CHAPTER

12

In Chapter 11 we described the geometric characteristics
displayed by folds in naturally deformed rocks. Geol-
ogists would like to understand the significance of these
geometric features in terms of the mechanism of folding.
To this end, they propose models to account for how
folds might develop and then compare the character-
istics of the model folds with natural folds. In this chap-
ter, therefore, we discuss kinematic models of folding.
We first consider various two-dimensional models for
folding single layers (Sections 12.1 through 12.4), by
which we can account for much of the geometric var-
iation included in Ramsay’s classification of folded lay-
ers. We then discuss two-dimensional models of
multilayer folding (Sections 12.5 throngh 12.7), includ-
ing kink and chevron folding, and fault-bend and fault-
propagation folding. Finally, we discnss models for
some three-dimensional aspects of folding, including the
relationship between “drag folds” and the slip direction
on associated faults, the geometry of superposed
folds, and diapiric flow (Sections 12.8 through 12.10).

Models such as these specify the motion of the deform- |

ing body but not, in general, the cause of the motion.
For complete mechanical models of folding we must
understand how stress and deformation are related, and
we discuss these models in Chapter 20.

In order to discuss kinematic models of folding, we
must introduce some basic concepts of deformation,

238

Kinematic Models ot Folding

and we restrict ourselves here to deformation that
occurs In only two dimensions. After 2 homogeneous
deformation, straight and parallel lines remain straight
and parallel (Figure 12.14, B; 12.24, B), whereas after
an inhomogeneous deformation, straight and parallel
lines become curved and nonparallel {(Figures 12.14, C;
12.24, C).

Simple shear is a two-dimensional constant-volume
{in two dimensions, constant cross-sectional area) de-
formation that resembles the sliding of cards in a deck
{Figure 12.1). If the deformation is homogeneous, the
rectangular shape of the deck changes into a paralle-
logram (Figure 12.18); if the deformation is inhomo-
geneous, the two sides of the deck normal to the cards
become curved (Figure 12.1C). If a layer of rock is
parallel to the shear planes, it is sheared, burt it is not
rotated by the deformation, and its length and thickness
remain unchanged. Layers that are cross-cut by the shear
planes are rotated, and they may be shortened and thick-
ened, or lengthened and thinned, depending on their
initial orientation. .

Flattening is a deformation that can be represented
by taking a square and shortening it parallel to one side
while lengthening it parallel to the perpendicular side
(Figure 12.2). If, in two dimensions, the deformation is
homogeneous and the area stays constant, homogeneous
flactening is called pure shear. After homogeneous flat-
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rening, layers parallel to sides ab and c¢d are all unrorared
and are shortened and thickened; layers parallel to ac
and bd are also unrotated but are lengthened and
thinned. Layers of any other orientation are rotated and
may be shortened and thickened, or lengthened and
thinned, depending on their initial orientation. In Chap-
rer 15 we examine the geometry of deformation and
strain in more detail.

The mechanical properties of the rocks involved
in folding have a profound effect on the style of fold
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Figure 12.2 Geometry of flatrening. The points a, &, ¢, and
d become &', &', ¢, and &' after deformation. Shaded bands
parallel to ac, ab, and ad represent layers in differenr orien-
tations wirh respecr to rhe direcrion of flarrening.

C. Inhomogeneous

that develops. Qualitatively, we describe the relative
rate at which a ductile material is able to flow at a
patricular differential stress in terms of its competence.!
Undet the same differential stress, a competent marerial
deforms ductilely at a telatively low rate compared with
an incompetent material. If similar-sized layers of com-
petent and incompetent rock are forced to deform at a
given rate, the differential stress is higher in the com-
petent material than in the incompetent material. We
discuss these mechanical properties more thoroughly in
Chaprers 18 through 20.

Flexural Folding of a Layer

Class 1B folds are a common feature of many fold belts
{Secrion 11.3). The geometry of this class of folds may
be explained by orthogonal flexure, flexural shear, and
volume-loss flexure. Collectively, these models are
called flexural folding. In all three models, the orthog-
onal thickness of the layer remains constant during fold-
ing, thereby producing class 1B folds. The class of the
fold, therefore, cannot be used to distinguish the dif-
ferent mechanisms. The fold mechanisms differ, how-
ever, in wherher the convex side of a fold is lengthened
or remains constant and in whether its concave side is
shortened or remains constant. Because the volume-loss
mechanism can produce several geometries of fold, we
consider it in a separate section (Section 12.3). Here we
discuss orthogonal flexure and flexural shear.

Flexural folding of layers of rock can tesulr from
bending or buckling, which are two different ways of
applying forces to the layers. Bending of a layer results
from the application of pairs of forces that produce

! Same authors have used the term ductility in this sense. We eschew
this usage because of the common enginecring definicion, also used
by some experimental geclogists, in which the duetility is the amount
of ductile strain a material can accumulaze before it fractures.
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Figure 12,3 Flexure of a plare or layer by bending. Bending
is caused by application of pairs of torques. A torque is a
force rhar is applied normal to a lever arm and tends ro make
a body rotate. A, Bending moments created by pairs of equal
and opposite forces applied paralle! to rhe plare. B. Four-point
loading: rorques ase created by forces applied perpendicular
to the plare. C. One possible distribution of forces required
to bend an infinire layer into a single localized fold.

equal and opposite torques that bend the layer into a
fold. In pure bending, there is no net tension or compres-
sion, averaged over the layer, either parallel or perpen-
dicular to it. Three possible systems of applied forces
that provide such torques ate shown in Figure 12.3.

Flexural folds can form by bending where a vertical
force acts from below a layer to lift it into a fold. For
example, the beds above a lenslike magmatic intrusion
(called a laccolithy may fold in this manner. The fluid
pressure of the magma provides a uniformly distributed
upward pressure along part of the base of the layer.
Monoclines or drape folds may also develop by bending
(Figure 12.4) where faulting in the basement rocks pro-
vides the vertical force that bends the overlying strata
into a monoclinal fold.

Buckling results from the application of compres-
sive stresses parallel to the layer (Figure 12.5A, B). If
the compressive stress is sufficiently large, the layer be-
comes unstable and buckles into a fold, either under
compressive stresses alone (Figure 12.5C), or in asso-
ciation with additional torques (Figure 12.5D).

Buckling may be important in fold and thrust belts
in which the eompressive stress that drives the thrusting
causes rhe layers to buckle, thereby shortening and
thickening the thrust sheet. Folds in such belts, however,
can also result from the sliding of thrust sheets up thruse
ramps (Sections 6.2 through 6.4) and thus may form by
a combination of bending and buckling (Seetion 12.7).
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Buckling also is of prime importance in the formarion
of ptygmatic folds.

A layer may respond to ejther bending or buckling
loads by orthogonal flexure (Figure 12.6). In this ki-
nematic process, all lines that were perpendicular ro the
layer before folding remain perpendicular to the layer
after folding. In the profile plane, the surface of the laye,
on the convex side of a fold is stretched, and the surface
on the concave side is shortened. The surface within
the layer that does not change length during the folding
is called the neutral surface. The orthogonal thickness
of the layer remains constant all around the fold.

Orthogonal flexure should be characteristic of folds
with low curvarure developed in competent layers that
are resistant to ductile deformation. As the curvature
increases to high values, the orthogonality condition
cannot be maintained.

A fayer can also respond to bending or buckling
by flexural shear, which is also called flexural flow.
Folding is accommodated by simple shear parallel to
the layer, and there is no stretching and shortening,

B.

Figure 12.4 Monoclinal folds developed by bending. A. Dia-
gram showing the formation of a monocline in sediments
overlying a normal fault in basement rocks. B. Photograph of
the Rattlesnake Mountain monocline, Wyoming.




D. Localized buckling instability

Figure 12.5 Flexure of a plate or layer by buckling. Equal
and opposite forces are applied ro opposite ends of-the plate
causing a compression of the plate,

respectively, of the convex and concave sides of the fold,
as there is in orthogonal flexuce.

