Chapter 2

Geoprocessing in ArcGIS

2.1 Introduction

This chapter introduces the ArcGIS geoprocessing framework, including
the use of ArcToolbox, ModelBuilder, and Python. Experienced ArcGIS
users will be familiar with most of this material, but a review is beneficial.
Understanding the geoprocessing framework is helpful in writing effective
geoprocessing scripts. Similarly, Python and ModelBuilder are often used in
tandem, so a good knowledge of ModelBuilder is recommended to get the
most out of Python scripting.

2.2 What is geoprocessing?

Geoprocessing in ArcGIS allows you to perform spatial analysis and model-
ing as well as automate GIS tasks. A typical geoprocessing tool takes input
data (a feature class, raster, or table), performs a geoprocessing task, and
produces output data as a result. ArcGIS contains hundreds of geoprocess-
ing tools. Examples of geoprocessing tools include tools for creating a buffer,
for adding a field to a table, and for geocoding a table of addresses.

£
Geoprocessing

Input Data Tool

Quput Data

Geoprocessing supports the automation of workflows by creating a
sequence that combines a series of tools. The output of one tool effectively
becomes the input of the next tool. Creating these automated workflows
combining geoprocessing tools can be accomplished in ArcGIS through the
use of models and scripts.

22

Chapter 2: Geoprocessing in ArcGIS

The geoprocessing framework in ArcGIS consists of a set of windows
‘and dialog boxes that are used to organize and execute tools. The geopro-
cessing framework makes it easy to create, execute, manage, document,
and share geoprocessing workflows. Geoprocessing includes a set of tools

that operate on data. The basic geoprocessing framework comprises the
tollowing:

e A collection of tools, organized in toolboxes and toolsets

Methods to find and execute tools, including the Search window, the
Catalog window, and the ArcToolbox window

Tool dialog boxes for specifying tool parameters and executing tools

ModelBuilder for creating models that allow for the sequencing of
tools

A Python window for executing tools using Python

A Results window that logs the geoprocessing tools being executed
Methods for creating Python scripts and using them as tools

Each of these components is described in more detail in the sections that

follow. A few characteristics of this geoprocessing framework make it

possible to work with tools in a consistent yet flexible manner. These char-
acteristics include the following:

All tools can be accessed from their toolbox, which makes for a con-
sistent procedure for accessing tools, models, and scripts.

All tools are documented the same way, which allows for consistent
cataloging and searching.

All tools have a similar user interface (the dialog box) for specifying
the tool parameters.

® Tools can be shared.

2.2: What is geoprocessing?

2.3: A note

2.3

You may
outlines
ArcGIS.

applicat

than 18
Thel
menta

ArcGIS

scripts)

Arc
sible to
10.1 for
used to

write p
skills

processing?

2 3: A note

2.3 A note on ArcObjects

You may recall the term "ArcObjects" from chapter 1. This section briefly
outlines what ArcObjects are and how they relate to geoprocessing in
ArcGIS.

The ArcObjects library consists of basic programming objects Esri has cre-
ated to develop ArcGIS software. ArcObjects are made available to application
developers as part of the ArcObjects .NET Software Development Kit (SDK)
and the ArcObjects Java SDK. Application developers can use ArcObjects to
create new applications or to enhance the functionality of existing ArcGIS
applications. Esri software developers themselves use ArcObjects to create

most of the tools in ArcGIS as well as to build the geoprocessing framework.

ArcObjects is intended for use with a system programming language—
that is, a language that can access system-level functions to implement
complex logic and algorithms. ArcObjects consists of thousands of different
objects, which give a programmer a good degree of control over what the
application is going to look like and how it is going to work. Examples of
system programming languages include C++ and .NET languages, which
are some of the most common languages for working with ArcObjects.
These languages require substantial programming knowledge, much more
than is required for working with models and scripts.

The ArcObjects SDKs and the geoprocessing framework are comple-
mentary, yet they accomplish different goals. ArcObjects is used to extend
ArcGIS through new behaviors and to write stand-alone applications that
build on the functionality of ArcGIS. Examples include creating new user
interfaces and adding new behavior to feature classes. The geoprocessing
framework is used to run existing tools and to create new tools (models and
scripts) that automate tasks within the existing functionality of ArcGIS.

ArcGIS 10 introduced the desktop add-in model, which makes it pos-
sible to customize and extend ArcGIS for Desktop applications. In ArcGIS
10.1 for Desktop, Python was added to the list of languages that can be
used to author desktop add-ins. Python add-ins can be used for some of the
same things that were previously only possible using ArcObjects.

The emphasis in this book is using Python to create geoprocessing tools.
ArcObjects is not used directly and is therefore not covered in this book.
Desktop add-ins is also not covered. It should be noted that it is possible to
work directly with ArcObjects using Python—it is a programming language,
after all. However, the real strength of using Python lies in the ability to
write powerful scripts, which requires a moderate level of programming
skills and effort.

on ArcObjects Chapter 2: Geoprocessing in ArcGIS

23

24

Chapter 2: Geoprocessing in ArcGIS

2.4 Using toolboxes and tools

Geoprocessing tools perform operations on datasets.
Several hundred tools are available in ArcGIS. Exactly
which tools you have available in ArcGIS depends on
which product license you have (ArcGIS for Desktop
Basic, ArcGIS for Desktop Standard, or ArcGIS for
Desktop Advanced, formerly known as the ArcView
license level, ArcEditor license level, and ArcInfo
license level, respectively) and whether you have
extensions installed (such as the ArcGIS 3D Analyst
for Desktop extension, ArcGIS Network Analyst for
Desktop extension, ArcGIS Spatial Analyst for Desktop
extension, and others). The organization of the tools,
however, remains the same. +

In ArcToolbox, geoprocessing tools are organized
into toolboxes—for example Analysis Tools, Cartogra-
phy Tools, and Conversion Tools, among others. Each
toolbox typically contains one or more toolsets, and
each toolset contains one or more tools. +

There are several ways to find the tools you need:

¢ Some of the most commonly used tools can be
accessed directly from the Geoprocessing menu
in ArcGIS for Desktop applications. Only a hand-
ful of tools are listed there.

