceleration, and % is the distance to the top
surface. The stress is comptessive and therefore positive.

The horizonral normal stress 611 is the sum of the
horizontal compressive stress due to the overburden and
the tectonically applied stress T. Because we assume
the rock has some finite strengeh, the part due to the
overburden is some [raction k < 1 of the vertical normal
stress (in a fluid, however, x = 1), We assume, fur-
thermore, that T is a tensile tectonic stress, constant
with depth, that pulls the fault block to the west. Thus

oy =kipgh) — T {BA.2)

where we subtract T because it is tensile. g41 could be
positive or negative, depending on the relative values
of the overburden and of T.

The horizontal normal stress 3, resules only from
the overburden, because there is no exrernally applied
stress parallel to the x5 axis.

o2 = k(pgh) (8A.3)

Assuming that no shear stresses act on the plane
of the diagram, we have

Oy =03=70 (8A.4)

The frictional shear stress along the detachment
031 is given by the product of the coefficient of friction
i and the normal stress across the sliding surface. Ap-
plying the geologic tensor sign convention, we see that
on the negative side of the coordinate surface, the fric-
tional resistance acts in a positive coordinate direction
(x1}. Thus this shear stress component must be positive,

cy = lpgh) (8A.5)

Because of the symmetry of the stress tensor (Equa-
tions 8.24), we have now determined all the independent
components of the stress tensor in the given coordinate
system.

In order to introduce definice numbers into che
analysis, we adopt the {ollowing geologically reasonable
values for the symbols in the equations:

p=2700 kg/m® b =5000m

g = 9.8 m/s? T = 50 MPa
=03

u=06

Using these values with Equations (8A.1) to {8A.5), and
using the symmetry condition for the stress tensor

(Equations 3.24), we obtain the following values in me-
gapascals for the components of the stress tensor:

—103 0 79.4
Gpr = 0 397 0 (BA.6)
794 0 132.3

Because 631 = 633 = 0, the plane normal to x; must
be a principal plane, x; must be a principal axis, and
@y must be a principal stress. Without knowing the
values of the other ptincipal stresses, however, we do
not know whether it is the maximum, the intermediate,
or the minimum principal stress. We do know that the
other two principal axes must lie in the x;—x3 plane.
On the basis of the discussion at the end of Section 8.2
and that at the beginning of Section 8.5, we conclude
that because x; is a principal axis, we can analyze the
stresses on planes parallel to x; by using a two-dimen-
sional analysis of stress components in the x1—x3 plane.

In the following discussion, we refer by number to
the properties of the Mohr circle that we discussed in
Sections 8.3 and Box 8.4 and to the conventions listed
in Section 8.5, and we do not duplicate those discussions
here.

Question [

Construct the Mohr eircle for the two-dimensional stress
acting on planes normal to the x{—x3 plane—that is,
parallel to x;.

Procedure

To obrain the components of the two-dimensional stress
tensor in the xy~x3 plane, we drop all components that
have a 2 in the subscripts {see the discussion ar the
beginning of Section 8.5), which eliminates the second
row and the second column of the matrix in Equation
(8A.6), leaving, in megapascals,

o o1 ~103 794

Tkt = [031 033:| - { 79.4 132.3} BA.7)

Next we must determine how these components
plot on the Mohr diagram. The steps involved are as
follows: (1) Draw a diagram of the stress components
in physical space. (2) Use this diagram to change the
stress components from the tensor sign convention (Sec-
tion 8.4 and Figure 8.11) to the Mohr circle sign eon-
vention {Section 8.2 and Figure 8.3). (3) Plot the stress

components on the Mohr diagram. (4) Coustruct the
Mohr circle.

Discussion

1. Before constructing a diagram of the stress compo-
nents, we must be sure the coordinates in Figure
8A.1C are drawn in aceordance with convention 1
(see Section 8.5). If gyy had been greater than 33,
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then we would have had to plot x| positive to the
left and x; positive up, which is equivalent to viewing
the diagram from the north instead of from the south
as shown in Figure 8§A.1A.

On the coordinate square (Figure 8A.1C), draw
the pairs of arrows to represent the stress compo-
nents, using the tensor sign convention and the values
of the stress components (Equation 8A.7) to deter-
mine the correct orientations.

