CHAPTER

\

To further our understanding of the origin and signif-
icance of the folds, foliations, and lineations discussed
in the lasr four chapters, we need ro become more fa-
miliar with the nature of strain, as manifested in rocks.
We introduced some conceprs of strain in Chapters 7,
9, 12, and 14, but we need a more thorough and sys-
temaric understanding in order to evaluate theoretically
the models proposed for formation of ductile structures,
as well as to rest these models against observations of
natural deformation.

Qur approach is largely geometric and qualitative,
because our intent is to provide intuition into the phys-
ical characteristics of deformation, and strain lends itself
easily to geometric description. The guantirative anal-
ysis of the ideas discussed in this chapter requires a
rigorous mathematical treatment of strain, which we
incroduce in Box 15.1, and which is developed in depth
in more advanced.books on continuum mechanics and
its geologic applicatiogs {see the list of readings at
the end this. chapfer). Readers interested in this

e strain is homogeneous if the changes in
shape are proportionately identical for each
small part of the body and for the body as a whole
{Figure 15.1A, B). A consequence of these conditions is
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that for any homogeneous strain, planar surfaces remain
planar, straighr lines remain straight and parallel planes
and lines remain parallel. The srrain is inhomogeneous
(Figure 15.1A, C) if the changes in size and shape of
small parts of the body are proportionately different
from place to place and different from rhat of the body
as a whole. Straight lines become curved, planes become
curved surfaces, and parallel planes and lines generally
do nor remain parallel afrer deformation.

The strain must be inhomogeneous during folding,
because in such a deformation, planes and lines do not
generally remain planar, straighe, or parallel. Within
very small volume-elements, however, the strain is sta-
ristically homogeneous, and we describe an inhomo-
geneous strain as a variation of homogeneous strain
from place to place in the scructure. We discuss how
big such a “small” volume-element musr be in Section
15.7.

The progressive deformation of a body refers to
the motion that carries the body from its initial unde-
formed state to its final deformed state. The strain states
through which the body passes during a progressive
deformation define the strain path. The state of strain
of a body is the net result of all the deformations the
body has undergone. Although all states of strain are
the result of progressive deformation, the final state of
strain provides no information about the parricular
strain path that the body experienced.




A. Undeformed state  B. Homogeneously

deformed state

C. inhomogeneously
deformed state

Figure 15.1 Homogeneous and inhomogeneous plane defor-
mation of a material square. A and B. Homogeneous strain.
The small black square is strained in exactly the same way
as the whole square and as all the other squares. ¥ is the angle
of shear. A and C. Inhomogeneous strain. The small black
square is sufficiently small rhat its srrain is essenrially ho-
mogeneous, but it is not idenrical to the strain of the whole
square or to thar of any of the other small squares.

Strain in general must be described in three di-
mensions, because the size and shape of a body are
three-dimensional characteristics. In much of our dis-
cussion, however, we consider only a two-dimensional
deformation called plane strain, in which the strain is
completely described by changes in size and shape in a
single orientation of plane through the body, and no
deformation occurs normal to that plane. Although
plane strain is commonly used to analyze deformation,
its application to many situations in natural rock de-
formarion is, strictly speaking, unjustified. Nevertheless,
the geometry of two-dimensional deformation is intu-
itively easier to understand, and the generalization to
three dimensions adds considerable complexity bur lirtle
insight into the geometric characteristics of deforma-
tion. For these reasons we concentrate on the properties
of two-dimensional strain,

In discussing the geometry of strain, we refer to
geometric objects such as lines, planes, circles, and el-
lipses. Such geometric objects are called material objects
if they are always defined by the same set of material
particles. A bedding plane, fot example, is a material
plane because no matter how it moves and deforms, it

is always defined by the same set of material particles.
A coordinate plane defined by two reference axes, on
the other hand, is a nonmaterial plane because as a body
deforms, its material particles can move through the
coordinate plane and, consequently, different sets of
material particles occupy rhe coordinare plane at dif-
ferent times. This distinction is importanr in the sub-
sequent discussion.

J

asures of Strain

Lirfear Strain

7€ of a bady is measured by its volume, which in
turn is proportional to the productof three characteristic
lengths of the body. For example, the volume V of a
rectangular block that has edges of lengths £y, £5, and
£y is V = £1£343, and the volume of an ellipsoid that
has semiaxes of lengths rq, 7o, and 7y is V=1{4/3] =
rirare. In Cartesian coordinates, the description of the
change in size requires specification of the change in
length of line segments in the three coordinate
directions.

The change in absolute length is an inadequate
measure of the deformational state of a line segment,
because for a given change in length, the intensity of
the change is much greater for a short line segment than
for a long one. Thus the lengthening is expressed as a
proportion of the original line length. Two measures in
common use are the stretch s, and the extension e,
which was int the beginning of Chapter 9.

vector/n. The stretch s, is the ratio of the deformed

! Note that with toventions we have adopted, a positive
value for extension Méasures a lengthening, whereas a posirive value
for stress measures a compression. We thus end up with a positive
stress causing a negative extension. ihis incompartibility does noc
arise with the enginecring sign eonvention for stress, which is why
it is generally used in analytic applications of continuum mechanics.
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m A More Quantitative View of Strain

A homogeneous transformation of any material point
from the undeformed state to the deformed state is
represented mathematically by a linear relationship
between the coordinates of any point in the unde-
formed state (X}, X3) and its coordinates in the de-
formed state (xq, x3), where we use upper-case letters
to describe the undeformed state and lower-case let-
ters to describe the deformed state. If we restrict our
analysis to plane deformation, the general form of
such a transformation is

x=AX+BX3+C x3=DX| + EX;+ F (15.1.1)

where 4, B, C, D, E, and F are constants, The parts
of the transformation defined by C and Fare the same
for all particles, and therefore these constants describe
a rigid-body translation. If any or all of these constants
vary with time, then these equations describe the mo-
tion of the material particles.

The equations say that given the original location
of any material particle in the undeformed state (X,
X3), we can calculate its final location in the deformed
state (x;, x3). The equations may be solved for X; and
X3 so that given the deformed location of a material
particle {x|, x3), we can also calculate its original
location (X7, X3). These equations define the inverse
transformation.

Xy=ax +bxy+c¢ Xy=dx +exs+f (15.1.2)

where
E - B BF - CE
a= b= c=
AE—ED AE— BD AE — BD
d= - D os A f_DC—AF
T AE—-BD ~ AE— BD T AE— BD
{15.1.3)

and where, again, ¢ and fdescribe a rigid body trans-
lation.

As examples of such a transformation and its
inverse, the following equations describe a pure shear,
whicli transforms a square with sides parallel to the
principal coordinates into a rectangle (Figure 15.9R)

x; = AXj
X =(1/4)x,

x3 = (1/A)X;
X3 = AX3

{15.1.4)

A simple shear, which transforms a square into a
parallelogramn (Figure 15.11B), and its inverse are de-
scribed by

x =X + BX;
Xl = x; — Bxs

23 = X3 (15.1.5)

Xz =x3
‘When the constants A in Equation (15.1.4} and

B in Equation (15.1.5) are linear functions of time,
the maotions are steady and these equations describe

progressive pure shear and progressive simple shear,
respectively (sce Section 15.4).

With Equations (15.1.2), it is easy to show that
a homogeneous deformation transforms a circle into
an ellipse. A circle of unit radius in the undeformed
state is represented by the equation

X2+ (X2 =1 (15.1.6)

If we substitute for X and X3 from Equations (15.1.2),
we find the locus in the deformed state of all material
particles that lie on the circle in the undeformed state.
Because a rigid-body translation does not contribute
to the strain, we assume ¢ = f = 0. Then, making the
substitution, we find

{6 + d) (x| + 2ab + de)xyxz + (B2 + €)x3)? = 1
(15.1.7)

Equation (15.1.7) is the equation of an ellipse with
its principal axes tilted with respect to the coordinate
axes, and it is, in fact, the strain ellipse.

The components of the strain tensor are related
to the displacement vectors for the material particles.
A displacement vector connects the position of a par-
ticle in the undeformed state to its position in the
deformed state. The vector and its components (U,
U3) parallel to the X and X3 coordinate axes are
(Figure 15.1.14)

Usx-X (15.1.8)

Ul =X _Xl U3=X3—X3 (1519)

When a material deforms, the displacement vec-
tors for two neighboring material points are different.
If they were the same, the “‘deformation’” would be
a rigid body motion. The difference in these displace-
ment vectors therefore describes the deformation.
Thus we consider two neighboring points 4 and B that
are displaced by the deformation to a and b, respec-
tively. The displacement vectors for the two points
are UA) and U8 and the difference between them
is dU (Figure 15.1.1B). The material line segment dX
connecting A to B is deformed into dx connecting a
to b. The change in that line segment due to the
deformation AdX. is also described by the vector dU
(Figure 15.1.1B8). Thus,

dU=UB g o AdX = dx — X (15.1.10)

The relationship between the first and last terms in
this equation is just the differential of Equation
(15.1.8). .

