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ABSTRACT

Results taken from 270 publications on rates are summarized, and collated with those from 149 publications reviewed
previously (Young, 1969, 1974). The data are classified by major climatic zone, normal or steep relief, and consolidated or
unconsolidated rocks. Representative rates and their ranges are given for soil creep, solifluction, surface wash, solution
(chemical denudation), rock weathering, slope retreat, cliff (free face) retreat, marine cliff retreat, and denudation, the last
being compared with representative rates of uplift. Solifluction is of the order of 10 times faster than soil creep, but both
cause only very slow ground loss. Solution is an important cause of ground loss for siliceous rocks, on which it may be half
as rapid as on limestones. Total denudation, brought about mainly by surface wash, reaches a maximum in the semi-arid
and probably also the tropical savanna zones. Acceleration of natural erosion rates by human activities ranges from 2-3
times with moderately intense land use to about 10 times with intensive land use (and considerably higher still where there
is recognized accelerated soil erosion). Where there is active uplift, typical rates are of the order of 10 tir s faster than
denudation, although in some high, steep mountain ranges these may approach equality.

KEY WORDS Denudation Erosion rates  Slope processes

INTRODUCTION

In 1960 little was known about the absolute rates of operation of geomorphological processes on slopes.
Reasons were the slowness of such activity in comparison with a human lifetime, the previous concentration of
research effort on landforms rather than processes, and the low level of technical sophistication of most
geomorphologists at the time.

A revolution in geomorphology followed, which led to as much or more attention being paid to processes as
to form (Young, 1978). A steady stream of publications emerged reporting measured rates of processes,
particularly surface processes on slopes and total denudation. In 1969 one of the present authors summarized
40 estimates of rates of denudation, and in 1974 a further 109 records of processes on slopes and slope retreat
(Young, 1969, 1974). For the period 1960-74 there were about 10 such ‘rate’ publications per year. In the seven
years since the latter study we have assembled a further 270 such publications, or nearly 40 per year. Moreover,
this latter collection is certainly less comprehensive than the former, and trying to keep up with current
publication is like cleansing the Augean stables. Here we present a summary of such records to date.

For obvious practical reasons, a high proportion of field measurements cover activity over 1-3 years. The
main exceptions are three long-period records of soil creep over 12 years by Young (1978), 17 years by Jahn
(1981), and 21 years by Hauswirth and Scheidegger (1976). An earthflow in New Zealand has been monitored
for 14 years (Anon, 1977). However, the limitations inherent in short-term records have been modified by the
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addition of results of a different nature, namely estimates for longer periods based on archaeological evidence,
dendrochronology, and/or geological reconstruction. Reassuringly, results for such periods confirm in order of
magnitude those obtained by direct measurement. For example, the rate of denudation over the eastern
seaboard of North America as estimated from present-day river loads is very similar to that obtained as an
average for the 225 M years since the Triassic (Gilluly, 1964).

We have only attempted brief analyses of each set of data. The coverage of non-English publications is less
comprehensive than English. For surface wash, the control plots on soil erosion experimental stations could
form the subject of an independent review. The literature on hydrology contains abundant records of river
loads; some of this has been used here, but more could no doubt be analysed in terms of denudation rates. A
variety of minor processes exist, particularly those related to fauna; these have been omitted partly for reasons
of space and partly because there is no comparable climatic coverage. There is scope for others to amplify the
presentation given here, by adding further data, by more extended discussion of the possible sources of error in
the measurement of each process, and by more comprehensive analyses of the results.
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TREATMENT OF THE DATA

The data in the sources is highly heterogeneous, and fairly drastic measures have been taken to reduce it to a
form in which results from different studies are comparable. In default of sufficient evidence for the relative
reliability of such a wide range of data, all reported results have been treated as if they were of equal standing,
All results for slope retreat or ground loss are converted into Bubnoff units, B, where 1 B = 1 mm per 1000
years, equivalent to 1 ym per year, 1 m per million years,and 1 m® km 2 per year; in terms of mass, for rocks of
s.g. 2.65, 1 B is approximately 0-02 t/ha per year. Arithmetic means of a set of observations are often not
available, and the description ‘mean’ is used here to refer also to a typical or approximately central value. Where
authors report a range of values this is given, except that apparently exceptional extremes are omitted; thus a set
ofdatasuchas005,1,2,4,4,5,7, 10and 88 B would here be reported as a ‘range’ of 1-10 B. If both ameanand a
range are reported, these are given in the tables as follows, .g. 5: 1-10. Results in Bubnoff units nominally refer
to ground loss, perpendicular to the ground surface, and hence to slope retreat or ground lowering according
to steepness; the accuracy of results is never sufficient to justify refined distinctions between horizontal retreat,
vertical lowering or perpendicular ground loss.