* Another approach is to search for tools. In the
Search window, you can type a term and search
your map documents, data files, and tools, You can
also filter your results to search for tools only. +

2.4: Using toolboxes and toolg

= E 3D Analyst Tools

= B analysis Toals

= Q Cartography Tools

& & Conversion Tools

= @ Data Interoperability Tools
(£ e Data Management Tools
83 Editing Toals

i B3 Geocoding Tools

w Geostatistical Analyst Toals
® & Linear Referencing Tools
] ﬁ Multidimension Tools

= @ Network Analyst Tools

& @ Parcel Fabric Tools

@ Schematics Tools

€3} @ Server Tools

i & Spatial Analyst Toals

Q Spatial Statistics Tools

& & Tracking Analyst Tools

= B analysis Tools
= &y Extract
#, clip
#, Select
#, Split
"“\», Table Select
[+ B Overlay
&y Proximity
[B Skatistics

& = @ e u.j) JLocaI Search N -vl
ALL Maps Data Tools ﬁl
fetip L Q

Any Extent v

Search returned 11 iterns w SortByw

*, Clip (analysis) (Tool)
Extracts input features that overlay the clip featur... 4

toolboxeshsystem toolboxesianalysis taols thitext.,,

%, Clip (Data Management) (Toal)
Creates a spatial subset of a raster, including a ra...
toolboxes\system toolboxes\data management too.,,

#,, Extract by Rectangle (Spatial snalyst) (Toal)
Extracts the cells of a raster based on a rectangle,
toolboxeshsystemn toolboxeshspatial analyst tools.t...

#, Extract by Mask (Spatial &nalyst) (Teal)
Extracts the cells of & raster that correspond to th..
toolboxeshsystem toolboxesyspatial analyst tools.t... ol

oolboxes and tools

SortBy w

he clip featur,,,
tools thxext..,

ncluding a ra,,,
nagerment toa.,,,

yst) (Tool)
1 & rectangle,
nalyst tools t..,

Taol)
espond to th..,
nalyst tools.t...

2.5:Le

Once

arning types and categories of tools

To see all the available tools,
you can open ArcToolbox and
browse through the toolboxes
and toolsets until you find the
tool you want. Similarly, you
can browse through the tools
in the Catalog window in the
ArcMap application or in the
Catalog Tree window in the
ArcCatalog application. Given
the number of tools available,
browsing can be cumbersome
if you don't know where to
look. Once you gain experi-
ence using the tools, however,
you will start remembering
where the tools are that you
use most frequently. +

you have found a tool, you

can double-click it to open the tool
dialog box and fill in its parameters.

N oA A o | B =
¢-oaelR@ E &8 E

Location: \ (55 Home - My DocumentsiarcGIS

Chapter 2: Geoprocessing in ArcGIS

B Hame - My Documents\ArcGls

5 Folder Connections

= @l Tooboxes

(&l My Toolboxes
= [System Tooboxes

® &3 3D Analyst Tools.thx
& & Analysis Tools. thyx
i+ B8 cartography Tools.thx
* a Conversion Tools.tbx
& @ Data Interoperability Tools.thx
[E3] @ Data Management Tools,tbx
= % Editing Tools.tbx
& Q Geacoding Tools tbx
[+ @ Geostatistical Analyst Tools.tbx
ez} @ Linear Referencing Tools, thx
=] @ Multidimension Tools,thx
B3 Netwark Analyst Tools.tbx
£3} Q Parcel Fabric Tools.kbx
= @ Schematics Tools.tbx
i+ @ Server Tools.tbx
5] @ Spatial Analyst Tools,thix
= @ Spatial Statistics Tools,thx
® @ Tracking Analyst Tools,thx

it ﬁ'] Database Servers

[l Database Connections

[1] GIS Servers

[5] My Hosted Services

2.5 Learning types and categories of tools

There are four types of tools in ArcGIS, and each is designated by a differ-
ent symbol.

&

. Built-in tools: These tools are built using ArcObjects and a compiled

programming language such as C++ or the .NET languages. Esri creates
these tools when authoring its software, and most of the tools in ArcGIS
look like this.

&% Model tools: These tools are created using ModelBuilder. A number of

tools in ArcGIS are model tools—for example, some of the rendering

tools in the Spatial Statistics toolbox.

%" Script tools: These tools consist of scripts that are accessible using a

tool interface. When a tool is executed, a script is run to carry out the
geoprocessing operations—for example, a Python script (.py), an AML

(Arc Macro Language) file (.aml), or an executable file (.bat or .exe).

Most of the script tools in ArcGIS use Python.

25

26

Chapter 2: Geoprocessing in ArcGIS

&% Specialized tools: These tools are created by system developers. They
can have their own unique interface that is different from a regular
tool dialog box. These tools are not very common, although third-party
developers may distribute their tools in this manner.

Although these tools are created using different methods, the tool dialog
boxes for different types of tools all look the same,
There are also two categories of tools:

1. System tools: These are the tools that are created by Esri and installed
as part of the regular ArcGIS software. Exactly which system tools
are installed depends on the product license level and the number
of extensions. Most system tools are built-in tools, but a number of
script and model tools are also authored by Esri.

2. Custom tools: These tools commonly consist of script and model
tools, but built-in and specialized tools are also included. Custom
tools can be created by a user, but they can also be obtained from a
third party, and then added to ArcGIS,

When using geoprocessing tools, you may not notice which tools are system
tools and which ones are custom tools because they are designed to work
the same way. Once a custom tool is created, it can be added to a geopro-
cessing workflow the same way as any of the system tools.

2.6 Running tools using tool dialog boxes

When you find a tool, you can open it by double-clicking it, which brings
up the tool dialog box. Each tool has a number of parameters that need to
be specified before the tool can be run. A tool parameter is a text string,
number, or other entry that tells the tool how it should be executed. The
tool dialog box provides an easy-to-use interface for specifying these param-
eters. This includes browsing for and selecting datasets, selecting options
from a list, and entering values.

Most tools require one or more input datasets. Other common param-
eters are preset text strings called keywords. Although each tool has one
Or more parameters, not all parameters are required. Optional parameters
have default values that are set with the tool. You can accept the default
values simply by not changing the parameters or by not specifying a value.
Default values for keywords are typically shown on the tool dialog box
when it is first opened.

2.6: Running tools using tool dialog b

The tool d
the tool to

using tool dialog boxeg

E

2.6: Running

An example of the tool dialog box for the Clip tool is shown in the figure.

o IpputFestues)
- e ul

eCipFeatres

-
SRR 1‘

’} | Unknown N v

& Output Feature Class

.
¥ Tolerance (optional)

OK _] ﬁncel_] lEnvimnments‘..] l Show Help :>>J

Every tool dialog box has a Help panel on the right side that provides useful
information about the tool. You can switch the visibility of the Help panel
by using the Show Help and Hide Help buttons at the
bottom of the tool dialog box. To get a more complete description of the
tool, you can click the Tool Help button to access the tool’s Help
page. You will look at the Help pages in more detail in later chapters for
examples of how to use a tool in a Python script.