2. From Figure 8A.1C, we can determine the signs of

the stress components appropriate for plotting on
the Moht diagram. We recommend constructing a
table such as this:

Mohr diagram

Tensor value Mode value
o= —10.3 tensile Oy = —10.3
a3 =794 clockwise O = —79.4
o33 = 132.3 compressive O = 1323
oy =79.4 counterclockwise Ty =794

In the first column, list the symbols and values for
the stress tensor components exactly as they are given
in Equation (8A.7). Use Figure 8A.1C to check
whether the normal stress components are tensile or
compressive and whether the shear stress compo-
nents are clockwise or counterclockwise; note this
in the second column. This second column, with the

sign conventions for the Mohr citcle given in Figure

8.3, determines the sign of each stress component
entered in the third column.

3. The pairs of values (0., 0,;) and (0, 0.) from
the last column plot as two points en the Mohe
diagram {Figure 8A.2A).

4. A line connccting these two points on the Mohr

diagram must be a diameter of the Mohr circle (prop-
erty 3v), and the point where the diameter intersects
the o,-axis is the center of the circle (property S5i).
The circle can then be drafted with a drafting com-
pass. Alternatively, we can use equations of the form
of (8.27) to calculate the center and radius of the
Mohr circle, from which the whole circle can be
constructed.
~ O+ 0, —10341323

= =61 MP 8A.8
Ty 7 2 MPa { }

¥ = 0504y — Tyt 4+ (20,407
= 0.5[(—10.3 — 132.3) 4 4(79. 4125
r = 106.7 MPa (8A.9)

Question 2

Whart are the values and orientations of the principal
stresses in the x;—x3 (or x—z) plane? Draw a diagram
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a, [MPa]

(Uzzs Uz.x) =

(132.3, 79.4)

A ﬁ———r=106.7

B.

Figure 8A.2 Mohr circle construction for the illuscrarive prob-
lem. A. Mohr circle for the stress under consideration.
B. Orientarion of the principal axes in physical space and their
relationship to rhe original coordinare system, as derived from
rhe Mohr circle in part A. The two differensly oriented co-
ordinare squares both represenr the infinitesimal point, and
the compouents on each square represent the same stress. The
squares are drawn different sizes for clarity; arrows are not
to scale.

of physical space showing the relationship between the
x1 — x3 (x — z) coordinatcs and the principal coordi-
nates in that plane.

Procedurc

The values of the principal stresses are read from Figure
BA.2ZA at the points where the Mohr circle intersects
the o,-axis (property 2i). The values are 167.7 MPa and



—45.7 MPa. These values can also be obrained by add-
ing and subrtracting the magnitude cf the radius of the
Mobhr citcle (Equation 8A.9) to the value of &, the
center of the circle (Equation 8A.8). Recalling that
the third principal stress is 39.7 MPa (Equation 8A.6),
we label the values in decreasing order such that the
stress in principal coordinates is given by

6, 0 0 1677 0 0
Gre=|0 & 0|=] 0 397 0 (8A.10}
0 0 & 0 0 —457

The oriencations of the principal axes are also de-
termined from Figure 8A.2A, using the properties 31 and
ii and the plotting conventions used for Figure 8.13B.
We recommend tabulating the measurements as shown
below o avoid confusion and te ensure proper obser-
vance of the conventions. Measurements on the Moht
diagram are shown in Figure 8A.2A, and the corre-
sponding measurements in physical space are shown in
Figure 8A.2B.

On rthe Mohr Diagram

Sense of Measured Measured
Angle angle from Io
200 = 132° counrer- (T Tggt = (61, 0) =

clockwise (—10.3, —79.49) (167.7, 0)

2, = —48° clockwise  {o,,, 0, = (63, 0) =
(—10.3, —79.4) (—45.7,0)

In Physical Space

Sense of Measured Measured
Angie angle from to
o = 66° counrex- x {xq) #
clockwise
o= —24° clockwise x (x7) 3

Discussion

On the Mohr diagram, the angle 2oty = 132° is measured
from the radius at (oy,, 0,,) to the radius ac {§1, 0). Lt
15 twice the angle #; = 66° in physical space measured
from the coordinate axes x to £, which are the re-
spective normals to the planes on which the stress com-
ponents act. We measure angles in physical space from
x, because it is a cootdinate axis whose oricntation is
known. The angles on the Mohr circle must therefore
be measured from the point representing the stresses
on the plane normal to x (property 31). We could
use the z-axis as a reference in the same way, in which
case the corresponding angles on the Mohr circle would
be measured from the radius at (6, o,) = (132.3,

:79.4), and the corresponding angles in physical space

would be measured from the z-axis.
In labeling the principal axes, we [orm a right-
handed coordinate system (see Figure 8.1.2 in Box 8.1)

with £1, £;, and %3 parallel respectively to the maximum,
intermediate, and minimum compressive stresses and
with cthe positive ends of the principal axes arranged
such thac they conform to convention 1, discussed in
Section 8.5 (Figure 8A.2B). Here %, and %5 are neces-
sarily perpendicular, because they are the normals to
planes whose stress components plot at opposite ends
of a diameter of the Mohr circle (Figure 8A.24) (prop-
erties 3v).