The main variables affecting rates of processes on slopes are climate (with associated vegetation), rock type,
slope steepness, and the influence of man. The aim of this study is to obtain natural rates, without acceleration
by man, although as discussed below this is often impossible; however, the many records which are
intentionally of accelerated soil erosion (agricultural or other) are omitted. A simple and highly generalized
classification of climate is adopted, as follows:

Approximate
Abbreviation Koppen
Climate in Figures 1-5 equivalent

Glacial — — Presently covered by ice.

Polar/montane P/M E Periglacial; includes both polar regions
and temperate-latitude montane areas.

Temperate maritime Tm Cfb, ¢ Including Western Europe and the
eastern seaboard of USA.

Temperate continental Tc Df Including Central and Eastern Europe
and humid interior USA.

Mediterranean Med Cs Including similar climates in other
continents e.g. California.

Semi-arid S-A BS Approximately rainfall 250-500 mm
in subtropical and tropical latitudes.

Arid — BW Below approximately 250 mm rainfall.

Subtropical humid ST Cfa E.g. southeastern USA, Natal.

Savanna TrS Aw Tropical climates with wet and dry
seasons.

Rainforest TR Af,Am Permanently humid tropical climates. Figure L.
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Rock types are listed as given in sources; in the interpretation of results particular note is taken of
‘unconsolidated rocks such as clays and glacial drift. For chemical denudation, limestones are distinguished.
Slope steepness is classified into ‘steep’ and ‘normal’, where steep refers to mountainous or other steeply-
issected regions, or individual slopes above 25°. Special note is taken of badland relief.

The tables are supplementary to those in Young (1974). The figures, on the other hand, include additionally
data in the 1974 paper. To reduce the otherwise very large number of references, most are referenced by giving
their abstract number in Geo Abstracts (see note under REFERENCES).

SOIL CREEP

There is no sharp distinction between soil creep (Table I and Figure 1) and solifluction, and some studies in
montane environments, recording rates of soil movement normally associated with solifluction, describe the
results as creep. All records of soil movement from polar and montane regions have been classed here as
solifluction.

The Bubnoff unit is not applicable to creep and solifluction since nearly all results refer not to ground loss
but to downslope movement of the soil. This is given either as a linear movement close to the surface, as
mm ™y, or as a volumetric movement, as cm® cm ™! y ™! (cubic centimetres per centimetre width of slope, per
year). Conversion between these units depends on the depth distribution of movement, but where both are
reported they are usually within a numerical range of x 0-5to x 3.

1000
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Figure 1. Rates of solifluction (polar and montane climates) and soil creep. Rates refer to linear movement close to the ground surface.
Note that scales in Figures 1-5 are logarithmic. For abbreviations of climatic zones, see p. 474.
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478 . SAUNDERS AND A. YOUNG

Of the many techniques which have been devised, that of pits with buried rods or plates, infilled and re-
excavated after a period of years (Young pits) has been the most widely used. It also has the potential for
recording vertical movements as well as movements parallel to the ground surface. Also successfully used have
been surface rods, buried and re-excavated cylinders, cylinders with tilt recorded by viewing cross-wires
vertically, and deformation of plastic tubes, although this last is near to its limit of sensitivity for creep. Notable
agreement between different techniques (coupled with a relationship of creep rate to soil moisture) was
achieved by Anderson (1977).

The largest number of records are for the temperate climates. Surface movement in the temperate maritime
zone is predominantly 0-5-2 mm y ™!, with appreciable movement typically extending to 20-25 cm depth. A
strong relationship with soil moisture usually masks any possible correlation with slope angle. In the temperate
continental zone rates may occasionally be as low as the maritime climates but are more often higher,
2-10 mm y~!. Results for the remaining climates are too few to make confident generalizations.