We can consider the components dX; and dXj3
of the line segment dX to be two material line seg-
ments that are initially perpendicular to each other
and parallel to the coordinate axes X| and X3 respec-
tively. If we restrict our analysis to infinitesimal strain,
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Figure 15.1.1 The displacement vector. A.

o Deformed The displacement vector connecrs the po-
Displacement ~ position sition of a marerial particle in the unde-
vector U formed state to its posicion in the deformed

Undetormed state. B. If a marerial is deformed, the dis-

position placement vectors for two neighboring
poinrs are different. Point A is deformed ro
the position g; B is deformed to the position
b. The difference in the displacement vectors

dU describes the deformarion of the mate-

characterized by the conditions dUy « land d ¥y « 1,
the displacement associated with each of these line
segments due to the deformation can be expressed
using Equation (15.1.10) and the chain rule of dif-
ferentiation for 4U

ill au

aX1 dX] + a—X3dX3

(15.1.11)
Thus the changes AdX; and AdX; in each of the line
segments due to the deformation s given in terms of

the components of the displacement vector U by (Fig-
ure 15.1.2).

AdX = AdX; + AdX; = dU =

a v
AdX, = LA dX| = — dX; + al3 dx,
X, X, 2%, (15.1.12)
au at ols
AdXy =—dXs=-—dX5+—4d
3 5 Ty, et gy, 4

For cach of the material line segments dX; and
dX3, the extensional strains are labeled e); and e
respectively, and each one is the change in length
divided by the initial length, as defined in Equation
(15.2). For dX|, for example, the change in length is
(80U, /8X1) dX;, and the initial length is dX; (Figure
15.1.2). Similar relations hold for dX3. Thus

N Ay
=T [axl dX‘] e

_ 1 |al; ol
£33 = d—}x@,[a_}g dX3:| =%
The shear strain of dX relative to dX3 and vice versa
are labeled e|3 and ey, respectively, and are defined
in Equation (15.7) to be half the tangent of the shear
angle Jj3 = 3 = =« + B. For very small strains,
o <« t and § « 1, and the standard trigonometric iden-
tity for the tangent of the sum of two angles gives

(15.1.13)

tan o + tan fi

tany =t = =4
Y = tanfe + ) I tanamn g tan « + tan B

(15.1.14)

rial.

because the product tan « tan f is negligibly small.
The tangent of an angle is the length of the side op-
posite the angle divided by the length of the adjacent
side. For infinitesimal strains, the side opposite the
angle o is approximately (U /8X3)dX3, and the ad-
jacent side is dX3 (Figure 15.1.2). Similar relationships
hold for the angle §. Thus we have

1 |aty ay

tan o o ——| — dX3 | ===
dXs[‘”@ ] X3 (15.1.15)

1 | dls aus

tan f oy —— | =2 gXy | = 23

SR [axld 1j| 3%,
(Continued)

Xy

Y Ty, e,
tanq—%ﬁj 613—-931—0.5[E 5?‘-

Ly
aax, = 32 9,

oy o K 1S o
23X
ax, 9___} _______
X
3
A U, 10 B = 5
63X, ax, o
P A AN X
. . : au
: T T ADX =— X
ax, '%dx; VTax, T
1
_ U,
8'1-—57

Figure 15.1.2 The geometrical interpreration of the com-
ponents of infinitesimal strain for two-dimensional strain.
For clarity, the strain is grearly exaggerated in the diagram.
The vecrors dX, dx, and dU are the same as the vectors
having the same labels that appear in Figure 15.1.1B. The
strain components thas are defined by the change in the
displacement vector dU for two neighboring points.
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Box 15.1 (Continued}

Then using the definition of the shear strain (Equation
15.7) with Equations (15.1.14) and {15.1.15) gives

aty U
e13=e3;=05tan ¢ =~ 0_5(_44___3

aX3 5X1) (15.1.16)
8ty AUy
=05 22 4y 22
S(ax1+ax3)

These relations for the extensions and shear strains
associated with the material line segments dX| and
dXy are the components of the infinitesimal strain
tenser. In shorthand component notation, we sum-
marize Equations (15.1.13) and (15.1.16) by

U, 8l
+ :
ax, " ax,

Kk ¢=1,2,3 (15.1.17)

This expression for ey, remains exactly the same if &
and ¢ are interchanged, which shows that ey, = ¢,
and that the strain tensor is a symmetric tensor {com-
pare Equation 15.12). Thus e, is the symmetric part
of the displacement gradient tensor 3U; /56X, .

The antisymmetric part of the displacement gra-
dient tensor can be shown to be the infinitesimal ro-
tation tensor, defined by

———‘), k£=1,2,3 (15.1.18)

The antisymunetric character of ry, is evident from
this equation, because interchanging the subscripts k&
and ¢ gives the relation

The = — Toke (15.1.19)
Components on the principal diagonal of the matrix
7y must therefore be zero. In two-dimensional strain,
there is only one independent off-diagonal component
ri3 = — r31. Thus from Equations (15.1.15) and
(15.1.18) we can see that

ri3 &= 0.5(tan o — tan ) (15.1.20)

For very small angles, the tangent of the angle is ap-
proximately equal to the angle measured in radians,
S0 we can write

3= 0.5(x - f) {15.1.21)

Thus 7|3 is half the difference in the components of
the shear angle, and r4, is thus a measure of the net
rotation of the material line segment dX.

The displacement components (I/{, Uz} can be
expressed solely in terms of the coordinates of the
material point in the undeformed state by substituting
Equations {15.1.1) into (15.1.9), assurning the rigid
translations are zero (C= F=0)

Uy =(A—1X 4+ BX; Us=DX +(E- DX,

(15.1.22)

Using Equations (15.1.22) in {15.1.17), we tind the
values of the strain components in terms of the con-
stants that define the motion of the material particles:

[e“ eu} =[ A-1) 0.5(8 + D):‘ (15.1.23)
3] €3 0.5(D + B) (E-1)

As indicated above, the relationships given here
are correct only for very small strains. The analysis
of large strains is considerably more complex, al-
though this geometric interpretation of the strain
components remains intuitively useful.

For a line segment of arbitrary orientation in the
undeformed state, given by the angle £ with respect
to the principal coordinate axis X, it can be shown
that the extension and the shear strain for infinitesimal

plane strain are given in terms of the principal exten-
sions by

€, = 2 cos® O + &y sin? @ (15.1.15)

e, =(8 — &) sin fcos @

These equations are identical in form to Equations
(8.36), which we found for the stress components,
and the mathematical characteristics of the stress and
the infinitesimal strain tensors are identical, including
the possibility of deriving a Mohr circle for infinites-
imal strain.

The relationships for large deformations are
somewhat more complex, but a Mohr circle that is
useful in solving strain problems can nevertheless be
defined for large strains. We refer the reader to books
containing more quantitative analyses {see the works
by Means, Ramsay and Huber, and Eringen in the list
of additional readings at the end of this chapter).

Comparing Equacions (15.1) and {15.2} shows that these
two measures of extensional strain are related:

gy=———=35,~1 {15.3}
Values of s, > 1 and of ¢, > 0 represent increases in

the length of materstal lines, and values where 0 < s, < 1
and e, <2 0 represent decreases in length (Table 15.1),
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Other neasures are also used, including the qua-
dratic clongation and the natural strain. The quadratic
clongation is sinply the square of the stretch, and it is
often given the symbol A, although some authors use
this symbol to designarte the stretch. The natural strain
Z,, also called the logarithmic strain, is the integral of
all the infinitesimal increments of extension required to
make up rhe deformation, where the reference length




Table 15.1 Extensional Strain of a Material Line

Length Change Stretch Extension
AL s, =4/IL e, =(—LYL
Undeformed L — AL=10 5, =1 e, =0
V4 — e AL
Shortened ~—ou—" —1 | AL=¢-TL<0 0<s,<1 e, <0
|
Lengthened ¢ ! —Ij AL=¢—-L>0 s> 1 en >0

for each increment in length 4€ is taken to be the in-
stantaneous deformed length €.

g, = { d—;= In (g) =Ins, (15.4)
where L is the initial length, ¢7 is the final length, and
In indicates the natural logarithm. Notice that the nat-
ural strain is the natural logarithm of the stretch. The
natural strain is sometimes convenient for discussion of
strain history (see Figure 15.20). It also provides a sym-
metric measure of shortening and lengthening.® The
time derivative of the natural strain is also often used
as a measure strain rate (see Box 18.1).