Flexural-shear folding is analogous to the bending
of a deck of cards (Figure 12.7} in that all the motion
is parallel to the shear planes (represented by the cards)
and the marerial on the convex side of a shear plane
shears toward the fold hinge relative to that on the
concave side. The sense of shear on the limbs of a fold
therefore changes across the fold axial surface, and the
magnitude of the shear decreases toward the hinge. The
thickness of the body measured perpendicular to the
shear planes is constant. Lines that were perpendicular

Marker
lines

Quter arc
lengthens

Inner arc
shortens

Neutral
surface

Figure 12.6 Geometry of orthogonal fexure.

Marker lines

__Shear plane
orientation

Figure 12.7 Geometry of flexural-shear foiding.

to the surface of the layer before folding, however, do
not remain perpendicnlar, excepr exactly at the hinge.
During folding of a deck of cards, the length of indi-
vidual cards is constant. Similarly, in flexural-shear fold-
ing, any lengch measured in che profile plane pacallel to
the shear planes is constant, so neither the convex nor
the concave surface of the layer changes length.
Flexural-shear folding may occur instead of or-
thogonal flexure if the layer is less competent and there-
fore able to undergo ductile deformation more readily,
or if the layer has a strong planar mechanical aniso-
tropy,? such as fine interbedding of chert and shale or
a strongly developed schistosity parallel to the [ayer.

Passive-Shear Folding of a Layer

In passive-shear folding, which is also called passive-
flow folding or simply flow folding, the layer is highly
incompetent and exerts no influence on the process of
folding; it simply acts as a marker that records the
deformation. Deformation takes place by inhomoge-
neous simple shear on shear planes that cross-cut the
layer, and che amount and sense of shear vary system-
atically across the shear planes to produce the folded
geometry. This process results in class 2, or similar,
folds.

To illustrate the kinematics of the folding process,
we can again refer to the model of the shearing of a
deck of cards {Figure 12.1). In this case, however, the
shear planes represented by the cards are not parallel
to che layer being folded, as they are in flexural-shear
folding, but instead cross-cut the layer (Figure 12.8).
Along a given axial surface, the folded shape—and
therefore the curvature—of the convex side of the folded

% The mechznieal properties of a mechanieally anisotropic material
are different in different directions in the material.
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Figure 12.8 "Passive-shear folding of a marker layer by in-
homogeneous simple shear is approximared by *deck-of-
cards” shear. The axial surface of the fold is parallel to the
shear planes. The thickness of rthe layer parallel to the shear
planes is consrant. The shape of rhe fold is exacily rhe same
on the convex and the concave side of the layer.

layer is exactly the same as that of the concave side.
Thus the hinge lines of folded snrfaces along the same
axial surface must also lie on the same shear plane, and
the shear planes are therefore parallel to the axial sur-
face. Because there is no deformation within any given
shear plane {none of the cards in the deck changes size
or shape), the fold is cylindrical, and the axial trace
thickness of the layer, which is measured parallel to the
shear planes, is constant around the fold. These geo-
metric characteristics are exactly those of class 2, or
similar, folds.

In passive-shear folds, the fold hinge and the fold
axis must parallel the intersection of the shear planes

A. Axial surface B.

Axial surface €.
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Axial surface

with the original layer orientation (Figure 12.9). The
shear planes can be oriented at any nonzero angle to
the layer, and the shear direction within the shear planes
can be in any orientatjion except parallel to the layer
being folded. As long as there is a component of shear
across the layer, a fold can form. Thus the fold axis or
hinge is nor related to the direction of shear.

Natural fold geometries that come close to the
geometry of class 2 folds are characteristic of defor-
mation in high-grade metamorphic rocks, in salt domes,
and in glaciers (Figure 11.1; see Sections 11.5 and 12.10)
which suggests that this class of folds characterizes the
deformartion of incompetent materials. The model of
passive-shear folding certainly requires incompetent be-
havior, but as we show in the next two sections, it is
not the only mechanism that produces folds having a
geometry very close to that of class 2.

Volume-Loss Folding of a Layer

Volume-loss folding is 2 mechanism by which folds can
form or be amplified by the gradual removal of material
from particular zones in a folded layer. The loss gen-
erally results from solution, so the folding process is
also called solution folding. The volume-loss mecha-
nism, howevet, does not result in a unique class of folds,
beeause the fold geometry depends on the orientation
of the zones of volume loss relative to the layer. Folds
may form with class 1B, class 1C, or class 2 geometry.
Volumeé loss from diserete zones may result in the offset
of beds, giving zn appearance of shearing along the
zones although in fact no shearing at zll is required.
Three ideal fold geometries can result from volume-
loss folding (Figure 12.10). Removing wedges of ma-

Figure 12.9 The orienrarion of the
fold kinge for a passive shear fold
is determined by the intersecrion
of the shear planes with the orig-
inal orienrarion of rhe layer to be
folded. In parts A through C, the
rop diagram shows rhe relarion-
ship berween the shear planes and
the original orientarion of the
layer. The bortom diagram shows
the layer afrer folding. The shear
directions could be any orientation
in rhe shear plane except parallel
to rhe surface being folded. The
orienration of rhe fold hinge does
not indicare the direction of shear.
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Figure 12.10 Volume-loss folding. The upper diagrams show the initial folds. The shaded areas
are removed during intensification of the folds. A. Wedge-shaped areas of volume loss are
symmerric about lines {(dashed) thar are normal to the surfaces of the layer. Boch the convex and
concave surfaces of the resulting [old are continuous and smooth. B. Wedge-shaped areas of
" volume loss are symmetric abour lines (dashed) rthat are nor normal ro the surfaces of the layer.
The convex surface of the resulting fold is smoorh, but the concave surface has offsers that suggest
shearing of the layer along the surface of volume loss. C. Lath-shaped aseas of volume loss are
paralle] to one anocher and in general oblique to the layer. Borh the convex and the concave
surface of the fold show offsets shat suggesr shearing comparable to passive-shear folding.

rerial symmetric about a line normal to the layer surface
results in a ¢lass 1B fold in which both the concave and
the convex surfaces are smooth (Figure 12.10A). Re-
moving wedges of material symmetric about a line
oblique to the layer produces a fold with the approxi-
mate geometry of a ¢lass 1C {old, but the concave surface
of the fold is not smooth, and the discontinuous offsers
along zones of volume loss could be misinterpreted as
evidence of shearing (Figure 12.10B). For borh models,
the length of the convex side of the fold is unchanged
by the loss of material, but the concave side of the fold
is shortened,

Volume loss from paralle! zones of constant thick-
ness oriented oblique to an initial irregularity or gentle
fold in the bedding can amplify a preexisting fold or
irregularicy, although it cannot produce 2 fold from a
flac layer (Figure 12.10C). To this extent, it is geo-
metrically comparable to deformation by homogeneous
flactening, a process we discuss further in the next sec-
tion. The result of this geometry of volume lass is a
fold chat approaches a class 2 style. The discontinuous
offsets in both the convex and the concave surfaces
suggest a fold formed by shearing on discrete shear
surfaces, but no shearing is required.

Figure 12.11 provides an example of a fold that
has been amplified by solution of material with a ge-
ometry comparable to that shown in Figure 12.10B. In
the two photographs that make up Figure 12.11A, the
bedding and the solution surfaces ar a high angle to the
bedding are visible, especially near the hinge zone of
the fold. Figure 12.11B shows the fold restored to a
more open configuration: The deformation caused by
solution is undone, and the geometry of the concave

side of the fold is returned to a smooth surface. The
empty wedge-shaped gaps in the photo illustrate the
volume of material removed along major solution
surfaces.

