□ Groundwater Remediation Strategies and Case Study

Valerie Panek - Hydrogeolgist CH2M HILL May 15, 2001

² Introduction

- General Discussion of Groundwater Remediation Strategies
- Related Case Study
 - ◆ Focus on Point-Source contamination
- Consultant's Point of View

3 ☐ Topics of Discussion

- Groundwater use in Oregon
- Remediation Strategies:
 - ◆ Framework
 - ◆ Specific Remediation Methods/Technologies
- Case Study

4 Groundwater use in Oregon

- 13% of water used in Oregon (1995)
- Supplies drinking water to 90% of rural residents
- Irrigation
- Industry
- Recharge and baseflow to lakes, streams and wetlands

5 Typical Events Cycle

- Initial Assessment(s)
 - identify nature and extent of problem, "source" area
- Remedial Investigation
 - identify potential migration pathways, receptors, and effects
 - + Fate& transport model
 - Groundwater Beneficial Use Assessment
 - + Current and Likely Land Use
 - + Human Health and Ecological Risk Assessments
 - Feasibility Study
- Remedial Action

6 Remedy Selection

Considerations

- Site Conditions (will it work given site geology, gw chemistry, etc)
- Regulatory (e.g., strategy dictated by ROD)
- Client Expectations (innovative vs. traditional approach)
- Costs (where is \$\$ coming from, reasonable vs benefits?)
- Benefits (effectiveness, full cleanup or to "acceptable" level)
- Timeframe for Cleanup (what acceptable/practical?)

- Risk (reliability, what if it doesn't work? new problems?)
- Available Technologies (Pilot phase or accepted practice)
- Applicable to constituent of interest??

7 Ground Water Treatment Technologies

- Active vs Passive
- Biological, Chemical, Physical
- Extract, Destruct, Immobilize
- Combination

8 Ground Water Treatment Technologies

- In-situ Biological Treatment
 - ◆ Co-metabolic Treatment
 - Enhanced Bioremediation
 - ◆ Natural Attenuation
 - ◆ Phytoremediation
- Ex-Situ Biological Treatment
 - **◆** Bioreactors
 - ◆ Constructed Wetlands

9 Ground Water Treatment Technologies

- In-Situ Physical / Chemical Treatment
 - ◆ Air Sparging
 - ◆ Bioslurping
 - ◆ Dual Phase Extraction
 - ◆ Fluid/Vapor Extraction
 - ◆ Hot Water or Steam Flushing/Stripping
 - ◆ Hydrofracturing
 - ◆ In-Well Air Stripping
 - ◆ Passive/Reactive Treatment Walls
 - Injection of ORC, HRC, Peroxide, etc.

10 Ground Water Treatment Technologies

- Ex-Situ Physical/Chemical Treatment
 - ◆ Air Stripping
 - Granulated Activated Carbon (GAC)/Liquid Phase Carbon Adsorption
 - ◆ Ion Exchange
 - ◆ Precipitation/Coagulation/ Flocculation
 - ◆ Separation
 - ◆ Sprinkler Irrigation
 - ◆ Ultraviolet Oxidation

11 Ground Water Treatment Technologies

- Containment
 - ◆ Deep Well Injection
 - ◆ Groundwater Pumping
 - ◆ Slurry Walls

12 Case Study

- Superfund Site Tie Treating Plant in The Dalles, OR
- Creosote (free product) found in shallow soils and deeper basalt water-bearing zones
- Dissolved creosote constituents (PAHs) in groundwater
- Selected dual-phase extraction system (pump creosote and water) as remedy for shallow aquifer
- Hydraulic containment system installed at site boundary
- Monitored Natural Attenuation with institutional controls selected as remedy for deep zone

13 Case Study

- Tie-treating Plant
 - ◆ 1922 Begin operations
 - 1938 Ponds shown on air photos
 - ◆ 1957 Water supply well drilled but not used "tasted oily"
 - 1967-70 DEQ received reports of oil release into Columbia River
 - 1971 Pipeline plugged with concrete
 - ◆ 1980 Ponds Abandoned
 - ◆ 1984-1996 EPA involvement, site investigations, NPL, etc., RI, FS
 - 1996 Record of Decision
 - ◆ 1996 Pilot DNAPL Recovery Test
 - 1999 Implementation of Hydraulic Containment System and DNAPL Recovery System in shallow aquifer

14 Hydrogeologic Setting

- Columbia River
- Upper 25 feet unconsolidated silty sand water-bearing zone, flows north toward river
 - Underlain by Columbia River Basalt Flows: Sentinel Gap, Sand Hollow I and II, Ginkgo flow tops are water-bearing zones (flow west)
 - Nearest municipal well one mile east of site in Sand Hollow I
 - Designated Critical Groundwater Area (withdrawals from aquifer closely monitored by OWRD)
 - Creosote density present on top of Sentinel Gap
 - Poor well construction may have allowed creosote to migrate to deeper zone

15 C Shallow Aquifer

- Dual phase extraction system with reinjection of water increases hydraulic gradients to extraction wells ==> enhanced recovery
- Hydraulic containment system "captures" creosote and dissolved plume, preventing offsite migration

16 Monitored Natural Attenuation Program (Intrinsic Biodegradation) - Deep Aquifer

- Demonstrated that contaminant concentrations are stable or decreasing
- Groundwater sampling data supported aerobic degradation (loss of oxygen, creation of byproducts) of PAHs

- ◆ Denitrification
- ◆ Sulfate reduction
- ◆ Methanogenesis
- ◆ Iron III reduction
- Actual travel distances of dissolved constituents << theoretical
- 17 So What???