» Input Features Clip

» Clip Features Extracts input features that overlay the clip features.
b =
— J EJ Use this tool to cut out a piece of one feature class

s Output Feature Class using one o more of the features in another feature
| J class as a cookie cutter. This is particularly useful for

creating a new feature class—also referred to as study
— . area or area of interest (AO[}—that contains a

| {Unknown v | geographic subset of the features in another, larger
feature class.

bl Tulrance.(pptinnal) -

[£

[ot [cancsl | [Envronments...] [<<Hderiep | [Toolhep |

The tool dialog box contains the parameters that need to be specified for
the tool to run. Notice that there are a total of four parameters in the case
of the Clip tool. Three of them are flagged by a small green dot, which
indicates the parameter is required and needs a value, and thus there is no
default value. These are the Input Features to be clipped, the Clip Features,
and the Qutput Feature Class to store the result. The XY Tolerance param-
eter is optional.

The tool dialog box has several mechanisms for ensuring proper inputs.
For example, you could type the path and file name for Input Features (for
example, C:\Data\streams.shp), but you could just as easily end up with a
typo. Instead of typing a path and file name, you can click the drop-down
arrow ! to select from a list of the layers in the table of contents in your

ools using tool dialog boxes Chapter 2: Geoprocessing in ArcGIS

28

Chapter 2: Geoprocessing in ArcGIS 2.6: Running tools using tool dialog boxeg

current ArcMap document. This arrow is shown only when there are
acceptable feature layers in your map document to choose from. You can
also use the Browse button & to browse to data on disk. These options not
only prevent typos, but also check for valid data input. For example, for the
Clip tool, the Clip Features parameter has to consist of a polygon feature
class, so the selection and browsing options will show only the available
polygon feature classes.

Another feature of the tool dialog box is Clip INPUT
that the contents of the Help panel change
depending on where your pointer is. When
you first open the tool, a description of the Use this toal to cut aut a piece of one feature class
tool appesrs . the Help panel. If youare ot 573071 e o e st s
familiar with the tool, this description is use- f5 creating a new feature class—also referred to as
ful for ensuring you have the correct tool. + study area o area of interest (AOI)—_that cohtains P —

Ones you clickinside the St seafors a geographic subset of the faatures in anather, larger +

¥ 1 p feature class.
particular parameter on the tool dialog box, CLIP FEATURE
the content of the Help panel changes to show an explanation of the param-
eter. For example, when you click in the XY Tolerance (optional) input area,
a brief description is provided in the Help panel.

Extracts input features that overlay the clip features.

XY Tolerance (optional)

The minimum distance separating all featurs coordinates as well as the distance a coordinate
can move in X or ¥ {or hoth). Set the value to be higher for data with less coordinate accuracy ouTPuT
and lower for data with extremely high accuracy.

To get back to the overview Help, click anywhere on the tool dialog box,
but not inside any parameter input areas.

Now consider an example dialog box that has the parameters com-
pleted. The input feature class is a shapefile (.shp) called roads.shp and is
being clipped by a shapefile called zipcodes.shp. The output feature class
is a shapefile called roads_clip.shp. The XY tolerance is left blank, which
means the default value is used (which is 0.001 meters or its equivalent in
map units for this parameter).

Note: The full path to the output features is shown because
the feature class was selected from disk. When selecting

Input Features

[roads ~] @ layers in the current ArcMap document using a drop-down
Clip Features list, only the name of a feature layer is shown and not its
| zipcodes -] f_E;J full path. In the latter case, the file extension, such as .shp,
Output Feature Class is not shown because the parameter is specified as a feature
(Cloatehoads dpste | layer, not as a feature class on disk.

%Y Tolerance {optional)

| |Peet v

[_OK I [Cancel] [Environments..._] LShow Help =2 I

using tool dialog boxeg

INPUT

CLIP FEATURE

es is shown because
When selecting
using a drop-down
hown and not its
ision, such as .shp,

ecified as a feature

2,6: Running tools using tool dialog boxes

OK, the Clip tool runs. At the bottom of the
tatus bar displays the name of the tool that
.« being executed. BY default, tool execution occurs in the back-
;iojndg This means you can continue working in ArcMap as the

When you click
ArcMap interface, a s

tool runs. . . ; ;
When the tool is finished running, a pop-up notification appears

in the notification area, at the far-right corner of the taskbar. +

When a tool is finished running, the resulting feature class is
added by default as a layer to the ArcMap table of contents (when
the tool is run from within ArcMap). An entry is also posted to
the Results window {on the menu bar, click Geoprocessing >
Results). This entry includes all the input and output parameters,
as well as tool execution messages.

The entries in the Results window can be valuable in a num-
ber of ways. First, you can review the parameters that were used
to run a particular tool. Second, you can run the same tool again
directly from the Results window. The tool dialog box will be
populated with the same parameters as before, and you can use
these same parameters or change selected ones. Finally, you can
review any error messages in the Results window.

Take a moment to review the tool parameters on a tool dialog
box. Parameters that are required and need a value on the tool
dialog box have a small green dot next to them. +

You can click the green dot to see more detailed information
about the required parameter.

Optional parameters have no icon in front of them, and if they
are left blank, the default values will be used when the tool runs. +

If an incorrect parameter is specified, an error warning
appears. +

Pausing your pointer over the icon shows a brief description,
while clicking the icon brings up a more detailed error message.
In this case, the input dataset does not exist. +

Sometimes a warning message appears, indicating that run-
ning the tool may lead to undesired results. %

A warning message does not prevent the tool from running,
but it may warrant taking a look at the warning prior to running
the tool. In this case, the output dataset already exists and will be
overwritten if the tool is executed. +

Note: Overwriting geoprocessing results is an option under Géoprocessing

> Geoprocessing Options. The default is turned off, meaning an attempt to
overwrite existing datasets will result in an error. When the option is turned
on, only a warning message is provided and the tool will run, overwriting the
existing datasets.

Chapter 2: Geoprocessing in ArcGIS 29

Current Session

=i ;,;‘\ Clip [145055_03132012]
[*=] Output Feature Class: roads_clip.shp

= 0 Inputs

|| Input Features: roads.shp
| dlip Features: zipcodes.shp
= XY Tolerance:

[*" Environments
L] Messages

[Shared

Input Features
e
|

¥

' Tolerance (optional)

anput Features

| C:\Datalstreets.shp

ERROR 000732
Input Features: Dataset

C\Dataistreets.shp does not existoris

not suppotted

'_'_!50utput Feature Class

VWARNING 000725

Output Feature Class: Dataset
ChDatawroads_clip.shp already exists.