Voluphetric Strain

volumetric extension’ {e,). If the undeformed volume
is V and the deformed volume is v,
v v V_AV
v YTV T
A rectangular block thar undergoes only volumetric
strain has undeformed sides (Ly, Ly, and L3} and de-
formed sides (¢, 7, and £3). The volumetric stretch is

=5, —1 (15.5)

£18385
0T LiLyL,
5, =535353 = (g + Lleg + N{es + 1) (15.6)

We consider further aspects of volumetric strain in the
next secto

A bady can also change shape without changing volume.
or example, a cube can deform into a rhombohedron,
or a sphere into an ellipsoid. Changes in shape are

2 For example, for a line segment stretched to twice its inirial lengeh
and one shortened to half irs initial length, s, = 2and 0.5, and ¢,, = 1
and 0.5, bur &, = .693 and —0.693, respectively.

* The volumetric extension is eommonly given the symbol A and
called che dilation, or even the dilatation. We reserve A to indicate
the ¢hange in a variable.

described by the changes in the angle between pairs of
lines thar are intially perpendicular (Figure 15.2). The
change in angle is called the shear angle i/, and the shear
strain e, is defined by

e, = 0.5 tan (15.7)

As defined here, ¢, is the tensor shear strain. It differs
from another common measure of the shear strain, the
enginecering shear strain y, by a factor of 2 (y = tan
ty = 2e,). For two material tine segmencs otiginally ori-
ented along the positive coordinate directions (Figure
15.2A), a decrease in angle between the two lines is
considered a positive shear strain (Figure 15.2B, C) and
an increase in angle is a negative shear strain (Figure
15.2D, E). Both y and ¢, increase from 0 in the unstrained
state to co, where f = 90° (Figure 15.2F).

The State of Strain: The Strain
Ellipsoid and the Strain Tensor

The Strain Ellipsoid

We know the state of strain at a point if, for a material
line of any orientation, we can determine its extension,
as well as its shear strain with respect to any other line
initially perpendicular to it. Any homogeneous strain
always deforms a material sphere into an ellipsoid called
the strain ellipsoid (Figures 14.1 and 14.2A) or, in plane
strain, a material circle into the strain ellipse (see Box
15-13.

The stretch, extension, and shear strain-all have a
simple geometric interpretation relared to the strain el-
lipsotd. We describe these relationships here for two
dimensions, but they are essentially cthe same when ex-
tended to three dimensions.

Assume that a material circle in the undeformed
stare has a radius R = 1 (Figure 15.34). After the de-
formation, any radius of the circle is transformed into
a radius r of the strain ellipse whose length varies with
orlentarion. Although R and r are lines made up of the
same material points, they differ in length and orien-
tation because of the deformation. If we snperimpose
the original unit circle on the strain ellipse (Figure
15.3A4), we can see how much any radius of the strain

Geomerry of Homogeneous Strain 297




Undeformed Pesitive Positive
shear strain shear strain
A p=(x+p)>0
i y >0 o
20 90 — 80 -
B
A, B. C.
Negative Negative | .
shear strain g | shear strain .
I
B y=tany |1
. 0
v <0 ¥ P={e-B)<0 4 '
o i
L3 | e,=0.5tan ’
90 + 90 + c T
Ste
b ,"
B N ,
¥ : g1 oA
D. E. G L o= L
Figure 15.2 The tensor shear strain e, = 0.5 tan ¥ and the engineering  -99 60 ’_3§r-]--,:"f e 0 30 €0 €0
shear strain y = tan ¢ of a marterial line, where i is the shear angle. A. Lr - earu_arj%e
The undeformed state. Shear of a material line is defined with reference / ’ ©
to another material line initially normal to the first. B and C. Definition . Sl
of a positive shear strain: {90 — /) < 90. D and E. Definition of a negative " g
shear strain: (90 — ) > 90. F. Tensor and engineering shear strains as a A -3
functior of shear angle . 1
1 L
!
Undeformed state Deformed state ' : | 5
. \(‘ AR = en ]
B =
- Y
i F
B = q Strain . r=s, \\
f h o
o ; N \ i
| T
\ i
N\ /
~ 4 . . .

Se_ .- Figute 15.3 The relationship of the
stretch, extension, and shear strain to the
geomerry of the strain ellipse. A. A ho-

A. Extension and stretch mogeneous scrain transforms the unit cir-

cle into an cllipse. An undeformed radius

Undsformed state Deformed state R =1 is transformed into a deformed ra-
r i dius 7, which has a different lengrh and

™3 e = tany orientarion. The stretch is the length of the
5 2

R radius of the ellipse, and the excension is

__ Strain r the difference in radius berween the inidal
o 8 unic circle and the ellipse. B. The shear

strain is determined from the change in
angle betwecn a radius and a tangent at
rthe end of the radius. The rwo lines are
perpendicular on the ciccle bur nor, in gen-
eral, on the ellipse. The change in angle ¢
defines the sheat strain for rhar pair of
B. Shear strain lines.

4k
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ellipse has been shortened or lengthened. Using the def-
inirions of the scretch (Equarion 15.1) and the extension
{Eguation 15.2) and the fact that R = 1, we find that

LA e = R AR

"R " R R
Thus for the deformarcion of the unit circle, the radius
of the strain ellipse is the stretch, and the difference
between the radius of the ellipse and that of the unit
circle is the extension.

The shear strain of a line is determined wich ref-
ecence to another line initially normal to it. On a circle,
the line T drawn perpendicular to any radius R at its
end poinr is tangent to the circle (Figure 15.3B). After
deformation, the lines T and R are transformed into
the lines ¢ and 7, respectively. Although r and ¢ are no
longer perpendicular in the deformed state, ¢ is still
rangent to the ellipse at the end point of the radius.
Accordingly, any radius and the associated tangent to
the strain ellipse define the angle berween two material
lines that were perpendicular in the undeformed stare.
The change in angle i is thus easily constructed (Figure
15.3B), and it is a measure of the shear strain for that
pair of lines.

(15.8)

The Strain Tensor

The strain ellipsoid is a complete representation of the
state of strain at a point. We can describe chat state if
we know the extension and the two shear strains for

A. Volumetric component of strain

cach of only three material line segments that were
mucually orcthogonal in the undeformed state. We con-
sider the volumetric and the shear components of the
strain separarely.

For an orthogonal coordinare system (X, X5, X3)
in the undeformed stare, the extension of a marerial line
segment of length Ly initially parallel to X, for example,
1s {Figure 15.4A).

AL

e =L (15.9)

where the first subscript on eq7 indicates thar the line
is initially parallel to X;, and the second subscripr in-
dicates thac the change in length is also parallel to X.
Similar relations define the extensions ¢;; and e33 for
marerial lines initially parallel ro X5 and X3 respectively
{Figure 15.4A).

For the shear component of the strain, material
lines initially parallel to X, X3, and X3 are, after de-
formation, parallel to x{, x;, and x3 respectively (Figure
15.4B). The two shear strain components for the ma-
terial line parallel to xq are ¢;5 and eq3,

(15.10)

In each case the first subscript indicates that the shear
strain is for the line initially parallel to X4, and the
second subscript indicates that the shear strain is de-
termined relative to a line initially parallel to X5 and to
X3, respectively (Figure 15.4B). Each angle 447 and (3
is the difference berween 90° and rhe deformed angle

ey = 0.5 ran ¢y 23 = 0.5 ran 3

€,,=0.5tany,,
€, =05 tany,,

e,;=05tany,,
€5, = 0.5 tan |,

(80"~ 0, ) = (90"~ i)
Yy =y, (@0 - Gl = (90 - by)

Wip =y !

B. Shear component of strain

Figure 15.4 Geomerric significance of the strain rensor components in rhree dimensions. A,
Volumerric part of the strain. The small cube increases in volume ro the larger cube by the equal
lengethening of all sides of rhe cube. B. Shear parr of the srrain. The shear strain describes the
change in shape from a cube into a rhombohedron (shaded). x,, x;, and x; are parallel
to the deformed edges of the rhombohedron. All rhe tensor shear srrain components are defined
by rhree independenr angles 412 = 29, Y3 = W3, a3 = Yoy,
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x1 A xand x{ A x3, respectively. The comparable strain
components for the material line segment initially par-
allel to X, are ep and e33; for the material line segment
initially parallel to X3, they are e3; and e3;.

