Environmental Geology Final Lab Portfolio Contents: Final Lab Portfolio Due Thursday June 10, 2004 4:00 PM

In the order listed, include the following lab and writing exercises in a neat package:

Lab Work

Groundwater Flow Problem Set

Print Outs from Surfer Tutorial Exercise (Climate Problem, DEM's)

Mtn Fir Lab Part A - Well Log Interpretation

Mtn Fir Lab Part B - Site Project

Part 1 of Fluvial Hazards: In-Class Exercise (West Virginia Dam-Burst Problem)

EXTRA CREDIT – Part 2 of Fluvial Hazards: In-Class Exercise (Santa Barbara Flood Analysis)

Environmental Geology Spring 2004 Final Exam Study Guide

The Final Exam will be in 2 parts, the lab skills portion will be open book. You will be able to use your notes, conversion charts, answer keys, etc. to work on lab-style problems. Make sure you go over the answer keys before the exam, if you are still uncertain how to solve the problems, see me ASAP. The second part of the exam will be closed book, and consist of long-answer essay questions, short-answer terminology, perhaps some true/false.

Key Words

groundwater monitoring system

Landfills / Coffin Butte upgradient surface water, methane monitoring system, downgradient landfill liner system corrective action, solid waste double liner system primary liner, liquid waste geomembrane secondary liner, municipal waste drainage layer, geotextile residual waste impermeable barrier cover liner, hazardous waste leachate containment leachate treatment, gas collection. industrial waste methane collection system fugitive dust control rock quarrying, composting sludge ponds air pollution monitoring leachate lagoon, injection wells vector control waste screening, erosion and sedimentation leachate radioactive waste, soil contamination permitted and non-permitted borrow water contamination types of waste, fill biomedical waste, seepage landfill closure surface runoff geomembrane, remedial action plan erosion / sedimentation pond. quarterly water sampling, sediment erosion erosion control landfill closure. split samples, nested monitoring wells, daily cover, air emissions disposal cell, wastewater treatment system, fugitive dust methane generation buffer zone. direct osmosis, reverse osmosis, anerobic bacterial decay clay liner. active life, fault / seismic activity, methane fire hazard,

Coffin Butte bedrock setting /

seismic impact zone,

hydrogeology (fractured basalt, pillow basalt, regolith/soil), methane extraction well, leachate collection system, "the bubble", sediment ponds

Luckiamute Watershed Assessment (from student presentations)

Luckiamute watershed Watershed defined Luckiamute topography /

climate

Coast Range climate

Willamette Valley rainshadow

Precipitation gradient
Bedrock geology
Siletz River volcanics
Spencer Formation
Yamhill Formation
Igneous intrusives
Tyee Formation
Hillslope regime
Valley-bottom regime
Debris flow hazards

Flood hazards
Hydric soils
Wetlands
Landuse history

Physiographic provinces

Watershed history Pre-european history Post-settlement history Channel network Surface water

Rain-on snow Peak discharge

Impacts of fire on hydrology

Groundwater Water quality Rive discharge

Seasonal river discharge

Erosion potential Land cover Native vegetation

Native vegetation
Oak Savanna

Doug-Fir/Pine ecotone

Invasive plants
Forest fire history
Aquatic resources
Salmonid species
Steelhead distribution
Coho distribution
In-stream structure
Coarse woody debris
Channel habitat
Endangered species

Groundwater

groundwater meteoric water connate water juvenile water porosity permeability

horizontal permeability vertical permeability intergranular porosity fracture porosity solution cavities pendular water effective porosity total porosity yield porosity

primary vs. secondary porosity

Darcy's law Q=KIA

hydraulic gradient cross-sectional area

specific yield specific retention zone of aeration vadose zone zone of saturation phreatic zone water table groundwater flow cone of depression

aquifer
aquitard
artesian aquifer
water table aquifer
unconsolidated aquifer
consolidated aquifer

infiltration

groundwater contamination contaminant plume

well

monitoring well well hydraulics total depth screened interval

sand pack well casing riser pipe

static water level depth to water drawdown hydraulic head specific capacity pumping rate

Willamette Valley Hydrogeology

hydrogeologic setting Quaternary alluvium Quaternary older alluvium Quaternary terrrace deposits Missoula Flood Deposits