Chapter 2: Geoprocessing in ArcGIS

2.7 Specifying environment settings

Geoprocessing operations are influenced by envi-
ronment settings. These settings are like additional
hidden parameters that affect how a tool is run. The
Environment Settings dialog box (Geoprocessing >
Environments) allows you to view and set the envi-
ronments for geoprocessing. 4
There are a number of settings, but one of the
most important is the current workspace. Most
geoprocessing tools use datasets as inputs, and then
output new datasets. A workspace consists of a path
to where these datasets are located. Complete path
and file names can get quite long—for example,
C:\Data\project_A12\water\final. gdb\roads\streets,
To avoid having to type these lengthy names every
single time (and possibly introduce typos), you can
use the tool dialog box to select layers from the
current ArcMap document or to browse to the loca-
tion of a dataset. You can also drag files from the
ArcMap table of contents to your map. In addition,
a workspace can be set to make specifying input
and output datasets easier. After your workspace is
set, you need to specify only the base name. In the
preceding example, you would set the workspace to
C:\Data\project_A12\water\final.gdb\roads, and then
enter only the base name “streets” when specifying
tool parameters.
For example, how you would set the current

workspace is shown in the figure. +

On a tool dialog box then, you could specify a
feature class inside this workspace by typing only
its base name.

When you click anywhere else on the tool dialog
box, the parameter is automatically completed using
the current workspace, as shown in the figure. »

Output datasets are also created by default in
the current workspace.

2.7: Specifying environment Settings

Environment Settings

¥ Workspace

¥ Output Coordinates

¥ Processing Extent

¥ XY Resolution and Tolerance
¥ M Yalues

¥ 2 Yalues

¥ Geodatabase

¥ Geodatabase Advanced
¥ Fields

¥ Random Numbers

¥ Cartography

¥ Coverage

¥ Raster Analysis

¥ Raster Storage

¥ Geostatistical Analysis
¥ Terrain Dataset

¥ TIN

I_ OK j uanceﬁ Lshcw Help }ﬂ/

% Workspace
Current Workspace

| CH\Datalpraject_a Iziwgrifinai.gdb\,roads j B
szrltch Workspace

Input Features
] strests

Input Features
] C:\Datalproject_a1 Zywater\final.gdb\roadsistrests _'J L—j

treats hd

environment settings

2.7: Spe

here are two types of workspaces: (1) the current workspace, which
fault, where inputs are taken from and where outputs are
the scratch workspace, which is primarily used by model

4h
specifies, by de
placed; and (2) }
tools to write intermediate data.

There are also settings for specific data types (such as a geodatabase,
raster, or TIN (triangulated irregular network|) and for specific types of
functions (such as random numbers|. Typically, you need to set only a few
of these environments for a particular workflow because many of them do
not apply to the data and tools you are using.

Environments are always at work. In other words, even if you don't
specify them, they have default values that are used when a tool is run.
For example, the default Output Coordinate System is the same one as the
input. So when you are running a tool, the coordinate system is not changed,
unless you specify otherwise on the Environment Settings dialog box.

Environment settings can be specified at a number of different levels,
and there is a specific hierarchy to this process:

1. The first level is the application. You can right-click in the
ArcToolbox window and click Environments. This brings up the
Environment Settings dialog box. Any settings created here are
passed to the tools that are called by the application.

2. The second level is the individual tool. Every tool dialog box has an
Environments button . When you click the button, the
Environment Settings dialog box opens. Any settings created here
are applied only to the current running of the tool, and these settings
override the settings passed by the application. These settings are
not saved to the tool but apply only to a single execution of the tool.

3. The third level is a model. Environment settings can be created as
part of the model properties, which is separate from the settings
you create on the tool dialog box. Any settings created in the model
override the settings passed by the application or the tool dialog box
settings. Model environment settings are saved as part of the model
properties.

4. The fourth and final level is a script. Environment settings can be
coded into a Python script and these settings override the settings
passed by the application or the tool dialog box. These settings are
saved as part of the Python code in the script file.

In general, environment settings are passed down in this hierarchical
system, but you can override these settings at each level.

cifying environment settings Chapter 2: Geoprocessing in ArcGIS

32

Chapter 2: Geoprocessing in ArcGIS

2.8 Using batch processing

Most tools use a limited number of input datasets. For example, the Clip tool
uses only a single input feature class and clips it using a single clip feature
class. What if you wanted to run the same tool using similar settings on
many different input datasets? This is where batch processing comes in. In
the context of geoprocessing in ArcGIS, batch processing means executing a

single tool multiple times using different inputs without further intervention.

All geoprocessing tools can be run in batch mode. Right-clicking a tool
and clicking Batch brings up the Batch window of the particular tool. The
Batch window shows a grid of rows and columns. The columns are the
parameters of the tool and each row represents one execution of the tool.
Rows can be added and the tool parameters can be specified for each run.

For example, in the case of the Clip tool, the Batch window looks like
the example in the figure.

\ Clip : (=13

-Datalfloodzones shp CDatazipcodes shp \Da'lalﬁesults\.ﬂun)r{rones_clip.sh
atatparks.shp C;Paia\zipcndes.shp ;C:\Data'tﬂesults\parks_g!ipshp | ~J
"\Dma‘lmads.sh_p__ __ |C\Datazipcodes shp C:Data‘ﬂesul{glgpads_clip.&hp A |
‘Datalstreams.shp |C\Datalzipcodes shp | CrDataiResults\streams _clip.shp —
5 | C'\Datawwetlands shp C\Datazipcodes shp CrData'Resuttstwetlands_clip.shp _J
9|
< y |

I_ oK l [Cancel I [Environments.,.] [Show Help = J

The batch grid contains five rows, indicating the Clip tool will run five
times based on different inputs. The cells in each row represent the tool
parameters. The buttons on the right allow for adding and deleting rows,
changing the order of the rows, and examining the cells in the batch grid
for valid values.

Entering parameters for the batch grid is similar to working with a
regular tool dialog box, as follows:

¢ Click inside a cell and a drop-down arrow appears. This allows
you to select from the layers in the table of contents of the current
ArcMap document.

® You can drag layers from the table of contents into the dialog box.

2.8: Using batch processing

checking. 1
cally valid
input datase
scanned for

use, given
row is sele

ing batch processing

2.8: Using batch processing Chapter 2: Geoprocessing in ArcGIS

5 Right-click in a cell and click Open. This brings up a sepa-
rate dialog box that has the familiar drop-down arrow and

Browse optiOI’l. > Input Features

I
« Right-click in a cell and click Browse. This is a shortcut to

the Browse option. oK

] [Show Help ==]

In addition to completing the batch grid cell by cell, there are

a number of ways to quickly enter the parameter values for multiple cells,
including (1) copying and pasting cell values and (2} using the Fill option to
fill cells below a clicked cell with that cell’s value.