Homogeneous Flattening of Folds
n a Layer

With the models of folding considered so far, we have
succeeded in producing class 1B, class 1C, and class 2
folds. Ocher kinematic models of deformartion can also
account for some of these classes, as well as for the
other classes of folds in Ramsay’s system. Flexural fold-
ing can accommadate only a limited amount of short-
ening before the folds are so tight that they cannot take
up any further shortening. The model for passive-shear
folding, mareover, daes nat permit any shortening what-
soever normal to the shear planes. We consider here the
eHects of homogeneous flatrening (Figure 12.2B) super-
imposed on folds formed by the mechanisms discussed
above.

It is impossible o create a fold in a perfectly flat
layer by a homogeneous flattening, because in any ho-
mogeneous deformation, such a layer remains planar
with parallel surfaces. Homogeneous flattening can,
however, amplify an initial irregularity and change the
geometry of a fold. An initial class 1B fold in a layer is
contained within the square abed (Figure 12.12). During
homogeneous flattening normal to the axial surface, any
part of the layer not exactly parallel to the direction of
shortening is rotated away from thar direction. In the
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B.

Figure 12.11 Partial unfolding of a fold tightened by volume-loss (solution) folding. A. Negative
photos of acetate peels emphasizing the cleavage {lefr) and the layering (right). B. The fold shown
in part A restored to the condirion of having a smooth surface on the concave side by opening
rhe fold along major solution seams. The volume of marerial lost is indicated by the blank areas
in the phoro, along which the fold has been opened.

a b’

Figure 12.12 Inrensificacion of folding by homogeneous flat-
rening normal to rhe axial surface. The initial fold is a gentle
class 1B fold. Progressive homogeneous flattening increases
¢’ a’ rthe amplirude and changes the fold into a class 1C fold.
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fold hinges, where the layer is parallel to the shortening
direction, the layer thickens in proportion to the change
in length of the vertical sides ac and bd (Figure 12.12;
see also Figure 12.2B). In the limbs of the fold, where
the layer rotates toward a high angle from the shortening
direction, its thickness decreases in a manner analogous
ro the decrease in length of the horizontal sides ab and
ed. Thus after deformation, the layer is no longer of
constant orthogonal thickness but is thicker in the hinge
zone than in the hmbs. The dip isogons still converge,
so the cutvature on the concave side of the fold is still
greater than on the convex side. The resulting fold has
a class 1C geometry.

Consider now an initial fold of class 2 (Figure
12.13). If the axial surface crace is initially parallel to
the vertical sides ac and bd, it remains parallel to these
sides throughout the deformarion. Alcthough the axial
trace thickness T changes during the defotmation, the
change is the same everywhere and is proportional to
the change in length of sides ac and &d. Thus the initial
class 2 fold remains a class 2 fold under homogeneous
flattening.

If a fold is subjected to a homogeneous flattening
in a direction parallel to its axial surface and perpen-
dicular to its hinge (Figure 12.14A), the layer thickness
decreases in the hinge atea and increases on the limbs
(Figure 12.14B). Dip isogons still converge, but the or-
thogonal thickness increases from hinge to limb. The
resulting geometry is that of a class 1A fold.

]
'
'
]
'

Axial
surface
trace

.

o
Figure 12,13 Intensificarion of a class 2 fold by homogeneous
flattening normal to the axial surface. The inirial square abcd
is deformed into the rectangle &/ b'c’d’. The axial trace thickness
T is changed by the deformation to T' bur remains equal all
around the fold. The fold remains class 2.

¢

+— Axial plane

A. Class 18
Axial plane
-

B. Class 1A

Figure 12.14 Homogeneous flattening of a class 1B fold par-
allel to rhe axial surface transforms cthe fold into a class 1A
fold.

Flexural-Shear and Passive-Shear
Folding of Multilayers

Most natural folding involves multilayered sequences
of rocks that develop a more complex folding geometry
than single layers. An important cause of this complexity
is the difference in mechanical properties that can exist
between adjacent rock layers. We rake account of this
factor in our models of fold formation by considering
the mean competence for the whole multilayer and the
contrage in competence among individual layers (Figure
12.15). First we consider a simple fold model that in-
volves many layers of essentially the same high com-
petence (high mean competence, fow competence con-
trast). Then we eonsidec the effect of alternating thin
incompetent and thick competent layers (high mean
competence, high competence contrasty. And finally, we

High
Ptygmatic t
folding 1
5 i
3] A \ 1 Flexural
& Medium®| \ slip
& Flexural \
T \ shear
: \ \
O ) \ A
Passive \ \
shear \ \
\ ~
Low ~ - \ \_
Low High

Mean competence

Figure 12.15 The dependence of the kinematic model of mul-
tilayer folding on rhe mean competence of the muldilayer and
on the contrast in competence between adjacent layers.

Kinemaric Models of Folding 245



consider the effect of increasing the ratio of incompetent
to competenr material in the multilayer {decreasing
mean competence, high competence contrast).

If the competence contrast is zero, then the mul-
tilayer behaves as a single layer according to rthe models
discussed in Sections 12.1 through 12.4. Even for se-
quences of layers of different competence, however, the
package of layers may behave like a single unir with an
effective thickness greater than any one of the individual
layers. In chat case, if a neurral surface develops wirhin
the package, layers on the convex side of the neutral
surface may be stretched and rhinned ac the hinges,
giving them a class 1A geometry.

A stack of layers can respond ro either bending or
buckiing by flexural-slip folding if the layers have es-
sentially the same high competence (high mean com-
petence) and if the friction between the layers is
relatively low, allowing them to slide freely (this creares
what is in effect a high competence conrrast between
the layer surfaces and the layer interiors) (Figures 12.13
and 12.16). If each layer folds by orthogonal flexure,
the concave side of each layer is shortened and the
convex side is stretched. Thus, across a bedding surface,
the layer on the convex side must slip toward the fold
hinge relative to the layer on the concave side {(Figure
12.16). This relative slip berween layers is greatest on
the limbs and decreases to zero at the hinge line, where
it changes shear sense. The geometry of deformation is
similar to fexural-shear folding (Figure 12.7), except
that in flexural-shear folding, the shear is distributed
uniformly across the folding layers, whereas in flexure-
slip folding it is concentrated along the inrerfaces be-
tween tayers. This type of folding produces a class 1B
multilayer fold.

Sliding of the layers past one another commonly
results in the development of livear striations or mineral
fibers (slickenside lineations or slickenlines) perpendic-
ular to the fold axis on the bedding surfaces. The lin-
eations are best developed on the limbs where the slip
is a maximum, and they do not develop ar all at the
hinge (Figure 12.16A). The lineations (such as £, £,
and £ labeled on the fold in Figure 12.16 A} plot on a
stereonct along a great circle perpendicular to the fold
axis f (Figure 12,16B).

If some degree of flexural shear occurs during fold-
ing (moderate mean competence, moderate competence
contrast), theu some of the potential slip between layers
can be taken up by shear within the layer, and the
amount of interlayer slip decreases. If all the slip is
distributed within the layers (moderate mean compe-
tence, zero competence contrast), the tesult is simply a
multilayer flexural shear fold with class 1B geometry.

