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U.S. Soil Erosion Rates—
Myth and Reality

Stanley W. Trimble and Pierre Crosson

been a matter of public concern since
the 1930s. Conditions were improved
by the 1960s, although no one knew just
how much (7). Starting in the 1970s, how-
ever, several studies concluded that erosion
was high. Although a few studies have been
skeptical of these high rates (2, 3), most
have suggested that soil erosion is an ex-
tremely serious environmental problem, if
not a crisis (4-7). Quantification of the
problem has been elusive, and average an-
nual U.S. cropland soil erosion losses have
been given as 2 billion (8), 4.0 billion (9,
10), 4.5 billion (5), 4.8 billion (/1), 5 bil-
lion (6), or 6.8 billion tons (/2). The U.S.
Department of Agriculture (USDA) Nation-
al Resource Inventory (NRI), based on
models, gave high values in the 1970s and
1980s (/3) but has
shown decreases in the
past decade. Some
sources have suggested
that recent erosion is as
great as or greater than
that of the 1930s, when
the soil conservation ef-
fort was begun (10, 11,
14). Increases in spend-
ing for soil conserva-
tion have been many
billion dollars (/5).
Studies of the on-
farm productivity ef-
fects based on 1982
NRI cropland erosion
rates indicated that if
those rates continue for
100 years, crop yields
(output per hectare)
would be reduced only
2 to 4% (16). These re-
sults indicate that the productivity effects
of soil erosion are not significant enough
to justify increased federal outlays to re-
duce the erosion, but not all agree (7).
The remarkable feature of all this dis-
cussion and attempted rectification is that
it was based mostly on models. Little

Soil erosion in the United States has
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physical, field-based evidence (other than
anecdotal statements) has been offered to
verify the high estimates. It is questionable
whether there has ever been another per-
ceived public problem for which so much
time, effort, and money were spent in light
of so little scientific evidence. Here, we
assess the techniques now used to estimate
erosion and the resulting off-farm move-
ment of sediment and suggest new direc-
tions for research that may provide more
policy-relevant information.

The Models

Two models have been used to estimate
soil erosion (/7). The first, the universal
soil loss equation [USLE (/8)], attempts to
predict sheet and rill erosion by water. Al-
though the USLE has been criticized, it is
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Fig. 1. Areas of cropland erosion. Areas of the United States having
cropland erosion rates of >25 tons ha™! year~' as predicted by the
U.S. Department of Agriculture in 1982 [modified from (13)]. “Drift-
less Area” is approximately coincidental with Major Land Resource
Area 105, Northern Mississippi Valley Loess Hills.

an excellent planning tool for estimating
the relative values of varying land uses
and conservation measures. However, it
only presumes to predict the amount of
soil moved on a field, not necessarily the
amount of soil moved from a field (/7).
The latter is estimated by a sediment deliv-
ery ratio [SDR (79)], a simple empirical
model that shows a highly generalized de-
crease of sediment with increasing area.
Implicit in this model is that only a small
proportion of eroded soil leaves a field or
stream basin. Some sediment is presumed

to be deposited by wind on the field, or
downslope of the field along fencerows or
in woods, or along streams as alluvium. In
reality, not nearly enough is known about
this sediment delivery process, and using it
for analysis is a continuing problem in flu-
vial geomorphology (20). However, many
investigators have termed the output of the
USLE as “removed from the land” (7). An-
other problem is that the potential variance
of SDR has not been appreciated. In Coon
Creek, WI, for example, sediment deliv-
ered to streams from about a 3-km?
drainage area in the 1970s was only about
8% of the amount estimated by the USLE;
the difference was presumably sediment
stored as colluvium. In the 1930s, howev-
er, when gullying downslope from agricul-
tural fields was common, the sediment de-
livered was 123% of upland soil erosion as
estimated by the USLE (21).

For wind erosion, the wind erosion
equation [WEE (22)] has been used, for
which results are uncertain but often exag-
gerated (23). Like the USLE, there is a
mass continuity problem—even though
soil may be eroded in one area, most of the
particles are simply moved to other fields.
During the 1930s when wind erosion was
really a crisis, huge dust clouds from the
Dust Bowl darkened the skies of the east-
ern United States and moved out over the
Atlantic Ocean in the upper westerly
winds. However, much wind erosion of the
past few decades appears to be mainly lo-
cal redistribution—some areas lose, others
gain. But as is the case with water erosion,
there has been little scientific evidence.

Sediment Budgets

Whatever the limitations of each equation
for predicting soil detachment, the obser-
vation that much of the soil remains close
by, and thus is not lost, is a concept clearly
not taken into account (/7). Although large
areas of the United States were proclaimed
to have erosion rates >25 tons ha™! (13),
sediment yields (efflux) were usually on
the order of 0.5 to 2.0 tons ha™!, and these
yields were usually augmented by signifi-
cant stream channel and bank erosion (24).
Expressed another way, total sediment de-
livered to streams has been given as 2.7 to
4.0 billion tons (6, 16, 25), but the total
sediment yield is estimated to be only
about 0.5 billion tons (26). This huge dis-
parity between presumed erosion and mea-
sured downstream sediment yield means
that large volumes of sediment would have
been stored in the watershed.