One important feature of the Batch window is the Check Values button
/|. When you enter values into the batch grid, there is no automatic error
checking. This is in contrast to regular tool dialog boxes, which automati-
cally validate parameters—for example, checking whether a particular
input dataset exists. When the Check Values button is clicked, all rows are
scanned for errors and output dataset names are created if needed. If errors
are found, the color of the cells changes.

i C:'Dataifloodzones.shp _ C'Data\Resutts\fioodzones_clip.shp |
. |CoDataiperks.shp |CriDatalzipcodes.shp (CriDataResultsiparks_clip sho _I
~ |Clbatsicadsshp CiiDstalzipcodesshp |CDataiResutsiroads._ciip.shp 1]
[_'C;\f)a't'_alstrearns.shp |CDatatzipcodes.shp C:\Dsta'Resutsistreams _clipshp |
5 |CiDatawetlands.shp | - (C\DataResulswetlands_clip.shp | 4|
9
< | ?
l OK H Cancel ! Evirunments... I { Show Help =3 I

Some common errors include the following:
* Green cells mean that a required parameter has not been specified.

* Red cells indicate an error was found and the tool will not run. The
most common reason is that the input dataset does not exist.

* Yellow cells indicate a warning. The most common reason is that the
output may not be what you expect.

Several other cell colors are also possible. White cells mean the parameters
are correct. Gray cells mean the parameter is unavailable because it has no
use, given the values of the other parameters. Finally, blue cells indicate a
row is selected.

Chapter 2: Geoprocessing in ArcGIS 2.9: Using models and MDde:'Bz,rj,'der

Running a tool in batch mode can be useful for setting up a large
‘number of geoprocessing tasks. Although filling out the batch grid takes
time, once the cell values are filled in, the tool runs in batch mode multiple
times without additional user input. Running a tool in batch mode, however,
does not reduce the time it takes for a tool to run. For example, running
the Clip tool in batch mode using 20 rows
takes the same amount of time as running the
stand-alone Clip tool 20 times with the identi-
cal parameters. Time is saved by the quicker
setup, not by faster tool execution.

In addition to batch mode, there are a hand-
ful of specific batch system tools. For example,
the Data Management toolbox contains the
Project tool, which creates a new feature class
with a different coordinate system from the
input feature class. The Project tool uses only

variables,

ﬁ Batch Project

@ Input Feature Class or Dataset

L

v Outputjf\f'arksp;ce

l
|
w
!
)

a single input feature class. The Batch Project L s | |E5

tool, on the other hand, is the batch version of deediosuiai o, N ;
this tool and allows for multiple input feature L — Hl such as st ;
classes. The same can be accomplished by ot i = linear units

running the Project tool in batch mode, but the
parameter controls vary slightly. +

Both models and scripts provide additional
ways to run batch processing, which is dis-
cussed in later chapters.

F@nch-rmation {optional)) I,

L ’]
variable of

[OKj L Cancel I [Environmentm Show Help =3 tors. The eo

2.9 Using models and ModelBuilder

The execution of single tools is a practical way to accomplish certain
GIS tasks. In a typical GIS workflow, however, you'll often need to run
a sequence of tools to obtain the desired result. You could simply run connected f
through the sequence by running one tool at a time, but this has limitations, Creati
especially if your workflows are long and repetitive. ModelBuilder is one
approach to creating this sequence of tools, whereby the output of one tool
becomes the input to another tool. ModelBuilder is like a visual program-
ming language—rather than using text-based instructions, it uses a visual
flowchart to sequence geoprocessing tasks. A model in this context is a
visual representation of a sequence of geoprocessing tasks. Within ArcGIS,
models are tools, and once they are created, they work just like any other
ArcGIS tool.

You can use any system or custom tool in your model, and there is no
limit to how many tools you can use in a single model. Models can also
include other models (since models are tools), and you can use iteration
loops and conditions to control the flow of a model.

dels and ModelBuilgg, g models and ModelBuilder Chapter 2: Geoprocessing in ArcGIS 35

2.9: Usin

Before looking at how to create and run a model, first familiarize your-
If with the basic elements of a model. Elements are the building blocks
se del. There are several types of elements: tools, data variables, value

of a mo
variables, and connectors.

Geoprocessing tools are the basic building blocks of a model. Tools perform
geoprocessing operations on geographic data. Data variables reference data
on disk or a layer in the ArcMap table of contents. Value variables are items
such as strings, numbers, Boolean values (True or False), spatial references,
linear units, and extents. In short, value variables contain anything but refer-
ences to data on disk. Variables are used as the input and output parameters
of tools. Derived data, or the output variable of one tool, becomes the input
e T variable of another tool. Data and values are connected to tools by connec-
.. [showiek >>] tors. The connector arrows show the direction of geoprocessing tasks. There
= are four types of connectors: (1) data connectors, which connect data and
value variables to tools; (2) environment connectors, which connect a vari-
able containing an environment setting to a tool; (3) precondition connectors,
which connect a variable to a tool; and (4) feedback connectors, which con-
nect the output of a tool back into the same tool as input. +

Connectors create model processes. A model process comprises a tool - >
. . Environmert
and the variables connected to the tool. The connector arrows specify the feirenme
sequence of processing. A typical model contains a number of processes Frecondition

connected together. Complex models can contain hundreds of processes.
Creating a model and running tools in ModelBuilder consists of a num-
ber of steps:

Feedback

1. Create a new model.
2. Add data and tools to the model.
3. Create connectors and fill tool parameters.

4. Save the model.

5. Run the model.

6. Examine the model results.

.

