ES341 Fundamentals of GIS - Final Study Guide

Study Tips

- -Read all chapters in book, study figures and tables, compare chapters to notes
- -Use study guide as a check list for knowing key terms, key concepts, key skills
- -Go back through the class / lab exercises, make sure you can do the math work
- -Go back through the key skills emphasized in the tutorials, make sure you know the software skills
- -I would study for a minimum of 10-12 hours if I wanted to do well on this exam.
- -create a sheet of key ArcMap commands bring to exam; it will make your job easier.
- -bring a calculator to the exam.

Key	Words	and	Skills	Since
Mid	term			

Map Projections - Part 2

x,y coordinates map projection georeference system map registration map resolution metadata

datum

North American Datum

NAD1927 NAD1983

Geographic Coordinate System (GCS – WGS1984 lat. long.) UTM Zone 10N NAD1927 UTM Zone 11N NAD1927 Oregon State Plane North Oregon State Plane South

Oregon Statewide Lambert

Arc Toolbox

Define projections tool Project tool

*.prj projection file

Geoprocessing (Price Ch. 7) Geoprocessing defined geoprocessing tools geoprocessing of shape files

geoproce merge clip dissolve erase intersect union

append

buffer

clipping functions merging shape files polygon editing splitting polygons merging polygons polygon islands Arc Toolbox Feature extraction

Data Editing (Price Ch. 12-13)

Editor Toolbar Point-snapping Data editing

Data export

Remove dangle nodes

Edge matching creating shape files heads-up digitizing convert to shape file

polygon tool split polygon tool complete polygon tool

shape editing editing shapes

vertex

vertex tolerance snap tolerance

node shape split shape merge split tool

digitizing polygons digitizing polylines vertex editing

adding points to shapes adding polygons to shapes

adding lines to shapes saving edits to shapes rotating features deleting features create features

Attribute Data / Editing / Queries (Price Ch. 4,5,6)

Data table

Relational database Categorical data Numerical data attribute database

fields
records
geodatabase
*.dbf file
table editing
add field
table link
table join
spatial join

attribute data calculation

field calculator
field types
floating point
single precision
double precision
string (text)
integer
precision
scale
query tools
query building

key fields

one-to-many relations

logical expressions

SQL

Attribute queries Spatial queries Feature selection Feature extraction

Special File Types
DEM Data *.dem
DRG Data *.tif *.tfw

Shapefile (*.shp, *.dbf, *.shx) ARC/INFO export file (*.e00)

Arc/Info GRID (raster)
ArcGIS geodatabase (*.mdb)
OrthophotoQuads (*.sid *.sdw)

DOQ

*.zip – zip file

Tar.gz - unix tar file

*.xml metadata file formats

Spatial Analyst / Raster

Analysis

Spatial analyst extension

Discrete point data

Grid format

DEM

ASCII format Binary format Grid attributes raster data grid themes

georeferencing rasters

world file rectification Control Points legend editor

spatial analyst extension symbolization – stretch symbolization – classify

 $symbolization-unique\ values$

DEM

elevation grid inquire tool cell value

Grid Data Source

color ramp hillshade

theme - convert to grid surface-derive slope

surface - compute hillshade

surface - create contours file-manage data sources theme-convert to shape file query builder for grids

classify legend

Analysis- Calculate density

from point file grid interpolation

creat contours from grid theme

Terrain Mapping

DEM / DTM

surface - create contour map surface - create hillshade map surface - create slope map surface-create aspect map

Map Algebra
Raster calculator
grid map algebra
matrix algebra

map calculator - evaluate

algebraic transformation of grid

Data Display

legend editor annotation

map classification

polygon labels text labels label tools

labeling map feature from dbase

Lidar Concepts

LIDAR

Laser

Laser pulse
EM spectra
Speed of light
Wavelength
Frequency

Reflection Absorption

Two-wave travel time

Laser source Pulse detector kHz – kilohertz first-returns second-returns last returns bare-earth model

digital elevation model

DEM

1-m resolution Point density Pulse intensity

Post-processing algorithm

Aerial surveys

Laser swath mapping Land classification Vegetative structure

Ground cover Flight lines Overlap Sidelap Flight plan

TIN GRID DEM

Data correction Roll-yaw-pitch

GPS – positioning systems

Errot correction Urban modeling Watershed modeling Topographic analysis

Resolution

Positional accuracy

Pulse rate Point density Altitude Field of view

Multiple-return lidar

Near-infrared Water absorption Fog-rain-absorption

Point cloud Laser altimetry First-return model

Metadata (Price Ch. 15)

FGDC standards *.xml file format

Lineage

Positional accuracy Attribute codes Spatial reference

Key Software / Analytical Skills

Can you work with the following tools?

spatial analyst, projection utilities, geoprocessing tools, editor toolbar?

do you know the basic functions of these tools, the types of data they are used with, the types of analytical procedures that can be performed with them?

Can you create a nice looking map in layout and print it out?

Can you define, project and reproject data?

Can you incorporate raster and vector data in a GIS exercise?

Can you perform a slope analysis using spatial analyst?

Can you create a hill-shading model using spatial analyst?

Can you create vector and raster-based queries to identify select areas on a map?

Can you add data to a table using the table editor?

Can you use the geoprocessing to clip, dissolve, merge data?

Can you find and download gis data from web sites, convert and decompress the data?

Can you use the editing tools to create and edit polygons?

Can you employ heads-up digitizing to create your own shape files? Can you use image analyst to mosaic air photos?

Can you use a photo / image base and create a shape file via digitizing?

Do you know what the following files / data types are: *.e00, *.shp, *.grd, Mr. Sid, *.tif, *.jpg, *.tfw, *.sdw, *.zip, *.tar.z, DOQ, DRG, DEM

Can you download and import a USGS DEM into an arcview / spatial analyst grid format?

What's the difference between an *.dem and *.grd file format?

Can you manage *.zip and *.tar.gz files?

Do you understand basic concepts of map algebra and what types of data it's used on?

Anticipate: 2-3 essay questions focusing on broad summaries of GIS, the types of applications it may be used for, the components of ArcMap specifically.

GOAL OF FINAL EXAM: To test your ability to use ArcMap and ArcToolbox as a tool to ask questions of spatial data.