In Mediterranean, semi-arid, and savanna climates, whatever the absolute rate of creep may be it is probably
rendered unimportant by higher rates of surface wash. It would be of interest to have more data for the
rainforest environment, with its deep, moist regolith and high activity of soil fauna; the available results agree
at4-Smmy~ "

Creep represents downslope transfer of regolith, and as such cannot be directly translated into ground loss.
Putting observed rates of volumetric movement into process-response models has demonstrated that ground
lowering through the agency of creep is very slow indeed except on convexities of high curvature (e.g. Young,
1963, 1972, p. 115). Thus creep can only be an important cause of ground loss (as distinct from smoothing of
breaks of slope) if all other processes are slow.

Geo Notes

Source

Location

SOLIFLUCTION

Soliftuction (Table I and Figure 1) is more easily measured than creep owing to its faster rates. The method of
buried plastic tubes, with deformation measured by inclinometers or strain gauges, is successful, whilst the
techniques employed for soil creep can also be used. Movements recorded here include both the components
which contribute to regolith movement in solifluction, frost creep (heave), and gelifluction (flow).

Rates cover a wide range, from less than 1 to over 300 mm y !, but the greater number of records are
clustered in the range 10-100 mm y ~ . Movement typically extends to 50 cm depth, and is considerably more
rapid on moister sites. Thus soliftuction in the polar and montane zones is some 10 times faster than soil creep
in the temperate zone; this may not necessarily be true of the land surface as a whole, however, owing to bias in
selecting sites for measurement of solifluction on which the process is seen to be particularly active. As with
creep, the effcts of quite rapid downslope soil movement produce only slow ground loss; thus Jahn (1981)

calculated that solifluction at 20 mm y~* would cause retreat of a slope 100 m long by only 0-05 mm y~*
or 50 B.

Table II. Rates of solifluction
Method

Movement
Volumetric

Surface

SURFACE WASH

Techniques for measurement of surface wash (Table III and Figure 2) employ one of two principles: collection
of transported sediment or measurement of ground loss. Ground loss can be recorded directly by erosion pins,
marked rods on which a washer is placed to record the position of the ground surface, but this technique is only
sensitive to rates exceeding 1000 B. Sediment collection is by some form of wash trap: simple tins with the
upper rim just below the ground surface, more complex combinations of metal or plastic guttering with tubes
and collection bins (Gerlach troughs), or the enclosed plots with cement outlet rims as employed on
agricultural soil erosion research stations. All suffer from the problem of edge effects, the disturbance of the
ground at the point of collection. Conversion of sediment transport to ground loss is straightforward if the
catchment is enclosed, but this further disturbs the surface; otherwise, it is possible to assume that the effective
catchment is an area the width of the collecting rim extending to the crest of the slope, although this is
questionable. Moreover, when traps have been installed at intervals down a slope (offset laterally), with the
intention of obtaining ground loss as different in sediment collected by adjacent traps, an irregular pattern

Slope angle

Rock

Climaie
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Figure 2. Rates of surface wash. B = Bubnoff units, = 1 mm/1000y~!

including areas of ground gain has been recorded (Townshend, 1970). 1t would be of much interest to combine
erosion pins with traps at intervals down a slope undergoing rapid wash. ’

Downslope transport can be achieved by rainsplash alone, without any surface runoff. As this process has
not often been recorded separately, it is included here with wash.

The wide scatter of values for rates of surface wash reflects the fact that this process is highly dependent on
vegetation cover. Five studies in temperate climates have obtained a ground lowering of less than 2 B, which is
probably the minimum obtainable owing to disturbance caused by installation of instruments. On the other
hand, once unconsolidated rocks are dissected into badlands, rates rise above 1000 B, or 1 mm y ™. The same
high order of magnitude can occur on normal rocks in the semi-arid zone, caused by intense rainstorms falling
on ground poorly protected by vegetation. Results in the range 10-100 B are found for Mediterranean,
subtropical humid, and savanna climates. Wherever Man has removed or reduced the natural vegetation
cover, rates of wash are accelerated enormously, often by two orders of magnitude.

Seven reports of gullying (not reproduced) show rates either of headward channel development or ground
lowering of the order of 1000-100000 B, or 1cm to 1m per year.

Table IV. Rates of solution, or chemical denudation
Method

Ground loss

Rock

SOLUTION (CHEMICAL DENUDATION) AND WEATHERING

Limestone geomorphologists have always recognized that loss of rock material in chemical solution is the main
cause of denudation (Tables IV and V and Figure 3), and were the first to record rates for this process. It is now
firmly established that solution is also a major process on siliceous rocks; this is demonstrated by the quantities

Climate

.,
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Figure 3. Rates of solution, or chemical denudation, and weathering

of soluble salts, exchangeable cations and silica in river waters, and by the relative loss of these elements as
evidences in the chemical composition of soils. Thus the largely theoretical calculations of solution loss made by
Carson and Kirkby (1972, pp. 242-271) are now substantiated by field evidence.