Thus there are a total of nine strain components.
The strain components for each material line are written
in a separate row, forming an ordered array.

€N €12 €13
€he = | €1 €22 €13
€31 €32 €33

(15.11)

PRINCIPAL DIAGONAL

The components on the principal diagonal of the array,
which have borh subscripts the same, are the extensions
(Figure 15.4A). The off-diagonal components, which
have two different subscripts, are the shear strains (Fig-
ure 15.4B). This array of strain components represents
the strain tensor, which provides enough information
for us to calculate the extension and shear strain for a
line segment of any specified orientation {see Box 15.1).*

The strain tensor is symmetric about the principal
diagonal, because for a given pair of material lines ini-
tially parallel o X and X5, for example, the shear angle
(1f12) of X with respect to X; is the same as the shear
angle (5q) of X with respectto X (Figure 15.4B). Thus

ep= e ep=en €3 =en (15.12)

and rhere are only six independent strain components
in three-dimensional strain. Thus the strain, like the
stress, Is a second-rank symm-.tric tensor.

For plane strain, we have e3q = €33 = ¢33 = 0, and
by Equations (15.12), ej3 = €3 = 0. Thus if we drop
from Equation (15.11} all terms that necessarily become
zero for plane strain, the plane strain rensor is repre-
sented by only four strain components, three of which

are independent.
_| €1 €13
Chr =
€31 €33

Therefore, in order to describe the srate of plane strain,
we need only the extension and one shear strain for
each of the two material lines that originally are parallel
to X and X3, respecrively.

(15.13)

* Our definitions of the tensor strain components are correct only for
small strains. For large strains, additional nonlinear rerms must be
added ro our definitions, which makes the theory more complex.
Nevertheless, the resules discussed hereafrer are true for both small
and large srrains.
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Principal Strains and Stretches

Parallel to the principal axes of the strain ellipsoid, the
extensions and stretches are a maximum, minimax,” and
minimum, which we designate®

lzéze and 512525 (15.14)

Tangents to the ellipsoid at the ends of the principal
radii are perpendicular to the radii (Figure 15.5), and
these are the only points on the ellipsoid where this is
true. Because these radii and tangents must have been
perpendicular before deformation, the shear strains for
those radii and tangents all must be zero. Thus if we
define a ser of principal coordinates parallel to the prin-
cipal axes of the strain ellipsoid, the representation of
the strain tensor reduces to a particularly simple form
in which the extensions are the principal values, and
the shear strains are zero. For three- and two-dimen-
sional strains, respectively

gy 0 0
B ‘?01 . & o
Ehy = 3 0 Ehe = 0 s (}\515)
0 0 & ?

It is very important to remember that in general
the principal axes of fluite strain are not parallel to the
principal axes of stress. We discuss this further in Section
15.4 and in Chapter 18.

We now see that, for any general deformartion, the
volumetric strerch s, (Equation 15.6) can be expressed
in terms of the principal stretches and extensions as
tollows:

so=5iSS = (B + DE + NEs+ 1) (15.18)

* &, and 3, are each a minimax because each is a minimum in che
&) — & {or 5; — 3;) plane and a maximum in the & — &; (or §; — 53)
plane, which is perpendicular to the firsc.

& Consistent with our notation for stress, we use the circumflexes and
a single subscript to indicate principal values. The subscript indicaces
the principal axis to which the extension or stretch is parallel.

Figure 15.5 Representation of the principal stretches and the
principal extensions on the scrain ellipse formed from the unir
circle. The shear strains are zero for the marerial lines parallel
to the principal axes of strain, because the rangenrs at the ends
of the principal radii are perpendicular to those radii both
before and after deformation.




Alchough derived foc the example of a deformed cube,
quations (15.16) are completely general.” In plane
strain, 53 = 1 and &; = 0, so Equation (15.6) reduces to

el

$, = 3]33 = (él -+ 1)(@3 + 1) {15.17}

Thus the condition for consrant-volume defor-
mation is given for three-dimensional and plane strains,
respectively, by

S5y = §]§2§3 =1 and Sy, = 3133 =1 (1518)

The last equation implies

(15.19)

The Inverse Strain Ellipse

In analyzing large strains such as are common in duc-
tilely deformed rocks, it may be more convenient to
measure the stretches and shear strains of three material
lines that are mucually perpendicular in the strained
state, rather than in the unstrained state as we described
above. This analysis requires a different strain ellipse
called the inverse strain ellipse, which is the ellipse in
the undeformed state that is transformed into a circle
in the deformed state (Figure 15.6). The lengths of its
principal axes are the inverse of the principal axes of
the strain ellipse, and the material lines parallel to the
principal axes of inverse strain in the undeformed state
become parallel to the principal axes of strain in the
deformed state. For the purpeses of our descriptive dis-
cussion, however, we deal mostly with the strain ellipse.

Why Study Strain? Gt N et

All this discussion of circles and ellipses may seem ac-
ademic and far removed from the study of real rocks.
It is not, however, because structures rhat are initially
approximately circular or spherical are relatively com-
mon in some rock types. Where these rocks have been
deformed, those structures provide a fascinating record
of the distribution of strain throughout the rock. Qoids,
for example, are small, almost spherical, pelletlike bod-
ies common in limestones (Figure 15.7A), and they de-
form with the rock to record the shape and orientation
of the sttain ellipsoid (Figure 15.7B). Radiolaria and

? We derive Equation (9.6) from the equarion for e, in Equations
(15.5) by substituting for s, from the second Equation (15.16), mul-
tiplying our the indicated product, and ignoring second- and rthird-
ocder terms. The result is the sum of the components on the principal
diagona!l of the strain tensoc matrix {Equation 15.11), which is a
scalar invariant of the strain tensor (see the definition of the sealar
invariants of the stress tensor in Equations 8.4.4 and 8.26) and hence
is the same for the representarion of strain in any coordinare sysrem.
That is, e, =& + & -+ &3 = ey + en + ¢33,

Inverse strain h
ellipse

Strain ellipse

1
n
S

ool

Strain

A. Undeformed state B. Deformed state

Figure 15.6 Definicion of the inverse srrain ellipse and its
relationship to the strain ellipse. Solid lines show how the
inverse strain ellipse in the undeformed state {part A} is trans-
formed into a circle in the deformed scate {part B). The dashed
lines show how a circle in the undeformed state {part A) is
transformed into rhe strain ellipse in the deformed state (part
B). Marerial lines A and B, which are paraliel to the principal
axes of inverse strain ellipse in parc 4, are rransformed by the
deformation to lines @ and &, which are parallel to the principal
axes of the strain ellipse in part B. In general, A and B are
not parallel to @ and &, respectively.

foraminifera, which are tiny spherical or disk-shaped
fossils found in cherts or limestones, and alteration spots
in slates (Figure 13.19B) may also serve as strain indi-
cators. Othet fossils, such as cephalopods and brachio-
pods, as well as pebbles and cobbles in conglomerates,
(Figure 13.19A) can provide information about the
strain, even though they are not originally spherical and
may have an original preferred dimensional orientation
in the undeformed rock (see Figure 14.2C}. We discuss
the significance of strain for interpreting the origin of
structures in Chapter 16, and the measurement and ob-
servation of strain in deformed rocks in Chapter 17.

Some structures, such as folds and boudins, also
record components of the strain. Consider, for example,
a competent layer imbedded in an incompetent matrix.
A varjety of structures can develop (Figure 15.8). A set
of folds develops if the layer is parallel to a principal
axis of shortening and normal to an axis of lengthening
(Figure 15.8A—D). Boudins develop if the layer is parallel
to a principal axis of lengthening (Figure 15.8C—F}. Two
interfering sets of folds form if the layer is parallel to
two principal directions of shortening and normal to
an axis of lengthening (Figure 15.84). Folds develop
that are boudinaged parallel to the fold axis if the layer
is perpendiculat to a principal axis of lengthening, and
the two principal axes parallel to the layer are axes of
lengthening and shortening respectively (Figure 15.8C,
‘D). Finally, tablet boudinage develops if the layer is
parallel to two principal axes of lengthening and per-
pendicular to one of shortening {Figure 15.8F). Thus
the orientation of the layer relative to the principal
strecches is 2 major factor in determining whar struc-
tures can develop.
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Fignre 15.7 Qoids serve as strain markers in deformed lime- 53
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Figure 15.8 Structures that could develop in a competent layer imbedded in an incompetent
matrix depend on the orientation of the layer relative to the principal stretches, and or the value
of §,. In this diagram, we assume chat lengethening the layer causes boudinage, shortening causes
folding, and deformation is at conscant volume, so thar §; > 1, §5 < 1, and §, can take on any
value,

DEFORMATION



B Examples of Homogeneous Strains

Various simple geometries of homogeneous strain are
given specific names.