36

Chapter 2: Geoprocessing in ArcGIS 2.9: Using models and Mode/Byjlyy

Create a new model: There are two main ways to create a new model: (1) on

* the Standard toolbar in an ArcGIS for Desktop application, you can click

the ModelBuilder button @@ ; or (2] you can right-click a toolbox or toolset
in ArcToolbox, and then click New > Model. This creates a new blank
model in ModelBuilder.

a** Model 1 =13
Model Edit Insert View ‘Windows Help
BS LERX 2 & R@HE NS v

A

v
< | 2 ..t

Add data and tools to the model: You can add data and tools to the model
either by dragging them from the ArcMap table of contents or ArcToolbox
into the Model window or by using the Add Data or Tool button * on the
Model toolbar. In the model in the figure, a feature class called “roads” has
been added as a data element and the Buffer tool has been added as a tool.
Because the output of the Buffer tool is a new feature class, it has been
automatically added as a derived-data element.

roads_buffer

Create connectors and fill tool parameters: When you initially drag tools and
data to a model, the process is not ready to run yet, because the required
parameter values have not been specified. When any part of a process
appears white in the model, it means that parameters are still missing.
Parameters can be specified by opening the tool dialog box for each tool,
and then specifying tool parameters as you would for any tool. Setting
parameters creates connecting arrows, or connectors, between datasets and
tools. You can also create these connectors using the Connect button & ,
which lets you select the specific parameter to be set for a particular tool.
Once all the required parameters for a process are set, all the model pro-
cess elements are turned into a specific color to show they're ready to run.

odels and Modef.BuirQ'@r

2.9: Using models and ModelBuilder Ghapter 1 GaproGSSEI I ATOOIS

model: You can save your model by clicking the Save button & or
ng Model > Save on the Model toolbar. Model properties, includ-
ame of the model and its display name, can be set by clicking

Save the
by clicki
ing the n :
Model > Model Properties.

Run the model: Once all the parameters are specified, the model is ready to
run. You can run the entire model by clicking the Run button P or by click-
ing Model > Run on the Model toolbar. You can also run a specific process
by itself by right-clicking a tool and clicking Run. A Model progress dialog
box indicates the progress made in running the tools included in the model.
When the model run is completed, the model elements (other than the data
inputs) have drop shadows to indicate the tools have been run and the out-
put datasets have been created.

Examine the model results: By default, output datasets created by a model
are considered intermediate, which means they are saved on disk but not
automatically added to the ArcMap table of contents. To examine the model
result, you can right-click the model element that contains the output data-
set and click Add To Display. This adds the dataset to the ArcMap table of
contents so you can examine the result.

Additional tools and data can be added to the model using the same
steps. In the example model in the figure, the road layer is buffered and
then intersected with a layer of geological hazard areas. The intersect result
is then clipped using a watershed layer.

A model in ModelBuilder serves as a visual flowchart of a sequence of
geoprocessing tools. The ModelBuilder interface provides an intuitive way

to create this sequence. The key is that a model is a tool in a toolbox, which
makes it possible to save the model for future use and to share it with others.

38

Chapter 2: Geoprocessing in ArcGIS

The model developed so far is relatively simple. However, there is no
*limit to the number of datasets and tools that can be used in a single model.
Sophisticated models can contain a large number of geoprocessing tasks.
Among the advantages of using models to create geoprocessing
workflows:

® ModelBuilder provides an intuitive interface to create workflows.
¢ Models provide an efficient mechanism to document workflows.
® Models can be organized in toolboxes and shared with others.

There are many more details to learn about ModelBuilder, which is beyond
the scope of this book. ArcGIS Desktop Help provides extensive documenta-
tion on ModelBuilder. From within an ArcGIS for Desktop application, click
Help > ArcGIS Desktop Help > Professional Library > Geoprocessing >
Geoprocessing with ModelBuilder.

2.10 Using scripting

Just as ModelBuilder can be used to create models that run a sequence
of tools, a scripting language can be used to create and run this sequence.
Scripting languages are relatively easy to learn, and the primary scripting
language used in ArcGIS is Python.

Scripts are analogous to models: ModelBuilder is used to create models,
and Python is used to create scripts. ModelBuilder is a visual programming
language, and Python is a text-based programming language. And just as
models are tools within ArcGIS, scripts are also tools. So once a script is
created, it becomes another tool you can run on its own or use in a model
or in another script. Scripts can be run as stand-alone scripts on disk, in
which case they are not a tool, but it is relatively easy to add a script as
a script tool to a toolbox. Models can also be converted to scripts, but not
vice versa. Converting a model to a script is covered in a later section of
this chapter.

If models and scripts are so similar, why use a script instead of a model?
ModelBuilder is a very intuitive way to create tools and relatively easy to
learn for the beginning ArcGIS user. It requires no programming experi-
ence and there is no syntax to learn. Many geoprocessing workflows can
be accomplished using models created in ModelBuilder. These models
can be shared and modified. ModelBuilder, however, has certain limita-
tions, and some of the more complex geoprocessing operations cannot be

2.10: Using 5::;_.»-‘;‘93,-,19

The result,

Jsing scrj Chapter 2: Geoprocessing in ArcGIS

Pting 2 10: Using scripting

y a model alone. Some specific things you can do with a

lished b
T ot possible with a model include the following:

script that are 1t

e Some Jower-level geoprocessing tasks are possible only in scripts. For
example, script cursors let you loop through records in a table, read-
ing the existing rows and inserting new rows.

Scripting allows for more advanced programming logic, such as
advanced error handling and the use of more advanced data struc-
tures. Many scripting languages, including Python, have been
extended with additional libraries offering more advanced functions.

e Scripting can be used to wrap other software—that is, to glue together
applications. This facilitates the integration of various software
applications. For example, Python can be used to access functions in
Microsoft Excel or in the statistical package R.

e A script can be run as a stand-alone script on disk outside of ArcGIS.
In most cases, you still need to have ArcGIS installed on the com-
puter, but ArcMap or ArcCatalog do not need to be running for the
script to work.

» Stand-alone scripts can be scheduled to run at a specific time without
user intervention.

'l Python scripts can be created and run using a Python editor, such as
‘ PythonWin. You can also run Python code in the Python window of ArcGIS
for Desktop. The Python window works like an interactive interpreter and
code is executed immediately. The functionality of the Python window is
discussed in more detail in chapter 3.
To run a tool in Python, type the tool name followed by its parameters.
For example, the Python code shown in the figure runs the Clip tool.

Pythan

>>> import arcpy
>>> arcpy.Clip_analysis ("C:/Data/roads.shp", "C:/Data/zipecodes.shp”, "C: /Data/roads_clip.shp")

The result, which follows, is printed in the Python window and the result-
ing shapefile is added to the ArcMap table of contents.

<Result 'C:\\Data\\roads clip.shp'>

e

40 Chapter 2: Geoprocessing in ArcGIS

Notice that the Python code in the figure (see preceding page) uses “arcpy”
in the code. This is the ArcPy site package. The first line of code is import
arcpy, which makes it possible to access all ArcGIS geoprocessing tools
and other functionality in Python. ArcPy is described in detail in chapter
5. Don't worry too much about the exact syntax of the code for now. The
basic idea is that you run a tool by typing the tool name followed by its
parameters.