Most of the data are obtained by sampling river water, analysing for dissolved constituents, calibrating in
relation to discharge records, and then dividing the dissolved material by the catchment area. Thus solution of
river channels (and, on limestones, caves and fissures) is included. On slopes, the technique devised to measure
(water) throughflow, consisting essentially of Gerlach troughs installed at various depths in a pit, can be
employed to record laterally-transported dissolved load (Day, 1977). A few observers have measured dissolved
substances added to the catchment in rainfall, finding that this can account for amounts of the order of 25 per
cent of the total dissolved output.

The bulk of the results refer to humid temperate climates. Taking maritime and continental areas together,
results for siliceous rocks are clustered in the range 2—-50 B, whilst limestones span 20100 B. For other climates
records are fragmentary, most often 2-20 B and showing no clear relations with temperature or rainfall. Thus
rates for siliceous rocks overlap those for limestones, with some suggestion that under otherwise equal
conditions they may be of the order of half as high. Where both dissolved and suspended load has been
recorded for the same catchment, they are usually of comparable magnitude.

Results in Table V refer to weathering, by which is meant the loss of matter from rock surfaces. There are
three techniques for measuring this: weighing prepared rock tablets, the micro-erosion meter, or studying
historical monuments. Results vary through two orders of magnitude, 2-200 B, being no doubt strongly
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RATES OF SURFACE PROCESSES 487

influenced by hthology Day et al. (1980) contrived to bury discs from the same (Welsh) site in humid temperate -
and rainforest climates, and were relieved to find that weathering of the latter was 3} times faster, although
absolute rates were very low.

SLOPE RETREAT BY LANDSLIDING

Estimates of the average rate of slope retreat by landsliding (Table VI) can be obtained by combining the
volumes of debris for individual mass movements with their spatial distribution, and then finding some way of
estimating their frequency of occurrence. Irrespective of climate, reported results are clustered in the range
500-5000 B, or 0-5-5-0 mm y~*. These high rates refer, of course, to areas chosen for their evidence of active
landsliding. With regard to the magnitude/frequency question (i.e. which accomplishes more denudation,
occasional catastrophic events or long-continued slow-acting processes), the results serve only to confirm what
could reasonably have been presumed: that where there are many visible landslides or their scars, the effects of
these outweigh the mass transport accomplished by continuous processes.

Speeds of landslide movement are now commonly estimated or, for slower examples, recorded directly,
including by motion-picture films (La Chapelle and Land, 1980; D. E. Prior, pers. commun. ) They range from
aslow as 1-10 mm y ! for earthflows to debris avalanches and mudfiows moving at 20ms ™%, as fast as flowing
water on a steep slope. We have not systematically collected landslide volumes, but any b1ds for the largest
single slide will have to exceed the 130 Mt of the Hope Landslide, British Columbia (Mathews and McTaggart,
1969).

SLOPE AND CLIFF RETREAT

By various means it has sometimes been possible to estimate the rate of ground loss from a slope, as distinct
from the effects of a particular process (Tables VII, VIII, and IX, and Figure 4). Techniques include erosion
pins inserted in the slope, recording the rate of rockfall or talus material accumulating below a cliff, and
geological or geomorphological reconstruction of the former position at an assumed time, this last approach
allowing an estimate for long periods. For unconsolidated rocks, repeated surveying or (especially for marine
cliffs) comparison with early maps can be employed. Paired photographs at long time intervals, so useful for
recording vegetation change, do not usually show visible slope changes; years ago M. Arber failed to detect
changes from photographs of Devon cliffs taken by her father E. A. Arber 50 years previously, and very
carefully relocated photographs of the Grand Canyon of Colorado 100 years apart show even apparently
loose rocks in the same positions (Shoemaker and Stephens, 1975).

The data are grouped according to whether there is a regolith cover, termed slopes, or a free face (bare rock),
termed cliffs. Most recorded results are for temperate and montane environments and span two orders of
magnitude, 10-1000 B; for hard rock cliffs a value of 100 B, or 0-1mmy ™!, appears typical. Values in other
climates are widely scattered. Rates for unconsolidated rocks are mainly 2000 B and upwards; in the one
exception to this, the dating of fault scarps on which the evidence rests is stated to be unsure (Wallace, 1977).