Pure strain is any strain for which the principal
axes of strain are constant in orientacion relative to the
reference coordinate system. Thus the principal axes of
strain and the principal axes of inverse strain are pat-
allel. Strain geometries belonging to this class (and de-
scribed below) include uniform dilation, pure shear,
simple extension, simple flactening, and uniaxial strain.

Uniform dilation is a pure volumetric strain with
no change in shape of the deforming body. A cube or
a squate i$ transformed inte a body that is of the same
shape but has either a larger dimension {uniform ex-
pansion) or a smaller dimension (uniform contraction}.
The same statement, of course, applies to both a sphere
or a circle. The stretch has the same value in all direc-
tions, as does the extension, and the shear strains ate
zero in all directions; that is, ¥ = 0 for all orientations
of line. All marerial lines change length, but none
changes orientation,

Pure sheat is a constant-volume {s, = 1) plane
strajn (53 = 1) that changes the shape of the deforming
body (Figure 15.9). Matetial lines parallel to the prin-
cipal axes of sttain do not rotate and experience no
shear strain. Material lines of all other crientations in
the plane of scrain (che §;-5; plane) are rotated toward
5). Two orientations of line in the plane of strain have
the same length as their initial length; these are the lines
of no finite extension. They divide the ellipse into sectors
within which all radial lines ate either shortened {sectors
S in Figure 15.9C) or lengthened (sectors L), depending
on their orientation.

Simple extension involves lengthening parallel to
one principal axis of strain and axially symmetric short-

ening in all directions perpendicular to that axis. Simple
flattening involves shortening parallel to one principal
strain axis and axially symmetric lengthening in all di-
rections perpendicular to that axis. The volume of the
body in either case is not necessarily constant.

Uniaxial strain is characterized by having two of
the principal stretches equal to 1. The third principal
stretch may be either greater than 1 (uniaxial extrension;
Figure 15.10A) or less than 1 (uniaxial shottening, Figure
15.10B). Volume is not conserved. Lines perpendicular
to the unique axis of stretch are unchanged in length.
Lines in all other orientations are lengthened in uniaxial
extension and shortened in uniaxial shortening.

Simple shear is a type of strain we discussed briefly
at the beginning of Chapter 12 (Figure 12.1). It is a
constant-volume (s, = 1) plane strain (5, = 1) whaose
characteristics resemble the shearing of a deck of cards;
thus, for a homogeneous deformation, the side of the
deck changes from a rectangle to a pacallelogram (Figure
15.11A). It is not a pure strain, because the otientations
of principal strain axes change with the magnitude of
shear, and the principal axes of strain and of inverse
strain are not parallel (Figure 15.11B). Displacement of
all material particles is parallel to the shear plane (the
x1—x3 plane in Figure 15.11) and all material lines are
rotated except those parallel to the shear plane. There
are rwo orientations of no finite extension in the plane
of strain (the x;-x3 and §;-3; plane), one of which is
always parallel to the shear plane. These lines divide
the strain ellipse into sectors of shortened radii (§ in
Figure 15.11C) and lengthened radii (L).

These states of strain are all special cases of the
infinite variety of possible states. They have no special
qualities that make them usmiquely applicable to the
interpretation of rock deformation, but they are used
because the geometry of each is simple and well defined.
An acbitrary deformation, however, can alwways be ex-

no finite
C. extension

Figure 15.9 Pure shear: a constant-volume plane strain in which the principal axes of strain are
not rotated by the deformation. A. Pure shear of a cube inte a rectangular prism (shaded). B.
Pure shear of a two-dimensional square 1o form a rectangle {(shaded). The diagonals of the square
are material lines that are ratated and stretched to become the diagonals of the recrangle; they
are not the same as the lines of no finite elongation. C. Pure shear of a unit circle to form an
ellipse. The lines of no finite extension divide the strain ellipse into sectors in which all radii are
sharrened (sectors $) and those in which all radii are lengthened (sectors L).
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Figure 15.10 Uniaxial strain: two prin-
cipal srretches are both equal to 1.
Dashed lines indicate the undeformed
state, solid lines the deformed scare.

RS ARBAY

B. Uniaxial shortening

pressed as the sum of a pure strain that has stretches
parallel to the axes of inverse scrain {Figure 15.124, B),
a rigid rotation of the body that brings the principal
axes of strain into the proper orientation (Figure
15.12C), and a rigid translation of the body that brings

Progressive Deformation

So far in our discussion, we have simply related the
deformed state ro the undeformed state, without im-

it into the proper location (Figure 15.12D). These com-
ponents of the deformation can in principal be applied
in any order. The net result of a simple shear scrain
{Figure 15.11), for example, can be reproduced by the
sum of a pure shear (Figure 15.9) parallel to the axes
of inverse strain, a rotation of the principal axes, and
a translation (Figure 15.12). Other geometrically more
complex deformations can be similarly reproduced.

plying anything abouc the intermediate strain states that
develop during the deformation. In rocks, we generally
can observe only the final strained state and must infer
the initial undeformed state. The history of the defor-
mation is also of great inrerest, and in some cases it is
recorded by features in deformed rocks. Understanding
the consequences of different strain paths can provide
insight that is useful in interpreting strain in rocks.

Xy Xy X, X Xy Xy

Lines of no

X, X)=01,1
KX =0.7) finite extension

(x,&:(us,n

Shear plane

( Principal axes
of inverse strain

A. B. ) ' C. )
Figure 15.11 Simple shear: a constant-volume plane strain in which all material particles are
displaced strictly parallel to the shear plane. Dashed lines indicate the undeformed state, solid
lines rhe deformed state. A. Simple shear of a cube. B. Simple shear in two dimensions of a
square. The principal axes of inverse strain in the undeformed state are dashed; che principal
axes of srrain in the deformed state are solid. Material lines parallel to the axes of inverse strain
are rotated by the deformation into parallelism with che principal axes of srrain. C. Lines of no
finire exrension in the strain ellipse divide the ellipse into sectors of shortened (S} and lengthened
(L) radii of the ellipse.
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Principat
\ < axes of |
s inverse
strain

D. Translation

C. Rotation

Figure 15.12 Decomposition of an arbirrary homogeneous
srrain inco a pnre strain, a rigid rotation, and a rigid trans-
lation. These componenrs may be applied in any seqnence. A.
The nndeformed stare, showing the unir circle, the inverse
srrain ellipse {dashed), and rhe principal axes of inverse strain.
B. Stretches are imposed parallel ro the principal axes of inverse
srrain to reproduce the final shape of rhe strain ellipse. The
inverse strain ellipse becomes a circle. C. Rigid-bedy rocation
brings the principal axes into the correct final orientation. D.
Rigid-body rranslarion brings the body inra the correct final
locarion.

We refer to the nonrigid motion of a body as a
progressive strain or progressive deformation, and we
can describe the morions of all material particles in the
body by describing the deformed position of the particles
as a function of their original position and of time (see
Box 15.1).

Structures such as folds, boudins, foliations, and
lineations develop in rock in response to progressive
deformations. Folds and boudins develop in material
lavers in the rock, such as sedimentary layers, cross-

cutring veins, or dikes. Most spaced foliations are also
defined by material surfaces. Therefore, in order to un-
derstand the relationship between such srructures and
the principal axes of strain, we investigate what happens
to material lines of various orientations during different
progressive plane deformations.

We can conceptualize the geometty of the pro-
gressive deformarion by stopping it, marking a marerial
citcle on the body, and allowing the deformarion to
continue for a unic increment of time. The ellipse formed
from the citcle represents the increment of serain for
that increment of time and is therefore called the in-
cremental strain ellipse. Thus the incremental extension
£, the incremental shear strain g, and the incremental
stretch {,, (the Greek letter zeta) are defined in terms of
the instantaneous length of a material line £, its incre-
mental change df, and the incremental shear angle di
of two instantaneously perpendicular lines.

de _{+df

= g, = 0.5 ran dyr (= ;

(15.20)

The incremental strain ellipse is represented by the in-
cremental strain tensor &g, which has the same prop-
erties as the infinitesimal strain tensor.® The half-lengths
of the principal axes are the principal incremental
stretches, &3 = &, = 5. If the incremental strain ellipse
is constant for every unit increment in time, the motion
of the material particles is called a steady motion.