Many folds, however, consist of interlayered com-
petent and incompetent lithologies of comparable thick-
nesses (moderate mean competence, high competence
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(Great-circle locus
of slickenside
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Figure 12.16 Flexural-slip folding in a mulrilayer. A. Fold
formed from an originally planar multilayer, showing relarive
displacement on layer surfaces. Layers on the convex side of
a surface slip roward the hinge line relative to those on the
concave side. The shear sense reverses across the hinge line.
The lines on the surface of the layer indicate the orientarion
of slickenside lineations, and rheir lengths indicate relarive
amounts of slip. B. A stereonet diagram showing the range
of orientations of rhe folded surfaces (shaded region) and the
orientations of the linearions in those surfaces. The linearions
lie on a greart circle normal to the fold hinge £ The laheled
lineations correspond to cthose shown in part A.

contrast). The competent layers as a group deform by
fexural-slip folding, and the interlayer slip is taken up
by deformation in the incompetent layers (Figure
12.17A). A multilayer class 1C fold develops, as indi-
cated by the fact that on the average, the dip isogons
converge toward the concave side of the fold, but not
as strongly as for a class 1B fold. On the limbs of the
fold, the incompetent layers are strongly sheared,
whereas in the hinge zone they are simply flattened.
As the thickness of the iIncomperent layers increases
relative to that of the competentlayers (decreasing mean
competence)}, the requirement that the adjacent com-
petent layers nest tightly against one another becomes




A

Figure 12.17 Flexnral folding of interbedded comperent and
incompetent layers. A, A moultilayer comprising three com-
petent layers’(unshaded) sepatared by thin incomperent layers
{shaded). The dashed lines are dip isogons. Flexural folding
of the competent layers is accommodated in the incompetent
layer by shearing on the limbs and by flattening in the hinge
of the fold. B. Flexural folding of a muliilayer in which the
incompetent layer is comparable in thickness ro the competent
layers. The mulrilayer class 2 fold comprises class 1B folds in
the competent layers alternating with class 3 folds 1 the in-
competent Jayers. Dashed lines are dip isogons.

less stringent. Competent layers still fold by the flexural
folding mechanisms discussed for single layers, and they
still dominate the development of the fold. The cur-
vatures of the adjacent surfaces of two competent layers
need not be the same, however, because the incompetent
layer between the two competent layers flows in what-
ever manner is required to accommodate the difference
in geometry; this generally involves layer-parallel sheac-
ing on the limbs and flattening in rhe hinge zone. Thus
on the average, the dip isogons are not strongly con-
vergent and could be parallel or even divergent. In an
incompetent layer, the fold has a smaller radius of cur-
vature on its convex side than on its concave side, the
dip isogons diverge, and the axial trace thickness T,
decreases from hinge to limb (Figure 12.17B). These
features characterize single-layer class 3 folds.

Thus a layered sequence can form mulcilayer class
1C, class 2, or class 3 folds by alcernate development
of class 1B folds in the competent layers and class 3
folds in the incompetent layers. The pattern of the dip
isogons averaged over a number of layers may be con-
vergent, parallel, divergent, or irregular, and this pattern
defines the actual scyle of the multilayer fold.

If the incompetent layers are much thicker than the
competent layers (low mean competence, high compe-
tence contrast), they dominate the large-scale defor-
mation. The spacing berween the competent layers is
so large that flexural folding of one competent layer
does not affect the next one, and disharmonic ptygmatic
folds develop (Figures 12.15 and 12.18). Although high-

B.

Figure 12.18 Folding of a multilayer in which che incompetent
layers are much thicker than the competent layers. Fold ge-
omertry is dominated by flow in rthe incompetent layers. A. A
diagram of ptygmatic folds in thin competent layers in a fold
whose geomerry is dominared by fow of the incompetenr
maretial. B. Photograph of black amphibelitic layers pryg-
matically folded in a metasedimentary rock from the Matrer-
horn Peak roof pendant, Sierra Nevada. The geometry is the
same as in pace A.
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otder folds in the individual competent layers are classes
1B and 1C, the geometry of the lower-order multilayer
folds is close to class 2 and is dominated by ductile flow
of the incompetent layers.

If the entire multilayer is made up of incompetent
material with negligible difference in competence from
layer to layer {low mean competence, low competence
contrast), and if the layers do nor slip past one anorher
on their intetfaces, then the multilayer is mechanically
homogeneous and rhe layers simply acr as passive mark-
ers of the deformation. Under these citcumstances, the
material should deform by passive shear with homo-
geneous flattening, rarher than by bending or buckling,
thereby forming folds that approximate class 2 style.

Thus-flexural folding in multilayers requires com-
petent layers and a planar mechanical anisotropy such
as is provided by low-friction intecfaces ot thin incom-
petent interlayers (high mean competence, high com-
petence conirast). Passive-shear folding in multilayers
requires that an incompetent material dominate the me-
chanical behavior, and the effect of any competent lavers
is negligible (low mean competence, high to low com-
petence contrast).

Formation of Kink and
Chevron Folds

Folds with srraight limbs and sharp hinges are chevron
folds if they are symmetric and kink folds if they are
asymmetric (see Section 11.5). They develop in strongly
layered or laminated sequences that have a strong pla-
nar mechanical anisotropy, and they accommodate a
component of shortening parallel to the layering ot
laminations.

Kink Folds

Kink folds occur in paics with one short limb connecting
two longer limbs (Figure 12.19). A kink band is the
short limb berween the two axial surfaces, which are
the kink band boundaties. In the kink band, laminations
are deformed and are rotated with respect to the un-
deformed material by an angle « called the kink angle.
We describe four different kinemaric models of kink
band formation, each of which involves a component
of shearing parallel to the laminations as well as pres-
ervation of continuity of the laminations across the kink
band boundaries. The medels differ from one another
in the way rhe kink grows and in rhe geomerry of the
deformation.

In rwo models (Figure 12.20}, the kink develops by
migration of the kink band boundary into rhe unde-
foermed material. Folding by the migration of axial sar-
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Figure 12.19 Geomertry of a kink band, illustrating termi-
nology. k is the kink angle, w is the width of the kink band,
¥ and y, are the angles between the kink band boundary (the
axial surface) and the undeformed and deformed materizl,
respectively.

faces is different from any of the kinematic models of
folding we have considered, although passage of the
kink baud boundary is accompanied by shearing of the
material parallel to the laminations. Laminations in the
undeformed and the kinked parts of the material main-
tain equal angles with the kink band boundary {y = v,
Figures 12.19 and 12.20), and both the line Jengths par-
allel to the laminations and the cross-sectional area re-
main constant. In Figure 12.20A, the kink nucleates
along a line {(AB) normal to the laminations and grows
by rotation of the right boundary {Ab) counterclockwise
about A and rotation of the left boundary {aB) coun-
terclockwise around B, while A and B remain fixed
points in the material. The kink angle x increases con-
tinucusly with kink growth. In Figure 12.208, the kink
nucleates along a line {AB} oblique to rhe laminations,
and the two margins migrate in opposite directions
while maintaining the same orientarior. The kink angle
i is fixed by the angle between the laminations and
AB, and it does not change with growth of the kink
hand. In both these cases, the deformation is of constant
volume.

In the two other models (Figure 12.21), the kink
band boundaries do not migrate but mark the fixed
boundaries of a shear zone. As rhe kink develops, the
kink angle # increases, but the angles y and vy, are not
equal: y remains consrant wheteas p; decreases. In Fig-
ure 12.21A, kinking produces a deformation equiva-
lent to homogeneous simple shear parallel to the kink
band boundaries—and therefore is essendally like the
passive-shear model. The width i of the kink band is
constant, and the laminations ace deformable. The lam-




Figure 12,20 Kinematic models for the
growth ol a kink band by migration of the
: kink band boundary through the material.
' A. The kink band nucleates along the
: dashed line AB (i). It grows by rotacion of
. - the kink band boundary Ab counterclock-
wise about the fixed macerial point A and

by totation of the opposite boundacy Ba
counterclock wise abour the fixed material
point B (ii to iii}. As the kink band grows,
the kink angle x increases. The angles y
and y; both decrease during kink band
growth, but chey remain equal. B. The kink
band nucleares along the dashed line AB

\
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inations first rotate roward an orientation perpendicular
to the kink band boundary, becoming shorter and
thicker. With further rocation, the laminations lengthen
and thin. The cross-secrional area remains consrant
throughout.

In Figure 12.21B, folding essenrially involves a
flexural-shear mechanism with shearing parallel to the
laminations, which maintain constant length and width.
As the kink develops, the laminations rotate toward an
arientacion perpendicular to the kink band boundary
(Figure 12.21B, ii). The kink band becomes wider, and
gaps open up berween the lamination. With furcher
rotation, the kink band becomes thinner again, and the
gaps berween laminations close. When y;, decreases to
the value of y, no furthet kinking is possible {Fignre
12.21B, iii). Because of the opening and closing of the
gaps between the laminations, the cross-sectional area
is not constant during the kinking.