To investigate the set of processes link-
ing erosion in upland areas with sediment
delivery downstream requires construction
of a sediment budget. For example, con-
sider an agricultural watershed of 100 km?
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(10,000 ha) where 90 km? is cropped up-
land eroding at a rate of 20 tons ha™! year™..
The remaining 10 km? is stream and flood
plain subject to sediment deposition. Of
the eroded material, assume that 60% is
conveyed to streams. Further assume a
high sediment yield (efflux) from the basin
of 200 tons km= year! (2 tons ha™! year™).
This would leave 8.8 x 10° tons of sedi-
ment to be deposited on the 1000 ha of
flood plain. At a typical bulk density of 1.3
tons m~3, this would cover the flood plain
to an average depth of about 6.9 cm in only
a decade. Such accretion is easily measur-
able, and even observable, since the root
crowns of small trees would in places be
buried. A specific example comes from the
upper Mississippi River Loess Hills region
(Driftless Area), which was designated a
soil erosion problem region in the 1980s,
when it ostensibly had cropland losses
greater than 25 tons ha™! (13) (Fig. 1).
However, a long-term sediment budget for
one stream in the region, Coon Creek, WI,
showed that, of all upland erosion (includ-
ing nonagricultural), only about 2 tons ha™!
year~! reached the streams and much of
that was deposited (27).

Indeed, measures of alluvial sediment
flux are usually better measures of basin
processes than are estimates of upland ero-
sion or measurements of sediment yield
(28, 29). During recent decades, when soil
erosion rates were ostensibly so high, rates
of alluviation declined in various regions
(21, 27, 30). Studies of wind erosion mass
budgets have been few, but these too show
declining airborne dust (37). Thus, al-
though mass budget studies of sediment
and dust have been limited, much of the
available field evidence suggests declines
of soil erosion, some very precipitous,
during the past six decades.

Associated Resources
Some assessments of U.S. erosion have
warned that increasingly eroded soil pro-
files will allow less rainfall to be infiltrated
and stored (7). This process would logical-
ly result in increased overland flow, ero-
sion, and flooding, processes that might be
occurring if the soils were eroding rapidly.
However, detailed hydrologic studies in
two large regions, the Southern Piedmont
and the Driftless Area, indicate that just the
opposite is occurring: Runoff is decreas-
ing, flood peaks are smaller, and in some
places, the base flow is greater. These field
studies show that more water is infiltrating
into the soil and, in some cases, that signif-
icantly more water is being transpired by
plants. Investigators attribute these changes
to improved land use (32).

Such hydrologic improvements, in turn,
improve other resources. For example, the
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stability of tributary channels in the Drift-
less Area has been enhanced greatly over
the past half century (Fig. 2), and channels
have become smaller, reflecting the im-
proved hydrologic regimes (33). Perhaps
the most dramatic and convincing change
there has been that of fish habitat. At the
time of European settlement, streams were
notable for large numbers of brook trout,
Salvelinus fontinalis, which require high-
quality water (21). Degradation of habitat

was evident in the late 1800s, so that by
the 1930s, only exotic brown trout, Salmo
trutta, which had to be stocked, could sur-
vive the flooding, high sediment concen-
trations, warmer water temperatures, and
stream channel instability of that period.
Indeed, floods were so frequent and vio-
lent that improvement of fish habitat was
not practicable [(34, 35) and Fig. 2, top].
With the improved land use and soil con-
servation measures starting in the late

Fig. 2. Improvement of tributary stream channel conditions in the Driftless Area, 1940 to re-
cent times. Photo set from Bohemian Creek, La Crosse County, WI. (Top) Photo made by S. C. Happ
in 1940 to depict a “typical” tributary of the period. Note the eroded, shallow channel composed
of gravel and cobbles, with coarse sediment deposited by overflows on the floodplain. Such tribu-
taries were described as resembling “gravel roads.” (Bottom) Remake of photo by S. Trimble in
1974.The stream channel is narrower, smaller, and more stable. The coarse sediment has been cov-
ered with fine material, and the floodplain is vegetated to the edge of the stream. This condition

has continued and improved over the past 25 years.
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1930s, stream conditions had improved
enough by the 1960s so that brook trout
could be stocked. By the 1980s, stream
conditions were suitable for natural repro-
duction in some areas, a condition now
widespread in this agricultural region.

Monitoring Soil Erosion and Associated
Resources
The foregoing discussion suggests that the
general impression of severe soil erosion
with deteriorating associated resources is
not correct in some regions and, by impli-
cation, is open to question in all others.
What is required now is the initiation of
continuing field studies and monitoring
based on mass budgets. In humid areas of
water erosion, baseline data should be col-
lected from small sample stream basins so
that changes of colluvium and alluvium
can be monitored. Initially, this should be
by ground surveys, which are quick, cheap,
and precise, but this might eventually be
augmented with cosmogenic isotopic dat-
ing and high-precision remote sensing
techniques. Water quality, especially sedi-
ment concentrations, should be monitored.
To more effectively measure annual sedi-
ment yield (including bedload), sample
basins should ideally terminate in a reser-
voir to trap sediment, including bedload. In
some cases, existing dams could be used.
Basins with existing baseline data; e.g.,
those in the Vigil Network, would be espe-
cially valuable and are available for some
regions (36). Ideally, biological and chemi-
cal indicators should also be monitored.
Erosion and sediment fluxes should be
studied annually in light of the land use
and climatic conditions of that year.
Regions of wind erosion are more
problematic, because efflux can go in any
direction. Although some observations of
dust are being made (37), it is important to
have a better grasp of the size, concentra-
tion, and movement of dust clouds. Per-
haps just as important are more measure-
ments of dust deposition.

Conclusions

No problem of resource or environmental
management can be rationally addressed un-
til its true space and time dimensions are
known. The limitations of the USLE and the
WEE are such that we do not seem to have a
truly informed idea of how much soil ero-
sion is occurring in this country, let alone of
the processes of sediment movement and
deposition. The uncritical use of models is
unacceptable as science and unacceptable as
a basis for national policy. A comprehensive
national system of monitoring soil erosion
and consequent downstream sediment
movement and/or blowing dust is critical.
The costs would be significant; neverthe-
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less, they would reflect efforts better fo-
cused on achieving better management of
the country’s land and water resources.
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