To illustrate the effects of different motions on
material lines, consider two special stceady motions: pro-
gressive pure shear and progressive simple shear. The
particle paths during these progressive deformations are
shown in Figure 15.13A and B, respecrively. (See Equa-
tions {15.1.4) and (15.1.5) in Box 15.1, for the quanti-

8 Because rhe ineremencal strain ellipse represents the strain in a unit
increment of time, it is similar to the strain rate tensor (see Box 18.1).
Note that the natural strain g, is the integral of the incremental scrain
over rime (see Eqnation 15.4).

Figure 15.13 Parricle motions during two
. progressive deformarions. A. Parcicle mo-
i tions during progressive pure shear. The
= lines with the arrowheads are parallel ro
XX, rhe velociry vectors of rhe parricies in the

A. Progressive pure shear

B. Progressive simple shear

body. B. Particle morions during progres-
sive simple shear are all stricrly parallel ro
the shear plane (X direction). The velociry
varies linearly wirh disrarnce normal ro the
shear plane (X3 direcrion).
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Figure 15.14 States of strain during a steady progressive pure shear. The axes at the bowom
right of the figure indicate the constant orientarion of the principal axes of incremental stretch.
Material lines are labeled by the angle they make with X in the undeformed state. The lines ©
and 90 are the only ones that do not rotate during the deformation, and they are always parallel
to the principal axes of strain. The magnitudes of the principal srretches in each diagram are rhe
same as for rhe corresponding diageam in Figure 15.15.

tative description of these motions.) For these examples,
the incremental strain ellipse has the geometric prop-
erties of either pure shear (Figure 15.9) or simple shear
(Figure 15.11) for each increment of strain through time.
Figures 15.14 and 15.15 illustrate the consequences
of progressive pure shear and progressive simple shear,
respectively. Part A in each figure is the undeformed
state, showing a sheaf of material lines. In Figure 15.14A,
the material lines are oriented at regular angular inter-
vals, and each line is labeled with the angle it originally
makes with the X; axis. In Figure 15.154, the material
lines are paraliel to the axes of inverse strain for the
stare of strain in the diagram labeled with the corre-
sponding letter. For example, the material lines C and
C’in part A, are parallel to the principal axes of inverse
strain for the strain state shown in part C. These lines
are rotated by the deformation into the orienrations
shown by ¢ and ¢/, which become parallel to the prin-
cipal axes of strain in part C. Parts B through D in both
figures show the evolution of both the strain ellipse and
the orientations of the same material lines as appear in
part A. The corresponding diagrams in the two figures
show the same startes of strain, although the orientations
of the principal axes are different (see Figure 15.12).
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A comparison of Figures 15.14 and 15.15 shows
the following significant differences in behavior:

1. Wirth respect to the coordinate axes, the prin-
cipal axes of strain do not rotate in progressive
pure shear, but in progressive simple shear they
do. Thus the former is an irrotational, and the
lacter a rotational progressive deformation. The
difference in behavior of the principal strain axes
is described by the vorticity of the deformation,’
which is a measure of the average rate of ro-
tation of material lines of all orientations about
each coordinate axis.

The vorricity is zero for i{rrotational de-
formations and nonzero for rotational defor-
mations. In Figure 15.14, for example, the
marerial lines in the upper-right quadrant rotate
iu the opposite sense to those in the lower right.

¥ Technically, the vorticity vector @ is the curl of the velocicy (w = ¥
% V), which has che three components
[Cl)l, w32, an)] = [(Buj.’&xz - 6u2."6x3),
(B /8x3 — dua/Oxy), (Gvy/dxy — By /8x3))
It is related ro the spin tensor, which is the ancdsymmetric part of the
velocity gradient tensor (see footnote in Section 19.7).
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Figure 15.15 States of scrain during steady progressive simple shear. The axes at the bottom
right of the fAgure indicate che constant orientation of che principal axes of incremental scretch.
The pairs of material lines in the undeformed state labeled (B and B'), {(C and C'), and (D and
D'} are parallel to the principzl axes of inverse strain for the strain states shown in parts B, C,
and D, respectively. These pairs of material lines take on che oriencations in the deformed stares
indiczted by the lines labeled in the equivalent lower-ease letters, and each pair becomes parallel
to the principal axes of strain in the diagram labeled with the same letter as the line pair. Thus
the material lines rotate past the prineipal axes of srrain, which themselves are not marerial lines.
S and s indicate 2 marerial line parallel to the shear plane. This is the only orienration of line
for which rhe orienrarion and length are constant throughout the deformarion.

Because material lines oriented symmetrically
relative to the xy axis have exactly opposite rates
of rotation, the average over all orientations
must be zero. In contrast, all the material lines
In Figute 15.15 rotate in the same sense, so the
average rate of rotation is nonzero.
In progressive pure shear, the principal axes of
finite strain are always parallel to, or coaxial
with, the principal axes of incremental strain.
The deformation is therefore a coaxial pro-
gressive deformation. In progressive simple
shear, the principal axes of fAnite strain rotate
with respect to those of incremental strain, and
this characreristic defines a noncoaxial pro-
gressive deformation. Note that for progressive
simple shear the principal axes of incremental
strain arc always at a 457 angle to the shear
plane.

The terms frrotational and coaxial are not
synonymous, nor are rotational and noncoaxial.
The difference is in the reference frame from

which the rotation is determined. A deformation
is totational or irrotational depending on how
the principal axes of finite strain behave with
respect to the coordinate system, which is al-
ways somewhat arbitrarily defined by the ob-
server. A deformation is coaxial or noncoaxial
depending on how the principal axes of finite
strain behave with respect to the principal axes
of incremental strain. This reference frame is
intrinsic to the geometry of the deformation
itself and is therefore not arbitrary. Thus the
descriprion of a progressive deformation as
coaxial or noncoaxial is somewhat more fun-
damental than the description as rotational or
irrotarional, especially in geologic situations in
which the best choice of an external coordinare
system is not obvious.

3. In progressive pure shear, all marterial lines ro-

tate during the deformation except rhose par-
allel to the principal axes of strain. The lines
rotate toward parallelism with the §; direction.
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Note that the term irrotational refers only to
the behavior of the principal axes of strain and
to the average motion of all material lines, nor
to the motion of a specific material line, In
progressive simple shear, all lines except those
patallel to the shear plane rotate during the
deformation, and the rotation race of any line
decreases with decreasing angle between the line
and the shear plane.

4. The lines that rorate most rapidly in progressive
pure shear are those at an angle of 45° to the
principal axes of che incremental strain ellipse.
In progressive simple shear, the lines that rocare
most rapidly are normal to the shear plane, and
these lines are also at a 45° angle from the prin-
cipal axes of incremental strain. Lines parallel
to the shear plane, however, do not rotate at
all, and they too are 45° from the principal axes
of incremental steain.

5. ln progressive pure shear, the same pair of ma-
terial lines remains parallel to the principal axes
of strain throughout the deformation. In pro-
gressive simple shear, material lines rorate
through the principal axes of strain. This char-
acteristic shows thar the principal axes of strain
are not in genera! material lines. During pro-
gressive simple shear material lines thar are pat-
allel to the principal axes at any time were
otiginally orthogonal in the undeformed state.
During the deformation, however, any such pair
of lines is sheared out of orthogonality, then
back into orthogonalicy when they are parallel
to the principal axes, and finally out of orthog-
onality again ( lines C and C’ in Figure 15.15).

6. In borh progressive pure and progressive simple
shear, the strecch of material lines depends on
their otientation. Some lines experience a his-
tory only of shortening, others experience only
lengthening, and still others experience initial
shortening followed by lengthening and can end
up being either shorter or longer than they were
originally. The patrern of variation determines
what types of structures can develop. We discuss
this furrher in the next section.

If the deformation stops at any time, the final state
of strain can always be related to the initial state in
Figure 15.14 by a pure shear strain or in Figure 15.15
by a simple shear strain. The converse of this statement,
however, is not true: If a final srare of strain can be
relared to the inicial state either by a pure shear strain
or by a simple shear strain, it does not follow thar the
final state of strain was the result of a progressive pure
shear or a progressive simple shear, respectively. There
are an infinite number of strain paths thar lead from an
undeformed state to a deformed state, and the final state
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of strain does not by itself provide sufficient informartion
for any of the paths to be distinguished. ft is very im-
portant ro remember this when interpreting the strain
in rocks.