Experiments on kink band formarion indicate that
kink bands do not develop along planes of high shear
stress. Because rhe third and fourth models assume the
kink band to be a zone of shear, the experiments suggest
that these models may not be appropriate for describing
natural deformation. Evidence points most strongly ro
the operation of the first and second models, either singly

{i}. The kink band grows by migrarion of
(i} the kink hand boundaries in opposite di-
cections into the undeformed marerial (it
to iii). As the kink band grows, che kink
angle « remains constant. The angles y and
¥ temain equal and constant during kink
band growth.

or together, in kink band formation. Some natural kink
bands, however, show evidence of an increase in volume
during deformation, such as accumulation of latet min-
erals between separared layers. This indicates that in
some cases, at leasr, model B in Figure 12.21 represents
a component of the kinking mechanism. Model A in
Figure 12.21 may accouut for some kink formarion in
high-grade metamorphic rocks.

Chevron Folds

Two kinematic models exist to account for rhe for-
marion of chevron folds. In rhe Arst model, chevron
folds develop where kink bands of conjugare orientation
intersect (Figute 12.22), Transformation of rhe enrire
undeformed body into one completely flled with chev-
ron folds requires a shortening of 50 percent. Although
rhis mechanism has been observed to operate during the
experimental deformation of phyllites, in naturally de-
formed rocks the observed shorcening thar results from
kink folding rarely exceeds 25 percent, which is insuf-
ficient 1o form chevron folds by this mechanism.
Chevron folds can also develop by a process rhat
is similar to flexural-shear folding (Section 12.1). In this
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Figure 12.21 Models for formation of a kink band in which the kink band boundary remains
fixed in the material. A. Kink band growth by simple shear parallel to the kink band boundaries.
The length of the laminations frst decreases (i to ii), and their thickness increases antil the
laminations are perpendicular to the kink band boundary. With further rotation, their length
increases and their thickness decreases (ii to iii). The width w of the kink band remains constant.
As the kink band develops, the kink angle x increases,  remains constant, and y; decreases. Thus
y and y;, do not remain equal. B. Formarion of a kink band by rigid rotation of the laminations.
The length of the laminations L. in the kink band remains constant during kink band formarion.
Thus from (i} ro {ii), where the width of the kink band increases as rhe laminarions become
perpendicular to the kink band boundaty, and the volume increases as spaces open up between
the laininatious. From {ii) to (iil) the width decreases and the spaces berween laminarions close.
Thus this is not a consrant-volume deformarion. As the kink angle x increases, y remains constaur,
and p, decreases until y, =y, at which point the spaces berween laminations are completely

closed and further kinking is impossible.

case, however, because the idealized laminations of the
model are infinitesimally thin, the radius of curvarure
of the hinge does not have to change along the axial
surface, as it does for flexural-shear folding of beds of
fnite thickness. The result is a class 2 chevron fold
formed by a flexural-shear mechanism.

Kink or Chevron Folding of Layered Sequences

Our idealized models have assumed that the kinked
material is made of infiniresimally rhin laminations and
that shearing on the laminations tesults in a homoge-
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‘neously disrributed deformarion. Such a condirion is
most closely approached in narure by foliated rocks such
as slates, phyllites, and schists. Kink and chevron folds,
however, also occur in thinly bedded rocks such as
interbedded chert and slare. Whether a symmerric chev-
ron fold or an asymmetric kink fold forms depends on
whether the dire¢tion of shortening is parallel or oblique
ro the layering. The geometry of a chevron fold formed
in a layered sequence that has low-friction bedding
planes is illusrrated in Figure 12.23. Formation of a class
2 fold by class 1B folding of the individual layers requires
the opening of voids between the layers ar the hinge.
{When such voids are filled with secondary mineral de-




A. B. 30 percent shortening

C. 50 percent shortening

Figure 12.22 Development of chevron folds by kinking. A. An undeformed block with a strong
planar mechanical amisotropy. B. Shortening of the block parallel to the plane of weakness results
in the formarion of two sets of kink bands that have conjugace orientations. Chevron folds develop
ar the zones of interference between conjugate kink bands. C. As the widths of the conjugate
kink bands increase, the area of interference, wherc the chevron folds develop, also increases

until the entire block is Alled with chevron folds.

posits, they are called saddle reefs.) If the competent
layers are separated by incompetent material instead of
low-friction surfaces, the incompetent material may
flow from che limbs ro the hinge zone to accommodarte
the mismatch in the fold form of the competenc layers.
This process once again produces multilayer class 2 fold
geometry by alternace class 1B and ¢lass 3 folding in
the competent and incompetent layers, respectively, as
described in Section 12.5.

Our kinematic models do not explain why and
under whar conditions different folding mechanisms
should operate. For example, they cannot resolve the
question of why rounded folds form in some cases, and
chevron folds form in ochers. In fact, we have not even
explained why folds form at all, instead of the layers
simply shortening and becoming thicker. To approach
these questions, we must consider the mechanics of fold
formation, which involves the mechanical properties of

Figure 12.23 Chevron folding of layers of finite thickness by
the flexural-slip mechanism iutroduces voids in the hinge zone
{(black areas).

the matecial and the telationship between the steess and
the deformation. We discuss the mechanics in Chaptet
18 and Section 20.1 and address the application to fold-
ing in Sections 20.2 and 20.3.

Fault-Bend and Fault-Propagation
Folding of a Multilayer

We describe in Chapters 5 and 6 on normal faules and
thrust faults how bends in the fault surface (changes in
dip or fault ramps) result in folding of the hanging wall
block where it rides over the bend. Such fault-bend folds
include the rolflover anticlines on normal faules and the
complex ancielinal scacks above thrust duplexes. We
can explain the fold geometry in many nacural examples
of fault-bend folding by using seme fairly simple geo-
metrical constraints and assumptions abouc the kine-
matics of layers being displaced over fault bends. Such
constraints have proved extremely useful in interpreting
the structure of several fold and thrust belts, and they
are applicable to normal faulted terranes as well.

The kinematic analysis requires that we make the
following assumptions:

1. No gaps are introduced as a result of slip along the
fault plane.

2. Fault bends are sharp.

3. The orthogonal thicknesses of layers in the deformed
block are preserved.

4. The lengths of layers in the deformed block are pre-
served.

5. Layers that have not been transported across a fault
bend are undeformed.
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These assumptions imply a bending model of folding
that is accommodated by layer-parallel shear (char is,
by the HAexural-shear mechanism), that the folds have
straight limbs and sharp hinges with a bluntness of zero,
and thar the folds are multilayer class 2 folds. Note thart
this is the one geometry for which flexural folding can
produce a class 2 fold, and it is a basic property of
models for kink and chevron folds (Section 12.6). In
nature, the flexural shear actually may be approximated
by flexural slip.

The geometry of the deformation in a faulr-bend
fold is illustrated for a fold concave toward the fault
{(an anticlineg) in Figure 12.24. For simplicity, the foot-
wall block does not show the stratigraphy. The layers
in the hanging wall block are shown fotded across the
fault bend. Dashed extensions of rhe layers indicare the
layer geomerty that would prevail if no deformation
occurred in the hanging wall block. The angle thtough
which the fault bends is . The initial cutoff angle be-
tween the fault and the layers is 8, and i is the fAnal
cutoff angle. The interlimb angle 1 is bisected by rhe
axial plane, which is the geometry requited to preserve
constant bed thickness, and the folding angle is ¢b. From
Figure 12.24, we can see that

=V +E—p (12.1)

This geometry leads to the [ollowing equation, relating
the faultr-bend augle f§ to the interlimb angle 1 of the
associated fold if the initial curoff angle is 6.