Note: ArcGIS 9 contained a Command Line window, which also allowed for the running
of a tool by typing the tool name followed by the tool parameters. The text you entered
was called a "command.” The syntax of these commands, however, was specific to the
ArcGIS environment—in fact, it relied heavily on the syntax of the old-style ArcInfo
command line. You could not use Python in the Command Line window. In ArcGIS 10,
the Command Line window has been replaced by the Python window. Those working with
Python typically refer to ‘code” rather than “commands, " but occasionally you will see
references to Python ‘commands.”

Python code can be entered in the Python window and run immediately.
You can also use a text editor or a Python editor to create and run Python
files on disk. Python files have a .py extension and are known as scripts.
Scripts are programs that can be run from the operating system, from a
Python editor, or by using a script tool that runs the script. Following is an
example of each.

The code contained in a script called clip_example.py is shown in the
PythonWin editor. This is a modified version of the script that is provided
within the Help page for the Clip tool. Again, don't worry too much about
the exact syntax for now.

£ clip_example. py

Name: clip example.py
Description: Script to execute a clip operation
Aunthor: Esri

Import system modules
import arcpy

from arcpy import env

Set workspace
env.vorkspace = "C:/Daca”

Set local variables

in features = "rogds,shp"
¢lip features = "zipcodes.shp"
out_feature class = Troads_clip.shp'”

Xy _tolerance = "

Execute clip
arcpy.Clip analysis(in features, clip_features, out feature class, xy_tolerance)

sing SCFI..,Dr?'ng

2,11: Running scripts as tools hapter 2: Geoprocessing in ArcGIS 41

e to the location of this script and double-click the file to
run it. You do not need to have an ArcGIS for Desktop application open
and you don't need to open the script in a Python editor. You can confirm
the results of the script execution by examining the data in an ArcGIS

for Desktop application. There are several benefits to running a script
directly—most notably, you can set a script to run at a specific time without

You can navigat

user intervention.
Another way to run a script is to use a Python editor like PythonWin.

You can open a script in the editor, verify its content, and then execute the
script. Similar to running a script directly from the operating system, you
do not need to have an ArcGIS for Desktop application open for the script
to run, although you need to have ArcGIS installed on your computer to be
able to use the geoprocessing functions. One of the benefits of running a
seript using a Python editor is that messages are printed to the interactive
window, including any error messages.

The third way to run a script is to create a script tool that runs the
script. For example, you can create your own toolbox, create a new script
tool (for example, My Clip Tool), and then add the clip_example.py script to

this tool.

= 3 My Tools.thx
=" My Clip Tool

You can then run the script as you would any other geoprocessing tool. The
benefit of running a script as a script tool from within ArcGIS is that you
can integrate the script tool with other tools and models. The tool has its
own dialog box, and the tool can be added to a model in ModelBuilder or
called by another script.

The script used here so far is relatively simple and in fact does noth-
ing more than the regular Clip tool. However, it is relatively easy to create
scripts whose functionality exceeds that of existing tools—these scripts are
covered in later chapters.

2.11 Running scripts as tools

As discussed in the previous section, scripts can be run in various = s Proximity

ways. Running a script as a tool is a great way to integrate Python ;'c- Buffer

scripts into ArcGIS workflows. In fact, many scripts written by Esri SiedE Thiessen Polygons
are made available as tools in ArcToolbox. For example, take a look ;ZE;; t;i:geiu:::e

at the Proximity toolset within the Analysis toolbox. Notice that the At

Multiple Ring Buffer tool is a script tool, as shown in the figure. + & Point Distance

.. Polygon Meighbors

Chapter 2: Geoprocessing in ArcGIS

When you open the tool dialog box, it looks like a regular tool with several

+ required and optional parameters. So from the perspective of a regular

ArcGIS user, all tools in ArcToolbox look the same.

< Multiple Ring Buffer

i % Input Features =

| | &)

| @ Output Feature class

| [
% Distances
]
L]
x|
1
3
Buffer Unit {optional) i
Default b 1
Field Mame (optional)
! distance _'
Dissolve Option (optional)
i]

[[] Outside Polygons Only [optional]

[oK 1[Cancel ”Er'wironments.?] @uwHelp >]

For most system tools in ArcGIS for Desktop, the underlying code cannot be
viewed. However, for script tools, you can look “under the hood" by open-
ing the script. To view the contents of a script, right-click the script tool and
click Edit. This shows that the tool calls a script called MultiRingBuffer.py.
These scripts are typically located in C:\Program Files\ArcGIS\Desktop10.1\
ArcToolbox\Scripts. Several dozen of the system tools that come with ArcGIS
for Desktop are script tools, and their content can be viewed in this manner,

The MultiRingbuffer.py script that is attached to the Multiple Ring
Buffer tool is shown in the figure (see facing page).

2.11: Running scripts ag oo

g scripts as tools

211 Running scripts as tools Chapter 2: Geoprocessing in ArcGIS

4 MultiRingBuffer.py

Tool Neme: Multiple Ring Buffer !
é;uree Hame: MultiRingBuffer.py

;._.',;v_-_a]_x:un: AroGIs 10.0

;uthur: Envirommental Systems Research Institute Ine.

- pequired Alrguments:
An input feature class or feature layer
An output feature classa
A set of distances (multiple zet of double values)
— Optional ArgumeEnts
The name of the field to contain the distance values (default="distance')
Option to have the output dissolved (default="iLL")
pescription: Creates a set of buffers for the set of input festures. The buffers
are defined using a set of warisble distances. The resulting feature
zlass has the nmerged buffer polygons with or without overlapping
polygons maintained as seperate featurss.

import arcgisscripting
import oS

import sVysS

import types

import locale

gp = arcgisscripting.create(9.3)

#Define message constants so they may be translated easily

msgBuffRings = gp.GetIDMessage {356143) #rBuffering distance ™

msgMergeRings = gp.GetIDMessage (86150) #"Merging rings..."

maghissolve = gp.GetIDMessage (86151) #"Dissclving overlapping boundaries..."
-def initiateMultiBuffer():

Get the input argument values
Input FC

input = gp.GetParameteriAsText (0)

Output FC

output = gp.GetParameterisText (1) v
< | >

Reading through this code can give you ideas for writing your own code.
The script is too lengthy to discuss in detail here. However, the basic idea
is that you can create a script and add it as a tool to a toolbox so that it
becomes a script tool a user can use without having to work directly with
the Python code.

Keep in mind that not all system tools are necessarily updated to
reflect the latest possibilities in Python scripting. For example, the
Multiple Ring Buffer script still uses the ArcGISscripting module,
the predecessor to the ArcPy site package. That is why you see the line
gp = ArcGISscripting.create(9.3), followed by frequent refer-
ences to this geoprocessing object. Esri does not necessarily update all its
code since the tool works fine using the older ArcGISscripting module.