Willamette Silts gravel aquifer unconfined aquifer

regional hydraulic gradient

Spencer Formation Columbia River Basalts

Isopach Map

Groundwater Contour Map salinity concentration specific conductivity contaminant sources underground storage tank environmental release double-wall tank

vapor detection system monitoring well

environmental property

assessment tank leakage tank farm

agricultural practice pesticide / herbicide

land use

production wells

municipal well supply

gravel aquifer

OR DEQ Voluntary Clean-up Program Case Studies

Voluntary cleanup, DEQ Contamination sources Soil / water contamination

VOC's Metals PCB's

Chlorinated solvents

Human risk

Risk-based cleanup

Passive vs. active remediation

In-situ treatments Chemical treatment Thermal treatment Biological treatment Hydrocarbon release "free product"

Phase I, II, III site assessment

Water table

Chemical oxidation Gravel aquifers

DNAPL

Vapor extraction

Roy Haggerty / Willamette Aquifer Case Study

Willamette silt Willamette aquifer Gravel aquifer

Willamette Confining Unit Aquifer vs. aquitard

"buffer"

basalt aquifers river alluvium alluvial aquifers

Missoula flood gravels

Erratics

Pumping / drawdown

Pump tests Slug test Permeability Storativity Chemical buffer Oxidation / reductions

Denitrification
Denitrifying bacteria

Sources of Ground Water Contamination Reading

Heavy metals Organic chemicals Chlorinated solvents Industrial processes Agricultural pesticides

/herbicides

Underground storage tanks Petroleum hydrocarbons

Land fills

Surface impoundments Deep disposal wells Septic / sewage wastes

NAPL's DNAPL's LNAPL's

Overview of Hydrogeologic Site Investigations Reading

Site history
Site geology
Site hydrogeology
Aquifer characterization
Contamination assessment
Contaminant characterization
Contaminant distribution

analysis

Test borings / monitoring wells Groundwater flow analysis Groundwater flow gradients

Groundwater Remediation

Reading

Passive vs. active remediation

Source removal Plume confinement Bioremediation Chemical treatment Natural attenuation

Groundwater flow barriers

Pump-and-treat systems
Capping and isolation
Interceptor trench
Capture zone
Bioremediation
Oxidation
Soil vapor extraction

Key Concepts and Lab Skills

Review your Luckiamute presentation notes, be able to summarize the hydrology, geology, climate and physiography of the basin; be able to answer true-false questions on the Luckiamute (i.e. did you take notes / pay attention during the student Luckiamute talks?). Can you describe the landuse and environmental concerns associated with the Luckiamute watershed? How is water quality affected?

Know how to work the groundwater well and aquifer equations

Do you know the basics and surfer and what the software does? Can you use surfer to solve a problem and create a groundwater map?

What are the primary elements of a Subtitle D landfill? How does the liner system work? How is methane managed? How is leachate managed? Why are the active landfill cells covered with plastic? What is a groundwater monitoring system and how does it work? Why are some types of wasted accepted at Coffin Butte, but others are not? What is a monitoring well and why is it important to measure water depth? Do you think it a good idea to actively excavate in old, unknown, military waste? What would be some alternative approaches to determining the type of military waste at Coffin Butte? Why are the basalts underlying Coffin Butte so fractured, faulted, and folded? What is the primary source of permeability in the basalts underlying Coffin Butte?

Can you contour groundwater elevation data? If given the depth to water and stick-up elevation, can you determine the groundwater elevation? Can you draw groundwater flow lines once you have a groundwater contour map?

what is the difference between a "confined aquifer" and "unconfined aquifer"? How are porosity and permeability related? What types of earth materials are associated with what types of porosity and permeability? (unconsolidated vs. bedrock?, examples (e.g. gravel vs. clay)).

What are the sources of environmental contamination in the Monmouth-Independence area? What are the controlling factors of groundwater flow in the Mon-Ind area? What are the aquifers?

Do you know how a monitoring well is constructed? Can you draw a diagram showing monitor well construction?

Can you operate surfer, contour data, create a vector map, overlay it on a contour map?

Do you know how to work the physics of landslides problems?

Can you list and discuss the sources of contaminants, types of contaminants, and remediation strategies as applied to the Willamette Valley?

Can you discuss (in an essay question) the hydrogeologic setting of the mid-Willamette Valley?

Can you discuss the geologic setting associated with the Missoula floods?

Can you relate Willamette Valley Hydrogeology to nitrate contamination problems?