From the foregoing discussion, it is evident that if
a progressive deformatiou is noncoaxial, the principal
axes of finite strain rotate relative to those of incre-
mental strain, and that the principal axes of incremental
strain are constant in orientation only if the deformarion
is steady. [t should not be surprising, cherefore, thar the
principal axes of finite strain are not in general parallel
ro the principal axes of stress. In fact, we see in Chapter
18, where we discuss the reladonships between stress
and strain, that for steady morions of homogeneous
isotropic materials, cthe prineipal stress axes are pacallel
to the principal axes of incremental strain or of strain
rate. Because most natural deformations are probably
not steady, even rthis relationship may not be accutate
for interpreting deformation that we observe in rocks.
Thus as a general rule, structures should always be
interpreted in terms of the principal axes of strain. Only
under very special circumstances can useful inferences
be made about the orientations of the principal stress
axes.

Progressive Stretch of Material
Lines

Uf the unit circle is superposed on the finite strain ellipse,
the radii to the intersection points define lines of no
finite extension (e, = 0), which are lines that are the
same length as they were in the undeformed state
{s,, = 1). These lines divide the ellipse (Figure 15.16A)
into sectors in which radii are longer than they were
originally {s,, > 1, labeled L} and sectors in which the
radii are shorter (0 < s, < 1; labeled S).

We can also examine a similar superposition of the
unit circle on the incremental strain ellipse. For gen-
erality, we show in Figure 15.16A and B the finite and
incremental principal strains in a relative orientation
rhat can occur in nature only if the incremental principal
axes have changed orientation during the deformation.
The intersection of the circle wirh the incremental ellipse
defines a pair of lines rhar instanraneously are not chang-
ing length. These lines divide the incremental strain
ellipse {Figure 15.16B) into sectors in which lines are
becoming longer {[ds,/dt] > 0; labeled L) and sectors
in which the lines are becoming shorrer ([ds,/dt] < 0;
labeled §).

The sector boundaries on the ineremental strain
ellipse (Figure 15.16B) are not in the same orientation
as those on the finite strain ellipse (Figure 15.16A), and




A.

Figure 15.16 Geometry of finite and incremenzal strainellipses
fora deformation in which the incremental sirain is superposed
on a preexisring homogeneous strain. For generality, we have
chosen an orientarion of rhe finite strain ellipse thar can be
formed only from an unsready deformation, chacacrerized by
an incremental strain ellipse whose principal axes change ori-
entation during rhe deformarion. A. The strain ellipse, showing
lines of no finite exrension thar define sectors in which radial
material lines have been lengthened (L) or shorrened (S} by
the deformarion. The unir circle is shown dashed. B. The
incremental strain ellipse, showing lines of no rate of extension
thar divide rhe ellipse into sectors in which radial material
lines are being lengthened (1) (positive rate of change of
stretch} and sectors in which radial marerial lines are being
shorrened (S) (negacive rate of change of stretch). C. The
combination of the rwo sets of sectors from parts A and B on
the strain ellipse defines sectors in which radial material lines

because material lines in general rotate during a defor-
mation, they ¢an pass [rom ene sector into another.
Thus the finite strain ellipse can be divided into sectors
in each of which the material lines have a different
history of stretching (Figure 15.16C). The different pos-
sible histories are illustrated in Figure 15.17, where
shortening of material lines is represented as folding or
imbrication, and lengthening of material lines is rep-
resented as boudinage. In sectors labeled SS, lines are
shorter than the original length and have a history of
continuous shortening (Figure 15.17A). In sectors la-
beled LS, lines are longer than the original length in-
dicating an initial history of lengthening, but they are
now shortening (Figure 15.17B); with continued defor-
mation they may end up shorter than their initial length
and therefore positioned in the S$ sector (see Figure
15.17E). In sectors LL, lines are longer and have a history
of continuous lengthening (Figure 15.17C); and in sec-
tors SL, lines are shorter, indicating an initial history
of shortening, but they are now lengthening (Figure
15.17D). With continued deformation they may end up
longer than their initial length and therefore in the {LL)
sector. Thus (SS) sectors may be subdivided according
to whether or not the lines had an inicial history of
lengthening (compare Figure 15.17A, B). Similarly, (LL)
sectors may be subdivided according to whether or not

have differenc combinarions of stretch and rare of stretch.
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Figure 15.17 The histories of progressive deformartion for competenr layers
oriented within the different secrors shown in Figure 15.36C. The undeformed,
intermediare, and final states are points along the deformation path. A. Sectors
S$: shorter and being shortened. The layer is coatinuously folded. B. Sectors
LS: longer and being shortened. The layer was initially boudined and sub-
sequently shortened, which caused folding and imbrication of the boudins.
The “final” overall length is greater than the initial length, bur continued
shortening could make ir less, thereby transferring the line into the S sector.
C. Sectors LL: longer and being lengthened. The layer is continuously bou-
dinaged. D. Sectors SL: shorter and being lengthened. The layer is inirially
folded and subsequently boudinaged. The “final”” overall lengch is smaller
than the original length, but continued lengthening could make it longer,
thegeby transferring the line into the LL sector. E. Boudins rhat have been
shortened after formation, illustrating the deformational history in parr B. E.

C. Sector LL
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the lines had an initial history of shortening {compare
Figures 15.17C, D: see lighter grey portions of LL secrors
in Figure 15.18A, B).

Thus, depending on the orientation of the material
line with respect to the strain axes, the same deformation
can produce folds, boudinage, boudinaged falds, or
folded and imbricated boudins. The distribution of such
sectors for progressive pure shear and for progressive
simple shear is shown in Figure 15.184, B, respectively.
The main difference in the distribution of sectors abour
the principal axes of strain is the absence of an (SL)
sector for progressive simple shear subparallel to the
shear plane. Thus the sectors of the strain ellipse for
progressive pure shear have an overall orthorhombic
symmetry, whereas the sectors for progressive simple
shear have an overall monoclinic symmetry. When these
aspects of the deformation are taken into account, an
arbitrary deformation cannot be reproduced by the se-
quence of operations indicated in Figure 15.12 because,
for example, the rotation of the sectors with the strain
ellipse produced by progressive pure shear (Figure
15.18A) does not reproduce the sectors in the strain
ellipse formed by progressive simple shear (Figure
15.18B), even though the strain ellipses themselves are
the same shape.

In principle, then, it should be possible to distin-
guish some features of the scrain hisrory, such as coaxial
and noncoaxial progressive deformations, by examining
the relationship between the deformational structures
in the rock and theit orientations. For example, if veins
are intruded into a rock in a variety of orientations,

subsequent deformation could cause veins to form folds
and/or boudins depending on their orientation relative
to the principal stretches. The observed distribution of
these structures defines the sectors of the finire strain
ellipse (Figure 15.18C). In pracrice, however, the sector
patterns are difficule to establish. The discribution of
orientarions of deformed layers is usually not ideal (Fig-
ure 15.18D), and layers can shorten and thicken without
folding or can lengthen and thin without boudinage.
Despite its limited practical application, this analysis
demonstrates the important fact that no single type of
structure is uniquely indicative of a particular geomertry
of deformation.

The Representation of Strain States
and Strain Histories

It is often useful to compare various states of strain in
order to show, for example, how they are related to
one another in heterogeneously deformed rocks ot to
illustrate the sequence of strain states rhat represents a
particular progressive deformation. Such a comparison
is easily made by plocting the information on a Flinn
diagram, on which the ordinate and abcissa are the
ratios @ and b of the principal stretches, defined by

b= (15.21)

g Rl
M)’ >
[

Figure 15.18 Distribution of sectors of stretch and stretching.
Marerial lines in the lighter grey parts of the LL sectors have
an initial history of shortening followed by lengthening (see
bottom of Figure 15.17D}. A. Progressive pure shear. B. Pro-
gressive simple shear. This case differs from progressive pure
shear mainly in the lack of symmetry of the (S1) secrors about
the principal axes of strain. C. Structures developed in com-
petent layers in an incompetenr matrix consistent with the
sectors for progressive simple shear. D, Folding of a layer (left)
and simultaneous boudinage of a perpendicular layer (hori-
zontal above pencil) during deformarion of a marble.
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The study of geologic strains rarely includes the
volumetric strain, because it is very uncommon to know
the original size of a srrained object such as a fossil,
even though its original shape may be known. Thus we
can frequently determine the relative lengths of the prin-
cipal axes of the strain ellipsoid but not rhe absolute
lengths. Because the Flinn diagram is a plot of the ratios
of the principal stretches, it can be used to show the
shape of a strain ellipsoid, but not the size.