¢ =180 — ¢

—sin (0.5t — 8) [sin (1 — 8) — sin A]
cos (0.51 — &) [sin {1 — &) — sin 8] — sin 0.5:

ran § = (12.2)
For a simple ramp in a décollement for which § = 6,
this relationship reduces to
sia I
ran ff =ran @ = T+ cons (12.3)
These relationships determine the geemetric evo-
lurion of a fault-bend fold. Figure 12.25 illusrrates the
two phases in the development of a fauli-bend fold at
a simple ramp. At the inicial increment of displacement
on the fault, two kink bands form, with kink band
boundaries A and A’ for one and B and B’ for the other.
Axial plancs A’ aud B’ are fixed in the hanging wall
block at X" and Y’, respectively, and they migrate wirh
the block as displacemeut accumulates on the fault.
Axial planes A and B are fixed in the footwall block at
X and Y, respectively. Thus as displacement continues,
material in the hangiug wall block migrates through
the axial surfaces A and B, and the kink folds grow.
The first phase of development continues until the point
Y" in the hanging wall block, to which axial plane B
is attached, reaches the point X art the top of the ramp.
Ac this instant, the fold reaches its maximum amplitude,
the axial surface B’ becomes fixed at the point X in the
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Figure 12.24 Geomerry of deformarion in a faulr-bend fold.
The angles are drawn in the posirive sense for faulr-bend folds
that are concave roward the faulr {anticlines). For fault-bend
folds convex toward the faulr (synclines), the angles ¢ and 4,
measured as shown, are considered to be negarive. 8 = the
inirial curoff angle of the beds againsr the [aulr (90° =
0 > —50°, = the final curoff angle (180° = = —50°);
B = the angle of the bend in the faulr plane (30° = f = 0%);
1 = the interlimb angle (180° = 1 = 07); ¢ = rhe [olding angle
{180° = ¢ = 0°).

C.
Figure 12.25 Development of a faule-bend fold at a simple

fault ramp.




Figure 12.26 A faulr-bend fold resulting from imbrication of
a thrusr faulr at a simple ramp and initiating a duplex srructure
at depth. In this case, the number of increments of dip at the
fronr and back of the fold indicates the number of imbrica-
tions on the faulr.

footwall block, and the axial surface A becomes fixed
to the point Y in the hanging wall block. The second
phase of development begins with further displacement
on the fault. Axial planes A" and A are now fixed in
the hanging wall block and migrate with it, and axial
planes B and B’ are now fixed with respect to the foot-
wall block at the bottom and top of the ramp, respec-
rively. Material in the hanging wall block migrares
through these axial planes, becoming sheared as it passes
rhrough B and unsheared as it passes through B'.

More complex models can also be treated, such as
the development of faule-bend folds above imbricated
thrust faules and dnplexes (Figure 12.26). Note that the
dips of the layers change in a stepwise manuner at the
axial pianes and that, in this case, the number of step-
wise increases in dip at the front and back of the fold
is an indication of the number of fault imbrications at
depth. Thus under favorable circumscances the analysis
of dip domains on fault bend folds at the surface can
help constrain the geometry of complex fault structures
at depth.

This same model applied to normal faules (Figure
5.5) predicts the existence of fault bend anticlines and
synclines that reflect the geometry of fault surface at
depth. A simple model of a listric normal fault with
a roll-over anticline is provided by the left half of Fig-
ure 5.5B including only the main fault chat cuts the
surface and the connecting flac. The deformation
assoclated with folding is accommodated by shearing
on a set of synthetic faults parallel to both the main
fault and the axial surfaces of the kink fold above the
flat (cf. Figure 5.3).

Comparable folds also form in association with the
propagation of a faulr across a layered sequence, as
illuscrated in Figure 12.27. Where the fault turns upward
to cut across the layering, a pair of kink folds form with
kink band boundaries A and A’ for one kink and B and
B’ for the other. The axial plane A" terminates at the
tip line of the fault but is not parallel to the fault ramp.

Thus it migrates through the marterial as the faulr rip
propagates. The kink band between A’ and A accom-
modares the slip ahead of the faulr. Axial plane B is
fixed relative to the footwall block at the bend in the
faulr, and displacement on the fault causes matetial in
the hanging wall block to migrate through B. Axial plane
B’ intersecrs axial plane A at the same stratigraphic level
whete the fault tip is located ar any given rime. Below
this stratigraphic level, folding is complete because fur-
ther displacement is taken up by slip on the fault, not
by folding. Axial planes A and B also migtare through
the material as the fault tip propagates, bur che axial
plane formed from the merging of A and B’ temains
fixed in the hanging wall block and is displaced with ir.

For the formation of a simple ramp in a thrust
fault, under assumptions 1 through 4 above for faulc-
bend felds, a unique telationship can be obrained be-
tween the curoff angle & and the interlimb angle of the
resulting fold 1.

2sec —cot @ = —cor: (12.4)

If folding becomes impossible at some point in this
process (because, for example, of the resistance of a
particular layer), the fault may propagate between the
axial planes A" and A. If it curs through above A', it
leaves a right syncline in rhe footwall block, a feature
commonly observed in narure and ascribed to ““fault
drag” rather than to fault-propagation folding.

Comparing Figures 12.25 and 12.27 reveals simi-
larities in the folds formed by fault-bend folding and
fault-propagarion folding. The relationship becween the
interlimb angle ¢ and the initial cutoff angle 8, however,
is different, as shown by Equations (12.3) and (12.4).

fautt (p

sho

Figure 12.27 Development of a Fault-propagarion fold above
the rip of a propagaring thruse fault,
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For faule-bend folding, the maximum possible cutoff
angle is 8 = 30°. For higher angles, the necessary de-
formation is impossible within the assumptions of che
model. For fault-propagation folds, there is a unique
relationship between interlimb angle and cutoff angle,
and cutoff angles as high as 60° are permitted. In general,
for a given cutoff angle, the inteclimb angle fot fault-
ptopagation folds is smaller than is possible for common
fault-bend folding, so the origin of a fault-related fold
can in principle be determined. For most cutoff angles,
which are less than 30°, ught folds result from faule
propagation, and open folds from fault-bend folding.

These kinematic and geometric models for fault-
related folding have proved very useful in the interpre-
tation of the deep strucrure in a number of fold and
thrusr belrs. Such interpretations must be based on sur-
face mapping, well data, seismic data, and regional stra-
tigraphic data, and they are not unique. The geometric
requitements of the fold models, however, constrain
how these data can be fitred inro a viable model of the
structute at depth.

If any of the assumptions for the model are violared
in natutal deformation, of course, the model does not
provide reliable constraints on the reconstruction, and
the distinction between the two fold origins may become
blurred. Beds may deform by nonlayer-parallel shear,
they may thicken or thin by homogeneous deformation,
or the volume of part of the section may be changed
by solution of material. Some aspects of nonlayer-
paralilel shear can be included in the model, but most
other rypes of deformation do not yield unique geo-
metric constraints. In such cases, inconsistencies in the
reconstructions can point to situations in which the
assumptions of the model do not apply.

“Drag Folds’’ and Hansen'’s
Method for Determining the
Slip Line

When rocks are subjected to shear, layers in the rock
commonly form asymmetric folds whose sense of asym-
metry reflects the sense of shear of the deformation.
Such folds are commonly called drag folds, the impli-
cation being that the velocity gradient in the shear zone
has dragged the layer into a fold. Characreristically they
are noncylindrical, asymmetric, and disharmonic. Be-
cause hinge orientations depend on the original orien-
tation of the layer relative to the shear plane and on
local inhomogencities in the flow, they can vary widely
and need not be linear (see, for example, the folds in
the salt bed in Figure 12.34A). Thus the hinge orien-
rations do not indicate the slip direction. The hinges
may form parallel to the shear plane; if they do not,
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subsequent simple shearing tends to rotate them toward
parallelism with both the shear plane and the slip di-
rection. More complex geometries of flow than simple
shearing, however, can rotate fold hinges forward being
eicher parallel or perpendicular to the direction of flow.

