Earthquake Risks and Mitigation in Oregon

Yumei Wang, Oregon Dept. of Geology and Mineral Industries, summary of offprint from "Environmental, Groundwater and Engineering Geology: Applications from Oregon, 1998.

- I. Introduction
 - A. Oregon and earthquakes
 - 1. all parts of state have potential for earthquakes
 - 2. Oregon lies at juncture of Cascadia Subduction Zone
 - a. Juan de Fuca plate subducts beneath N. America
 - B. Earthquake types
 - 1. Intraplate quakes within the Juan de Fuca plate
 - 2. Crustal quakes within the over-riding N. American plate
 - 3. Subduction-Zone quakes at interface between subducting and over-riding slabs
 - 4. Volcanic-related quakes
 - a. Cascade volcanic arc
 - C. Seismic Records
 - 1. limited historic seismicity
 - 2. surface traces of active faults limited
 - D. Moral of Story:
 - 1. moderate level of historic record for quakes but...
 - 2. significant risk in Oregon
- II. Earthquake Sources in Pacific Northwest
 - A. Convergent Plate Tectonic Setting
 - 1. Cascadia subduction
 - 2. Paleoseismic record
 - a. last major subduction zone quake ~300 yrs ago
 - b. several large magnitude quakes in past several 1000 yrs
 - 3. maximum magnitude quakes expected: 8.5-9.0 (wow!!)
 - B. Quake Types
 - 1. Deep Intraplate
 - a. depth 40-60 km, within interior of Juan de Fuca plate
 - b. max magnitude ~7.5
 - c. micro-earthquakes common
 - 2. Shallow Crustal quakes
 - a. depth 10-25 km, in N. American crust
 - (1) e.g. Klamath Falls 1993 (M5.9-6.3)
 - 3. Volcanic Quakes
 - a. max Magnitude ~5.5
 - b. e.g. Mt. St. Helens 1980

- A. Historic seismicity is low frequency
 - 1. problem complacency
 - 2. Explanations for low seismic frequency in Cascadia Subduction Zone
 - a. convergence rate = 0
 - (1) known: convergence rate = 3-4 cm/yr
 - b. converging slip accommodated aseismically
 - c. PNW is in major seismic gap, with major locked plate segments
 - (1) "the big one is coming"
- B. Factors for Oregon
 - 1. Population increase, > population density
 - 2. low public awareness
- C. History of Seismic Work in Oregon
 - 1. Trojan Nuclear Plant Siting
 - 2. Bonneville Power Administration
- D. Current Seismic Data Set
 - 1. prehistoric earthquake record
 - a. Native American legends
 - (1) Tsunamis
 - (2) landslides
 - b. Japanese historic documents
 - 2. Instrument-recorded data
 - a. GPS ground motion measurements
 - b. seismic analysis
 - 3. Geologic Records
 - a. quake-induced landslides
 - b. buried forests / marsh soils resulting from coseismic subsidence
 - (1) recurrence interval estimates for great quakes: 400-800 yrs
 - c. tsunamic sand deposits in back bay aeras
 - d. liquefaction features
 - e. turbidites
 - f. offshore submarine landslides
- IV. Hazards Mitigation and Risk Analysis
 - A. Terms Defined
 - 1. hazard probability of ground shaking (or any event)
 - 2. risk potential for death / destruction associated with hazard
 - B. Earthquake Hazards Mapping Program
- V. Hazards Maps
 - A. Hazards Associations
 - 1. Liquefaction potential
 - a. unstable saturated soils, during shaking
 - 2. Amplification of Shaking
 - a. unconsolidated, fine-grained soils
 - 3. Landsliding

- B. Key Data / Spatial Associations
 - 1. Bedrock Geology
 - 2. Topographic Slope
 - 3. Surficial Geology
 - a. Soils Distribution
 - b. Alluvial Sediments
 - 4. Groundwater Conditions
 - a. Depth to Water
 - b. Unconsolidated Aquifers
- C. Map Products
 - 1. Liquefaction Susceptibility
 - a. high susceptibility: loos, saturated sands / silt below water table
 - b. low susceptibility: consolidated bedrock, compacted gravels
 - c. Result of Liquefaction structural failures
 - d. e.g. Scale
 - (1) 0 no suscept. = bedrock
 - (2) 1 < 6ft of liq. material
 - (3) $5 \rightarrow 25$ ft of liq. material
 - 2. Amplification Susceptibility
 - a. defined materials intensification of groundshaking energy
 - (1) "ground motion amplification"
 - b. most susceptible: thick deposits soft, low density unconsolidated soils
 - (1) low shear wave velocity = high damage
 - c. e.g. Scale
 - (1) 0 no suscept. / bedrock
 - (2) 5 low density soils/ unconsolidated
 - 3. Landslide Susceptibility
 - a. earthquake induced shaking / landslides
 - b. Factors

c.

- (1) slope / gradient
- (2) groundwater saturation
- (3) vegetative cover
- (4) colluvial thickness / easily weathered rocks
- (5) bedrock structure
 - (a) bedding planes
 - (b) joints
- e.g. scale slope angle
 - (1) 1 low susceptibility (slopes < 6 degrees)
 - (2) 4 high susc (slopes > 22 degrees)

4. Relative Earthquake Hazard: based on above 3 criteria

a. Primary Analytical Tools

- (1) Surface Mapping / Public Record
 - (a) Bedrock Geologic Maps
 - (b) Surficial Geology Maps
 - (c) Soils Survey Maps
- (2) Geographic Information Systems
 - (a) Computer Based Spatial Analysis
 - i) Maps + Database

Category of Quake Hazard	Liquefaction	Amplification	Landsliding
0 (low)	0	1	0
1	1	1	1
2	1	2	1
3	2	2	2
4	3	3	3
5(high)	3	3	3

(0 = low, 3 = highest)