The origin of the coordinate axes for the Flinn
diagram is generally taken to be (1, 1} because 2 and &
cannot be less than 1, as can be scen from the second
Equation {15.14) and Equation (15.21). Any strain el-
lipsoid plots at a parricular point on the Flinn diagram,
and the slope & of the line from the origin (1, 1) to that
poinr is ’

k:a -1 - 3133—3233
b—1" () =55

(15.22)

The value of k provides a useful way of classifying che
types of constant-volume ellipsoids (Figure 15.19).
Three lines, for £ =0, £ =1, and & = co, divide the
graph into two fields, with ellipsoids of different char-
acteristics plotting along each line and within each field.
The field of flattening strain comprises the region for
which 0 < & << 1. The line & = 0 characterizes oblate
uniaxial ellipsoids (pancake-shaped; $; =5, > 1 > §3),
and the range 0 < k < 1 characterizes oblate triaxial
ellipsoids (§1 > §; > &3). Theline & = 1 characterizes all
plane strain ellipsoids (51 > §, = 1 > 53). The field of
constrictional strain includes the values 1 < & < @. The

] @
NS G k=1
b 8 4

Constrictional
strain

W
n
o3| o>

o
Simple extension

<>
Flattening SN
strain 5
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1 Simpte flattening =0
1 4 -

b=32
S

Figure 15.19 Flinn diagram showing rthe three lines (k = 0,
k=1, and k=c0) and the two fields {0 <k <1 and
1<k < o} of finite strain ellipsoids for consrant-volume
deformarion.

range 1 < k& < o0 describes prolate ttiaxial ellipsoids
{81 > 1 > 5, > 53), and the line & = oo describes prolate
uniaxial ellipsoids (cigar-shaped,$; > 1 > §; = §3). The
values of the srrerches given here apply only to constant-
volume strains (Equartions 15.18}.

The Flinn diagram lends irself well to the repte-
sentation of strain parhs, which define the sequence of
strain states through which a body passes in a pro-
gressive deformation. Steady motions produce strain
paths that plot as straight lines. In geologic deformation,
however, steady motions over long periods of time are
probably the exception, and curved paths, which may
even cross from the constrictional field into the flartening
field, or vice versa, are probably common. The diagram
makes no distinction, however, between coaxial and
noncoaxial progressive deformations. Progressive pure
shear and progressive simple shear, for example, are
both constant-volume progressive plane deformations
that plor along the line k = 1. This fact shows that the
rotational component of any deformation, which dis-
tinguishes pure shear from simple shear, for example,
is not tepresented on a Flinn diagram.

Volumetric deformation is easy to represent on the
Flinn diagram. Because plane strain geometry (s, = 1}
must always separate the field of constriction (§ < 1)
from the field of flattening (§; > 1), the location of this
boundary separates constrictive from flatrening strains
even when the volume is not constant. In order o de-
termine the equation for the line of plane strain when
the volume is not constant, we take 5; = 1 in Equation
{15.21), which gives

(15.23)

We can then express the equation for velumetric stretch
in plane strain {the first Equation 15.17) in terms of a
and & by using Equation (15.23).

s, =alb ar a=s,b (15.24)

The second Equation {15.24) is the equation for the
plane strain line on the Flinn diagram in terms of the
volumetric stretch. Taking the natural logarithm of both
sides gives an alternative form:

lna=1Ins,+1Inb (15.25)

The base-10 logarithm could also be used. The second
Equation (15.24) shows that the volumetric stretch s,
determines the slope of the line through the point {«,
&) = (0,0) on the Flinn diagram that separates consrric-
tional strain from flattening strain. Note that in general,
these lines do not pass through the origin of the Flinn
diagram (&, &) = (1, 1). Only when the volume is con-
stant (s, = 1) is the slope of the plane strain line equal
to 1, in which case £ =1 also, and the line passes
through the origin of the Flinn diagram (4, ) = {1, 1}.
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Plane strain lines for
indicated voiumetric stretch
and percent volume decrease
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Figure 15.20 Logarithmic Flinn diagram showing rhe plane
strain boundary lines (Equartion 15.25} between the helds of
ﬂatre_zning and constricrional srrain for various amounts of
volumerric strerch s, (Equation 15.16).

The logarithmic Flinn diagram, on which the axes are
In 2 and In b, is more conveuient for showing the effects
of volumetric deformation (Figure 15.20). Equation
(15.25) shows that on this form of the diagram, the
plane strain line maintains a constant slope of 1, and
the volumetric stretch determines the intercept. Each
tine on Figure 15.20 represents the plane strain line for
a different volumetric stretch, as labeled, and each line
therefore separates the ficld of constrictive strain above
from the field of flattening strain below.

The danger of iuterpreting strain measuremeuts
without knowing the volumetric stretch is evident from
Figure 15.20. A strain ellipsoid that plots at point A,
fer example, would be in the flatteniug field for 5, = 1
but in the constrictive field for s, < 0.8. Similarly, a
strain ellipsoid that plots at point B would be in the
flattening field for 1 = 5, = 0.8 but iu the constrictive
field for s, < 0.6. Thus plotting strain ellipses on the
Flinn diagram without knowing the volumetric stretch
can be misleading, and the common assumption of con-
stant-volume deformation for rocks can lead to incorrect
interpretations.

Homogeneous and Inhomogeneous
Deformation

So far in this chapter we have restricted our discussion
to homogeneous strains. As we noted at the beginning
of this chapter, if we are interested in the inhomogeneous
distribution of strain, such as in rhe formation of z fold,
we assume the deformed body can be divided into vol-
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umes that are sufficiently small for the deformation tq
be described as locally homogeneous. The variarion of
these local strains across the body describes rhe inhg.
mogeneous strain distribution. For any real marerig)
we must realize that rhe description of a deformatioﬁ
as homogeneous at any particular scale is rhe resul; of
averaging the deformation over volumes that are large
compared with the scale of inhomogeneities that are of
no immediate interest, but small compared with the
scale ar which the inhomogeneous distribution of seraip
is of interest.

Figure 15.21, for example, shows rhe so-called
deck-of-cards model for forming a passive shear fold
{see also Figure 12.8). As discussed in Section 12.2, rhe
deformation is accomplished by a discontinuity in the
shear displacement at the card surfaces, with no defor-
mation at all of the individual cards. On the scale of 2
fold limb, however, the deformation in this example
can be regarded as homogeneous simple shear, and it
produces the average strain ellipse shown on each fold
limb in che figure. Thus the description of the strain as
homogeneous results from averaging the strain over a
region thar is large compared with the thickness of the
cards, but small compared with the wavelength of the
fold. In other words, the homogeneity depends on scale.

The variety of scales on which we could consider
a deformation to be homogeneous is illustrated in Figure
15.22. In Figure 15.224, the body of folded rock mea-
sures about 1 km in length. The scale of the whole block
is large compared with cthe wavelength of the folds, but
small compared with the dimension of a mountain belt.
At this scale, the average deformation is homogeneous -
and is represented by the strain ellipse showu beside
the block.

When we look at a scale eomparable to the fold
wavelength, however, the strain is no longer homoge-
neous (Figure 15.22B). We then describe the deformation
in terms of the variation in local strain, which is con-
sidered homogeneous on a scale, for example, of about

Figure 15.21 Deck-of-cards model of passive-shear folding.
On each card, rhe arcs of the undeformed circle are displaced
50 as o approximare the shape of the scrain ellipse.



A. Regional scale

B. outcrop scale

D. Microscope scale

10 mm

Figure 15.22 Scales of homogeneous and inhomogeneous
strain. In each diagram, rhe volume over which che sirain is
averaged to form a locally homogeneous strain ellipse can be
viewed at a smaller scale at which the strain distribution is
inhomogeneous.

a meter. That scale is small compared with the wave-
length of the fold, bur large compared with the inhomo-
geneities in strain that might be present, for example,
if the layer were a sandstone containing a spaced fol-
fation.

When we shift scales again, down to the level of
the spaced foliation (Figure 15.22C), we again find an
inhomogeneous distribution of local strain. In this case,
the local strain is averaged over a volume small relative
to the spacing of the foliation domains, but large relative
to the grain size.

Another shift in scale brings us down to the scale
of the grains (Figure 15.22D), where the local strain is
again inhomogeneous and the strain in each grain is
averaged over a volume thar is large compared with the
scale of crystal lattice imperfections.

Thus we can consider the strain to be “homoge-
neous” on a scale that is small compared with the par-
ticular structure within which we want to determine the
strain distribution, but large compared with the scale
of inhomogeneities in which we are not interested and
over which we want to average the deformation.
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