The sense of asymmetry of any “drag fold,”
whether its hinge is curved or straight, must be con-
sisrent with the sense of shear in the zone. This rela-
tionship of fold asymmetry to shear sense is the basis
of the Hansen mechod of determining the slip direction.?
If all hinge orientations are plotted on a stereonet with
their appropriate sheac senses, then they should lie ap-
proximately along the shear plane (Figure 12.28A, B).
The separation angle, actoss which the shear sense
changes, contains the slip direction, and the asymmetry
of the folds defines the sense of shear of the deformarion
{Figure 12.28B}. The hinges closest to being parallel to
the slip direction ¢hinges 1 and 3, Figure 12.28) constrain
the possible slip orientation, because fold hinges on
opposite sides of the slip line must have opposite shear
senses.

3 A complere discussion of the application and pitfalls of this method
can be found in Hansen (1971).

— = direction

Separation
angle
Slip
direction

B.

Figure 12.28 Hansen’s method for slip line determination in
folded layers subparallel to the shear plane. A. Fold hinges
numbered 1 through 7 have a variety of orientations. The
asymmetry of any part of a fold hinge, however, is consistent
with the sense of shear. Because fold hinges 2 and 3 lie on
opposite sides of rhe stip direction, they have opposite shear
senses. B. On a stereonet, the hinge orientations plot parallel
or subparallel ro the shear plane, and the asymmetry of the
folds changes sense across the separation angle, which must
contain the slip direcrion. The sense of fold asymmerry defines
the shear sense of the deformation.




The Geometry of Superposed
Folding

In complexly deformed areas such as the central core
regions of orogenic beirs, folded layers of rock com-
monly display a geometry indicaring thar earlier folds
have been folded by one or more sets of later folds.
Such multiple foldings are referred to as superposed
folding, and the different sets of folds are called gen-
erations of folds. A first generation of folds is refolded
by a second generation and by all subsequent genera-
tions.

In discussing superposed folds, we need a noration
to describe-the successive surfaces and hinges formed.
The terminology is illustrated in Figure 12.29. Surfaces
are labeled S. Bedding is Sy, and the axial surfaces of
first, second, and higher generations of folds, which are
assumed to form as planar surfaces, are designated Sy,
S, and so on. Fold hinges are labeled £ The fold hinges
of successive generations are f1, f2, and so on. It is also
useful to include with the fold hinge symbol a desig-
nation of the surface being folded. Thus the fold hinge
1% means a first-generation fold hinge in the Sy surface
(bedding}. Second-generation folds develop in the al-
ready folded bedding Sy and in the first-generacion axial
surfaces $1. Thus second-generation fold hinges in these
surfaces are labeled £5° and 3, respectively (Figure
12.29).

The basic patterns of orientations of fold hinges
and axial surfaces that result from the superposition of
two generations of folding can be analyzed according
to fairly simple geometric rules. In general, the youngest
generation of folding has planar axial surfaces. The
axial surfaces of older generations are folded by all

Figure 12.29 Geometric elements of a refolded feld. The first-
generation folds are folds in Sy with fold axis £3° and axial
surface Sy. The firsr-generation folds are refolded by second-
generation folds that have axial surface $;. Second-generarion
fold axes develop in Sy (3% and in §, {(F31).

younger generations. After two generations of folding,
for example, second-generation folds are developed in
both the bedding Sy and the eatlier generation axial
surface §y, and both have the same planar second-
generation axial surfaces S; (Figure 12.29). Eatlier gen-
eration fold axes commonly behave like passive linear
features and are totated by later generations of folding.
The rotated axes develop predicrable patterns that de-
pend on the initial fold axis orientation and the geometry
of the later deformation. We discuss some of these pat-
terns in Section 16.1 {Figures 16.1-16.3). Although the
youngest generation axial surfaces are commonly
planar, the associated fold axes develop in a range of
orientations depending on the initial orientation of the
surface being folded {compare fold axes in Figure 12.9
A, B). They are related to one another only in thar all
the youngest generation fold axes must lie within the
youngest generation axial surface. Although real folds
can be considerably more complicated than these ideal-
ized relationships suggest, analyses of the geometrical
relations have allowed complex sequences of superposed
structures to be unraveled. The details of the procedures
are beyond the scope of this book.

If second-generation folding is Aexural folding of
approximately the same scale as frst-generation folds,
which would be expected for competent layers, the ge-
ometry resulting from rhe superposition does not con-
form neatly to the principles we describe above. Figure
12.30A, B shows the results of the experimental super-
posirion of two generations of flexural folds in a stiff,
puttylike material, and they illustrate the complexity of
the superposed geometry.® Although in Figure 12.34B
many of the second-generation fold hinges (f3°) lie close
to the second-generation axial surface (S;) (Figure
12.30C), rhe first-generation folds are widely scattered
and show no simple geometric pattern.

If the second generation of folding occurs by pas-
sive shear and is similar in scale to the first generation,
which is an approximate model for folding of incom-
petent rocks, the resulting outcrop patterns of the su-
perposed folds, called interference patterns, have
characteristic styles that depend on two angles W and
f. r is the angle between a;, the second-generation slip
direction, and $;, the frst-generation axial surface
(W =ay 8. 0 is the angle between f;, the first-
generation fold axis, and the second-generation axial
surface (8 = f; A S5;) (see Figure 12.31}.

The interference patterns are shown in the right-
hand diagrams in Figure 12.31A, B, and C. The first
diagram in each part shows the geometry of first gen-
eration {f]) folding. The second diagram shows the

4 For an everyday analogue, imagine how difficult it would be to fold
a sheet of corrugated sheer metal or plastic in a direction not parallel
to the corrugations. The corrugations are pur into the marecial pre-
cisely ro give ic flexural rigidity.
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Figure 12.30 Experimental models of
two generations of superposed flexure
folds of comparable scale. Superposed
flexuce folds formed by buckling a layer
of competent plasticine imbedded in in-
competent putty. A. The layers were
shottened sequentially 17.5 petcent and
20 percent, respectively, in two direc-
rions 70° apace. The folds teending left
to tight are the second generation. B.
Sequendal- shoteening of 17 peccent
and 23 peccent was Imposed in direc-
rions 80° apacc. C. Steceonert projection
showing first- and second-generacion
fold axes and poles to axial surfaces,
measured from che experiment shown
in part B,

First-generation
fold axes

Second-generation
fold axes

Second-generation
axial surface




First-generation foiding Second-generation folding interference patterns

Figure 12.31 Fold inrerference patterns. In each case, the left-hand diagram shows first-generation
folds in Sy and the axial surface Sq; the middle diagram shows the geometry of second-generation
folding as it would appear in an initially horizontal surface; the righr-hand diagram shows the
superposition of the second-generation folding on the folds in the left-hand diagram, with the
surface eroded down ro a flat plane to reveal the characrerisric outcrop pacterns, which are shown
in heavy lines. A. Type 1 interference folds, showing dome-and-basin interference patterns. Here
a, is ar a small angle to Sy, and f; is ar a high angle ro S;. B. Type 2 interference folds, showing
arrowhead- or mushroom-shaped patterns. Here a; is ar a high angie to 5, and f; is ar a high
angle to §;. C. Type 3 interference folds, showing the wavy outcrop pattern of the §; axial surface.
Here a; is at a high angle to §;, and £ is at a small angle o $;.
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geometry of the second-generation folding as it would
appear in an initially horizantal surface. It is the same
cylindrical fold train for A, B, and C. When this folding
geometry is superposed on the first-generation folds, the
result is che refolded folds that appear as interference
patterns. The intersection of these superposed fold styles
with a horizontal surface of erosion produces charac-
teristic interference patterns, which are emphasized with
heavy lines in the interference pattern diagrams.

