ENVIRONMENTAL GEOLOGY OVERVIEW OF LANDFILLS AND WASTE DISPOSAL

I. TYPES OF WASTE

A. Solid Waste

- 1. Municipal
 - a. Waste derived from residential/urban areas
 - (1) plastics, packaging, paper, cardboard
 - (2) food wastes
 - (3) Household Chemicals (paints, oil, cleaners, bathroom)
 - (4) Lawn wastes

2. Residual

- a. Waste derived from industrial processing
 - (1) a "residuum" left after a particular product is processes
 - (2) Construction debris, shredded plastics, fly ash in some cases, ashes, industrial sludges, automobile parts
 - (3) difference between residual and hazardous is one of toxicity and risk to health

3. Hazardous

- a. Heavy metals (chromium, lead, fluoride)
- b. Organic chemicals/hydrocarbons
- c. asbestos/particulates, ashes

B. Liquid Waste

- 1. Liquid Chemical By-products of Industrial Processing
 - a. Waste water/cleaners
 - (1) may be laden with organic chemicals, dissolved heavy metals, salts
 - b. Degreasers
 - c. Acids, pickle-liquors, alkali bases

II. WASTE DISPOSAL OPERATIONS

- A. Landfilling- burial of wastes in earthen pits
 - 1. Composting- of lawn and organic debris
- B. Sludge Ponds, Impoundments, Lagoons- liquid wastes and waste water placed in open lagoons for storage and/or treatment
 - 1. transformation of liquid wastes into solid sludges which are often then taken to landfilling operation
- C. Deep Injection Wells- disposing of liquid wastes by pressure injection into disposal wells deep beneath earth's surface

- D. Incinceration- burning of solid and liquid wastes
 - 1. includes firing augmentation with other fuels (gas/coal)
 - 2. fly-ash by-product must then be disposed of in landfill
 - a. Up to 90% volume reduction of solid waste to fly ash

III. CONTAMINANT PATHWAYS

- A. Ground Water Contamination
 - 1. "Leachate" = chemical soup formed by chemical degradation of wastes via percolating water
 - a. water source:
 - (1) rain/precipitation
 - (2) through-flowing ground water
 - (3) de-watering of waste itself
 - 2. Leachate leakage into porous/fractured subsurface aquifers
 - 3. Direct seepage of liquid residual and hazardous wastes into ground water system
 - 4. Potential contamination of residential/municipal well fields
 - a. Potential contamination of surface waters via contaminated seeps and springs
 - b. Toxic effects to plant and animal life, particularly in delicate wet-area ecosystems
 - c. Toxic effects to humans via water consumption and direct contact with contaminants
- B. Soils Contamination
 - 1. Seepage of contaminants into vadose zone (unsaturated zone) of unconsolidated sediment and soils.
 - a. eventual percolation into ground water system
 - b. Toxic effects to plant and animal life
 - c. Toxic effects to humans via direct contact
- C. Direct Surface Water Contamination
 - 1. Direct runoff of leachate/chemical contaminants into surface waters
 - a. Toxic effects to plant and animal life
 - b. Toxic effects to humans via contact and consumption
 - 2. Sediment erosion= overloading waterways with high suspended sediment loads
 - a. detrimental to aquatice life
 - b. artificial in-filling of drainages
- D. Other Considerations
 - 1. Air Pollution: asthetically offensive fumes and odors emitted from waste areas
 - a. Toxic chemical fumes, metals vapors (e.g. mercury), organic chemicals

- 2. "Fugitive dust" and/or particulates into atmosphere from landfill-excavation operations
 - a. Respiratory problems
 - b. Toxic metals and particles entering lungs

3. Methane Generation

- a. Methane (CH₄): common gas derived from anerobic microbial decay of municipal waste
- b. Methane = an highly explosive gas that is colorless and odorless
- c. Methane may escape from landfill area via subsurface pathways (porous material/fractures) (Offsite migration)
 - (1) gases may travel into basements causing potentially dangerous situation.

IV. ENVIRONMENTAL DESIGN CONSIDERATIONS FOR LANDFILL FACILITIES

- A. Permitting Considerations
 - 1. "Environmental Impact Statements"
 - a. Potential impact to local geology, hydrologic systems, cultural systems
 - (1) Subsurface geologic conditions, bedrock, stratigraphy, aquifers, water-bearing horizons, aquitards, depth and flow of groundwater, etc.
 - (2) Pre-existing environental problems (e.g. subsurface mines)
 - (3) existing ground and surface water quality
 - (4) Site use history
 - (5) engineering characteristics of soils
 - (6) Wetlands/ecosystem delineation
 - b. Local aquifer delineation, water supply use, surface water uses
 - c. Climate, rainfall, precipitation
 - (1) Important for "Help" Modelling of anticipated leachate volumes (see below)
 - (2) Dictates design and engineering of water treatment facilities
 - d. Impact to significant archeological/cultural systems
 - (1) Economic impact
 - (2) Justification for construction in area
 - (3) cemetaries, archeological/historic sites, airports, cultural operations, local zoning considerations
- B. Environmental Engineering and Design
 - 1. Ground Water Monitoring System

- a. Upgradient and Down-gradient Monitoring Well System
 - (1) directions of ground water flow
 - (2) ground water divides
 - (3) ground water levels
 - (4) ground water quality monitoring
 - (a) organic chemicals
 - (b) dissolved metals
 - (c) chloride, iron, pH, sodium
 - (5) contaminant detection system
- b. Assessment and Remedial Action Plan
 - (1) What will happen if leakage occurs?
- 2. Leachate Control and Treatment
 - a. Liner System
 - (1) Low permeability geosynthetics
 - (2) drainage nets
 - (3) double lined systems
 - (4) clay liners
 - (5) impermeable clay soils
 - (6) drainage layers
 - b. Leachate Catchment and Treatment
 - (1) type of treatment system
 - (2) sludge management
 - (3) "evaporative" spray control
 - c. Help Modelling, Leachate Volume Prediction
 - d. Treatment Plant Design
 - (1) storage ponds, conveyance systems, discharge points
 - (2) method of treatment/chemical processing
- 3. Landfill Gas Control
 - a. Methane Detection Probes
 - (1) Monitoring Program to detect potential off-site migration
 - b. Methane collection stations
 - (1) Pumping/vacuum system
 - c. Flaring station for burning off methane
 - (1) cogeneration of electricity, heat
- 4. Fugitive Dust Control
 - a. Facility plan for dust control
- 5. Air Pollution Monitoring
 - a. sampling and monitoring plan

- 6. Erosion and sedimentation plan
 - a. Preventing disturbed sediment from eroding into surface waters
 - b. Sedimentation ponds or catch basins
- 7. "Vector" control
 - a. animals, rodents, birds
 - b. daily cover of waste
- 8. Construction/Soils Engineering
 - a. Design of loads, sizing of containment structure
 - b. Grading design, slope stability design
 - c. soils properties
 - d. designation of "borrow areas", storage areas
 - e. Blasting Permits/considerations
- 9. Landfill construction and management plan
 - a. bonding, daily operations, waste stream allowances
 - b. access roads, transportation considerations
 - c. Construction plan, "cell life" projections
 - d. Daily cover/mitigation procedures
 - e. Waste-fill sequence
- 10. Landfill Closure and Reclamation Plan
 - a. What will happen to land when landfill is completed?
 - b. Post-closure monitoring
 - (1) gas
 - (2) ground water quality
 - (3) remedial action plan
 - (4) revegetation
 - (5) geosynthetic caps/capping procedure
 - (a) prevent water percolation, reduce leachate potential