Chapter 2: Geoprocessing in ArcGIS 2.12: Converting a model to a SCripy

Tools that are altered substantially from earlier versions, however, are
* more likely to be rewritten specifically using ArcPy.

The script tools that are part of the system tools are read-only and can-
not be edited. However, you can copy parts of the script code, or you can
copy the script file itself to a different location and make edits to the script.

212 Converting a model to a script

Models and scripts are analogous in that they are both used to create a

sequence of geoprocessing tasks. Models can be converted to Python scripts.

On the ModelBuilder menu bar, click Model > Export > To Python Script.
Take a look at the model created previously, as shown in the figure.

After exporting the model to a script, the Python code looks like the exam-
ple in the figure.

&} model.py

B —#- coding: utr-5 -#-

model. py

Created on: Z012-03-13 20:15:54.00000
(generated by ArcGIS/ModelBuilder)

Descriptien:

FoH R W R

Import arcpy module
import arcpy

Local variables:

roads = "C:\\Data\)roads.shp"

geohazard = "C:\\Datal\geohazard.shp"
watershed = "C:\%Daca)\\watershed.shp"
roads_buffer = "C:\\Data)\roads buffer.shp”
road _hazard = "C:\‘Data)\‘roads hazard.shp"
final = "C:\\Data‘\ifinal.shp"

Process: Buffer
arcpy.Buffer analysis(roads, roads_buffer, "1000 Feet”, "FULLY, "ROUND", "LLL", ")

Process: Intersect

arcpy. Intersect_snalysis("C:\\Data\\roads buffer.shp #;C:)\Dacs)\geohazard,shp #", road hazard, "&LL", =7, "INPUT")

v ALl

Process: Clip
arn:py.Clip_analysis(rnad_haza-rd, watershed, final, "")

|~

nodel to a SCripg

"INPUT™")

ipt contai
T:;h‘:sgfd and watershed) and the tools (Buffer, Intersect, and Clip).
g 1

rever

2.13: Scheduling

Although a mod . :
se is not true. Python scripts are more versatile than ModelBuilder, so

ns all the elements from the model: the data inputs (roads,

el can be exported to a Python script, however, the

that a Python script cannot be exported to a model.

cating a model and converting it to a script is a good way to be

introduced to what scripts look like and to get familiar with Python syntax.

When

2 model is converted to a script, the Python code very closely follows

the elements in the model, without adding anything extra. For example, the

resulting
| procedures. |
writing a scri

script does not contain any specific validation or error-checking
n general, converting a model provides a starting point for
pt, including very specific code blocks, but it rarely results in

a finished script.

2 13 scheduling a Python script to run at

prescribed times

Stand-alone scripts can be set to run at prescribed times. This can be useful

for such things as carrying out routine data maintenance tasks. The steps
for accomplishing this depend on the operating system.

Step 1: Access the scheduled tasks.

s For Windows XP: On the taskbar, click the Start button, and then, on

the Start menu, click Control Panel > Scheduled Tasks. If the Con-
trol Panel is in category view, select Performance > Maintenance >
Scheduled Tasks.

For Windows Vista: On the taskbar, click the Start button, and then,
on the Start menu, click Settings > Control Panel > System and
Maintenance. Then click Administrative Tools > Schedule Tasks.

For Windows 7: On the taskbar, click the Start button, and then, on
the Start menu, click Control Panel > Administrative Tools > Task
Scheduler. If the Control Panel is in category view, click System and
Security > Administrative Tools > Task Scheduler.

Step 2. Double-click Add Scheduled Task (or Create Basic Task).

Step 3. Complete the options on the wizard.

When asked to click the program you want Windows to run, click the
Browse button to select the Python script.

y .

a Python script to run at prescribed times Chapter 2: Geoprocessing in ArcGIS

Chapter 2: Geoprocessing in ArcGIS 2.13: Scheduling a Python script to run at prescribegd time

Many Python scripts require arguments to run. These can be set as part
of the scheduled task. On the last dialog box of the wizard, select the "Open
advanced properties” check box:

Open advanced propearties for this task when | click
Finish.

On the dialog box that opens, the script to be run is shown in the Run box.

Task l Schedurlguﬂirmiﬂ

ﬁ CAWINDOWSAT asksMtest_scriptiob

Run: irC: \Scriptshtest_script.py l

Browse...

Start in; lEi\SCTiDlS I

Comments: |—M*) 1
|

Run as: ! | I Set password,..]

[C] Pun only i logged on
Enabled [scheduled task runs at specified time)

I_ 0K] r Cancel] Apply

For a script to run with arguments, the Run box needs to be changed to
a string that contains the Python executable file, the script, and the argu-
ments to be passed to the script. For example, this would look like the
following code:

c:\python27\python.exe c:\data\testscript.py c:\data\streams.shp

These arguments are similar to the way parameters are passed to a script
from a script tool. If all information needed to run the script is hard-coded
in the script itself, no arguments are needed.

Scheduling a Python script to run at prescribed times appears relatively
simple, but there are some potential obstacles. First, the computer needs to
be turned on for a scheduled task to be executed. Second, scheduled tasks
typically require administrative access, and login information needs to be
provided when the task is set up. Finally, many Windows-based PCs are
configured to be locked or to log off current users after a certain period of
inactivity, which can interfere with running scheduled tasks. So before you
can rely on scripts being run in this manner, it is worthwhile to test your
computer configuration to ensure scheduled tasks are run properly.

F prescribed timeg

Points to remember

points to remember

The geoprocessing framework in ArcGIS provides a powerful yet flex-
ible system for organizing and running tools.

ArcGIS has a large number of tools, organized in toolboxes and tool-
sets within ArcToolbox. The different types of tools include built-in
tools, script tools, model tools, and custom tools.

A tool is run by specifying tool parameters, including input and
output datasets, and other parameters that control how a tool is
executed.

Environment settings also control how tools are executed and can be
set at different levels.

You can create your own tools using models and scripts. Once you
have created your own tools, they work exactly like regular tools.

ModelBuilder provides a visual programming language for creating a
sequence of geoprocessing tasks. Models act like a flowchart.

Python provides a text-based programming language for creating

a sequence of geoprocessing tasks. Python code can be run in the
Python window directly within ArcGIS. Python scripts (.py files)
typically consist of more complex code and can be executed in vari-
ous ways: directly from within the operating system, using a Python
editor like PythonWin, or from a script tool within ArcGIS.

Both models and scripts work like tools within the ArcGIS geopro-

cessing framework. Models can be converted to a script, but scripts
cannot be converted to a model. Converting a model to a script is a
good way to get started writing scripts in Python.

Chapter 2: Geoprocessing in ArcGIS

47