The different types of interference patterns shown
in Figure 12.31 depend on two angles: the angle between
the frst-generation axial surface §; and the second-
generation slip direction a,, and the angle between the
first-generation fold axis | and the second-generation
axial surfage S;. These angles may vary from near Q°
(small) to near 90° (large).

The type 1 interference folds (Figure 12.31A) are
characterized by complete closures of the outcrop pat-
tern of individual §; layers (Figure 12.32A). This pattern
reflects che presence of domes, basins, and inrervening
saddles in the folded surface. It develops when the slip
direction aj is contained between the limbs of the first-
generacion folds and thus is generally at a small angle
o S, and when the angle between £ and S5 typically
is large.

The type 2 interference folds (Figure 12.318) are
characterized by arrowhead-, crescent-, and mushroom-
shaped outcrop patterns of the folded surfaces (Figute
12.32B). These patterns develop when the a; direction
is not contained between the limbs of the first-generation
folds and is rherefore generally at a high angle to Sy,
and when the angle between /1 and $; typically is large,
as for the type 1 pattern.

The type 3 interference folds (Figure 12.31C) are
characterized by an undulating axial surface trace of
first-generation folds (Figure 12.32C). This pattern de-
velops if the slip direction a; is not contained between
the limbs of the first-generacion folds and is therefore
typically at a high angle to Sy, as for type 2 interference
patterns, and when the angle between f; and $; is small.
These rypes of interference patterns are end members
of a continuous gradation of patterns.

Interpretations

It is important to remember that to describe a second
geueration of folds as being superposed on a first gen-
eration implies only a sequence of deformational events.
It says nothing about the interval of time between those
events, and it does not necessarily imply that all folds
of a particular generation developed at the same time
everywhere. Moteover, the same number of fold gen-
erations do not necessarily appear everywhere, so any
possible correlation is probably more reliable if it is
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Figure 12.32 Narural examples of interference fold patterns

A. Type 1 style, showing domes and basins in a gneiss. B.
Type 2 style developed in banded marble. C. Type 3 style
developed in inrerlayered silicates and marble.




derermined by fold style rather than generation number.
These are very important cestrictions on the interpre-
tationt of superposed folding. The deformarions asso-
ciated with two generations could be associated with
rwo distince orogenic events separated by rtens or
hundreds of millions of vears, or they could be the result
of two separate phases of a single orogenic event. In
the latter case, different generarions could represent sep-
arate chronological phases of a single orogeny, or they
could represent changes in the geometry of deformarion
from place to place along the flow line for the rocks.

| PR Diapiric Flow

Diapirs are generally circular to elliptical structures on
a horizonral section thar form when relarively low den-
sity tock at depth rises through overlying rock of higher
density, driven by buoyant forces (the word “diapir”
comes from the Greek digperc meaning ““I pierce, |
penetrate’’). As the low-density material rises, there is
a complementary sinking of the overlying higher-density
material. The net effect is a lowering of the porenrial
energy of the system, which makes it more stable. This
process is an extremely important one in geology. It is
assoclated with rhe formartion of salt domes, metamor-
phic gneiss domes, and igneous plutons and with solid-
state convective upflow in the mantle.

Salt diapirs were the first such structures to be
recognized and are the best understood, in part because
of their economic importance as oif traps and sources
for salt and sulfur. They are widespread in areas such

as the north German Plain, western Iran, the Gulf Coast
region of the United States and Mexico {Figure 5.14)},
the southwestern Sovier Union, west central Africa, and
the Canadian Arctic. Salt is deposited in oceanic basins
in which cirenlation is very restricted, and evaporation
concenrrates sales in sclution untl they precipitate. In
a rifred margin tectonic setting, salt deposits accumu-
late after ocean water first enters the rift but before the
rift widens into an open ocean. Thus salt commonly
lies at the base of a section of denser marine sediments.
[t can also be deposited in a restricted closing ocean
basin, such as developed in late Miocene time in the
Mediterranean.

Diapirs begin as anticlinal or domal uplifts and
evolve into walls, columns, bulbs, or mushroom shapes
{Figure 12.33). The diapirs may become detached from
the original low-density layer. As the salt moves upward
it pierces through the overlying sediments, which be-
come bent upward along the margins of the diapir.
These upturned sediments, truncated against the im-
permeable salt, provide the excellent traps for hydro-
carbons that make salt domes so economically
important. The tops of salt domes usually have been
dissolved away by ground water (see the top of Figure
12.34C) and are characterized by broad, subhorizental,
insoluble residues from rhe salt and by brecciared frag-
ments of overlying rock called the caprock. A basin
commonly forms above the diapir because of the so-
lution. The sinking of the surrounding sediments to
compensare for the rise of the salt ofren produces a rim
syncline surrounding the diapir.

When we study the structures in rocks, our only
clue to the geometry of the original deformation is usu-
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Figure 12.33 Commeon forms of salt incrusions. Diapirs originate from a layer of salt and then
tise as sale pillows, salt stocks, or a salt wall, depending upon the excent of inrrusion.
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ally the geometry of fearures such as folds. In salt diapirs,
however, we have an unusual opportunity to examine
the folding that results from a fairly well undersrood
pattern of flow. Such examples provide us with models
rhat we can use to understand other deformarional en-
vironments in which a comparable style of folding is
produced.

Field refationships and models (see Section 20.7;
Figures 20.19-20.21) suggest that horizontal radial flow
converging toward the rising salt column initially forms
a set of circumferential folds whose hinges become ra-
dially oriented (Figure 12.34A). Minor shifts in the low
geometry produce refolding of earlier generations of
folds (lower inset, Figure 12.34A). As the salt moves up
into the stock, the folds rorate into a vertical plunge,
parallel to the main axis of rhe salt dome. A map of
layers in the Grand Saline salt dome shows a complex
geometry of class 2 tefolded folds and sheath folds that
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have subverrical to vertical hinges (Figure 12.34B; com-
pare upper inset in Figure 12.34A). In the bulbs and
mushroom caps of the domes, lateral spreading of the
salt and drag along the margins causes complex refold-
ing of the salt layers and the possible entrainment of
adjacent sediments into the folds (Figure 12.34C).
This example shows how different generations of
folds can form from a change in the flow regime along
the flow path. It also illustrates that different genera-
tions of folds can form in various places at the same
time. In mountain belts, therefore, one must be cautious
about the significance ascribed to generations of folds.
Shale diapirs are present in some areas where fold-
ing of unconsolidated sediments has taken place or
where rapid sedimentation and compaction have gen-
erated high fluid pressures in unlithified shales and
caused them to move upward through the overlying
rocks. The general form of these structures resembles

Figure 12.34 Tnrernal structure of salt
domes. A. Diagram of the base of a salt
dome, showing the evolution of folds
and refolded folds that result from con-
strictional low of salt from the layer
into the stock of the sait dome. B. Gen-
eralized map of parc of the Grand Saline
salt dorme in Texas, showing the char-
acteristic vertical folds and shearh
folds. C. Cross sections of the internal
structure of the Hianigsen salt dome
norrheasr of Hanover, West Germany,
showing complex folding that resules
from flow within the rising diapir and
from lateral spreading of che bulb.
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Fignre 12.35 Cross section of a gneiss dome with the mantle of deformed metasediments from
the Bronson Hill Anticlinarium of west-central New England. The merasedimentary rocks were
strangly deformed into recumbant nappes before deformation associated with the emplacement
of the gneiss domes.

that of salt domes. In some cases the shale diapirs even
reach the surface, where they form “mud volcanoes.”

Mantled gneiss domes are domical bodies of gneis-
sic rock found in highly metamorphosed core zones of
orogenic belts (Figure 12.35). They commonly display

foliation parallel to the walls of the body, and they are
surrounded, or “mantled,” by a sheath of metamor-
phosed sedimentary rocks. These bodies may be diapirs
of gneiss intruded into overlying rocks during intense
regional metamorphism.
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