Question 3

What are the extreme absolute values of the shear stress
acting on planes normal to the x]—x3 (x—z) plane—thar
is, parallel to x; (ot y)—and what are the orientations
of the planes on which these values occur?

Procedure

The maximum absolute values of the shear stress are
read directly from the ¢;-d3 Mohr circle (property 4)
(Figure 8A.3A).

| 5)imaxy = 106.7 MPa

The orientations of the normals to the planes of max-
imum shear stress ace determined from the angles on

the Mohr circle (Figure 8A.3A) as tabulated below:

On the Mohr Diagram

. Sense of Measured Measured
Angle angle from to
26 = +90° counter- (6,0)= (61, 106.7)
clockwise (167.7, 0)
28 = —90° clockwise (5, 0) = (61, —106.7)
(1677, 0)
In Physical Space
Sense of Measured Measured
Angle angle from o
8= +45° counrer- %1 nt
clackwise
b = —45° clockwise %y n”

where n* and n~ are, respectively, the normals to the
planes P* and P~ on which the maximum shear stress
is respectively positive and negative in the Mohr circle

_sigh convention (Figure 8A.3B, C).

Discussion

The valuc of the maximum shear stress is simply given
by the length of the radius of the appropriate Mohr
circle. In the £;—%3 plane, which is also rthe x—z plane,
lo| is a2 maximum on the ¢;-d3 Mohr circle at those
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Figure 8A.3 (Left) Planes of maximum shear stress. A. Mohy
circles for the three-dimensional stress, with radii drawn o
the points of maximum shear scress on each ciccle. B, C. The
two planes of maximum shear steess, showing the orienrations
of the normals to the planes relauve to the reference and
principal coordinate axes. ). Relative orientations of the prin-
cipal axes and the planes of maximum shear stress in two
dimensions. E. Relative orienration of the reference axes, the
principal axes, and the planes of maximum shear stress in
three dimensions.

167.7,0)

o, {(MPa]

a
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points where the radius is normal to the o,,-axis. From
Figure 8A 34,26 = — 28" = 90°. Thus in physical space,
the planes of maximum shear stress are parallel to %,
and their normals are at 8 = +45° (Figure 8A.3B) and
g = —45° (Figure 8A.3C) from £. The planes of max-
imum shear stress are therefore perpendicular to each
other, They are called the conjugate planes of maximum
shear stress, and the relationship berween these planes
and the principal stresses is shown in Figure 8A.3D.

Question 4

In the three-dimensional solid, what are the absolute
values of the maximum shear stress and the orientations
of the planes on which these values occur?

Procedure

In order to answer this question, we must consider the
Mohr diagram for the three-dimensional stress (Box
8.4). When all three Mohr circles are plotted (Box 8.4,
properties liii and 4ii; Figure 8A.3A), it is clear that the
maximum absolute value of the shear stress occurs on
the largest Mohr circle, which is the ¢;—d5 circle (Box
8.4, property 4ii}. The planes of maximum shear stress
in three-dimensional physical space are shown in Figure
8A.3E. The maximum shear stress on the ¢—d&; Mohr
circle {64 MPa) and on the dy—d¢3 Mohr circle (42.7
MPa) are maxima only for the respective sets of planes
rhat are parallel to £3 and =;.

Question 5

What is the mean normal stress for the two-dimensional
case in the £,—%3 plane? What is the mean normal stress
for the three-dimensional case?
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Procedure

The two-dimensional mean normal stress for the set of
planes parallel to any of the principal axes can be de-
termined from the Mohr diagram: Simply read off the
value of the normal stress ac the center of the appropriate
Mohr circle (Figure 8A.3A). Alternatively, it can be
calculated using an equation of the form of Equation
(8.26). For the dy—d3 Mobhr circle, we have

_ G+ 6y 167.7—457

Gy = 3 =

= 61 MPa

The three-dimensional mean normal stress cannor
be read off the Mohr diagram in any simple way {Box
8.4, property 5ii). It must be calculated from Equation
(8.4.4).

_ G+t dy 16774397 — 457
T3 T 3

= 53.9 MPa

Discussion

In the two-dimensional case, @, is the center of the
appropriate Mohr circle, and it is the value of rhe normal
stress on the planes of maximum shear stress that par-
allel one of the principal axes. In the foregoing example,
we considered the &;—é&3 Mohr circle, which shows the
stresses on planes parallel to %5, In the three-dimensional
case, the mean normal stress @, has neither of these
properties (Figure 8A.3A).

Question 6

What are the values of the normal and shear ecomponents
of the surface stress that acts on each of the following
planes?

Plane A is parallel to %5, and its normal is at an
angle oy = 35° from x; (Figure 8A.4A, B).

In Physical Space

Plane B is parallel to £, and its normal is at an
angle fig = —30° from %3 (Figure 8A.4C, D).

Procedure

Because plane A is parallel to £5, which is a principal
axis, the normal ng to the plane lies in the £,—%; plane,
which is also the x1—x3 (or x—2) plane {Figure §A 4A,
B). The stress compenenrs on this plane must therefore
plot on the ¢1—&;3 Mohr circle {Figure 8A.4E). Similarly,
plane B is parallel to the principal axis %1, so its normal
ng lies in the x—x3 plane (Figure 8A.4C, D). The srress
componenrs on plane B, therefore, must plot on the ;-
&3 Mobhr circle (Figure BA.4E). This geometry makes it
possible to solve both problems by separate two-di-
mensional analyses (see the discussion at the beginning
of Section 8.5). The geometric relationships in the ap-
propriate two-dimensional planes are shown for planes
A and B in Figures 8A.4B, D, respectively, where the
conventions for plotting coordinate axes {convention
(1), Section 8.5) have been used.

The relationships are summarized below in the ta-
ble “In Physical Space” (Figure 8A.4B, D). The con-
struction of the Mohr diagram that defines the stress
components on the relevant planes is derived from prop-
erties 3i and ii and from the dara in this table. It is
summarized below in the table “On the Mohr Circle”
(Figure 8A.4E).

In physical space (Figure 8A.4B), the normal ny to
plane A is defined by the angle o = 35° measured coun-
terclockwise from x (x;) in the x—z (x;~x3) plane, which
1s the same as the £;—x3 plane. Here x is the normal to
the plane on which the stress components are (0.,
Trgr = (—10.3, —79.4). Thus we can find rhe stress
components on plane A on the §;-&y Mohr circle by
measuring an angle 2, = 70° eounterclockwise from

Coordinate plane

containing Measured Measured
Angle rhe angle Sense of angle from to
Plane A X|—%; and counterclockwise x1 (or x} np
op = 35° x|—x3 (or x—2)
Plane B X—%y clockwise FR) ng
GB = 300
On The Mohr Diagram

Measured Measured

Mohr circle Angle Sense of angle from o
Plane A 20, =70° counterclockwise (—10.3, —79.4) {7y, 05} on
&[—63 plane A
Plane B 28y = —60° clockwise (—45.7, 0 (T, 65} ON
O'Az—O'A_:; plane B
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the radius at the point (O, Og) = {(—10.3, —79.4) planes A and B are read from the appropriate Mohr
(Figure 8A.4E). A similar procedure is used to find the circles in Figure $A.5E. The results, using the Mohr
stress components on plane B (Figure 8A.4D), except circle sign convenrions for the stress components, are

that in this case we must use the §;—d3 Mohr circle,
and angles are measured from %3 in physical space and

For plane A: {7, 6,) = (111.1, —94.2)

from (&3, 0) = { — 45.7, 0) on the Mohr diagram. For plane B:  {g,, 6,) = (—24.4, 37.0)

The normal stress and shear stress components on

Z 4 X A
Plane A A% X,

>

2 Plane 8

a, [MPa]
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Figure 8A.4 Derermining the compo-
nents of surface stress on plane A and
plane B. A. Three-dimensional diagram
showing the oriencation of ptane A with
respect ro the principal coordinate
planes. B. Two-dimensional diagram of
the relationships in parr A. C. Three-
dimensional diagram showing the ori-
enration of plane B with respecr ro the
principal coordinare planes. D. Two-
dimensionzal diagram of the relation-
ships in part C. Nore how the principal
axes have been oriented relarive to one
anorher ro conform to the convenrion
shown in Figure 8.4.1C in Box 8.4. E.
Mohr diagram of rhree-dimensional
stress, showing the construcrion for de-
termining the componenrs of surface
stress on planes A and B.