Rates of river bank erosion have been the subject of a separate review by Hooke (1980). Rates in actively
undercut alluvium usually exceed 50 mm y ~ 1. The fastest recorded retreat of a slope of any kind appears to bea
bluff of the Mississippi at 250 MB, or 250my~!.

The retreat of marine cliffs probably spans three ranges. For unconsolidated glacial drift an average rate of
1 my~! has been established as typical both for the eastern coast of England and for the North American Great
Lakes; but major storms can set off landslides which cause retreat of 10 m or more in a day. Recorded retreat of
cliffs in consolidated rocks range from 4000 to 800000 B. There is a third group, however, not shown in the
table since nobody tries to measure their retreat; cliffs in crystalline and hard Palaeozoic sedimentary rocks
show little or no response to Holocene changes in sea level, hence it appears likely that their retreat can average
under 1mmy~ L

DENUDATION

More interest has been shown in rates of denudation (Table X and Figure 5) than in individual processes, and
an appreciation of such rates is fundamental to the understanding of landform evolution. Denudation is here
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Figure 4. Rates of slope and cliff retreat. Note different scale from other figures

used to mean average ground loss from a river basin or other area. Previous reviews, which cover many aspects
not discussed here, include those of Schumm (1955, 1963), Corbel (1959, 1964), Fournier (1960), Strakhov
(1967), Holeman (1968), Judson (1968a), Young (1969, 1974), Ahnert (1970, 1981), Slaymaker (1974), and Selby
(1974).

The most widely used technique is that of estimating river load and dividing by catchment area; the latter can
range from first-order catchments to major continental basins. Reservoir sedimentation is the next most
common method, taking advantage of places where man has conveniently built enormous sedimentation
tanks. An interesting comparison is provided by various forms of geologic reconstruction, sometimes
including radiometric dating. These yield average rates over periods of geological time; notwithstanding
changes in climate, these are of the same order of magnitude as rates based on contemporary processes.

Recent studies have revealed numerous problems and sources of error in river load techniques, which are
largely ignored in earlier work. Values cover not only slope processes, in which the debris reaching the river is
removed by it, but river bed and bank erosion. Many records refer to suspeénded load only. The ratio of
dissolved to suspended sediment varies widely. Bed load has rarely been measured, yet may accomplish
significant transport, particularly after storms. Non-denudational components to basin sediments occur:
atmospheric (dissolved and particulate) and organic materials. Temporal variability in loads is considerable,
and it is difficult to take account of extreme events. Sources of sediment may be difficult to identify; some
reports have indicated that a high proportion of load may be accounted for by bank and bluff erosion (the
anomalously high rate obtained by Young, 1958, may be ascribed to bare bluffs in soft shale). Temporary stores

Table X. Rates of denudation
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of sediment, as colluvium, alluvium, gravel bars, etc., are often extensive; the residence time of sediment tends to

[« I

% _ increase downstream, and thus from small to large basins. The sediment delivery ratio, the ratio between
. erosion within the catchment and sediment yield at its outlet, suffers from high variability (Trimble, 1977). In
§ § converting river load to denudation rate there is a tacit assumption that the system is in a steady state; however,
ég : fluctuations in sediment delivery of several time scales are known or suspected to occur. In some areas,
A contemporary river load is derived from Pleistocene deposits. Finally, nearly all catchments are substantially

influenced by man (see below).
The results (Figure 5)at first sight appear to be wide
ignoring infrequent but extreme values and in some cases separating steep from n

following typical ranges:

ly scattered, but can be rationalized ona climatic basis by
ormal relief. This yields the

=)

X

] Typical range for rate

3 of denudation, B

=) Climate Relief Minimum Maximum

QL

(n T

g Glacial Normal (= ice sheets) 50 200
Steep (= valley glaciers) 1000 5000

3 Polar/montane Mostly steep 10 1000

g Temperate maritime Mostly normal 5 100

6] Temperate continental Normal 10 100

3 Steep 100 200+

Z. Mediterranean — 10 ?

8 Semi-arid Normal 100 1000

& Arid — 10 ?

(¥ Subtropical — 10? 1000?

= Savanna 100 500

3 Rainforest Normal 10 100

g Steep 100 1000

g Any climate Badlands 1000 1000000

c

=l Typical values for glacial erosion are taken from a review by Embleton and King (1968). When compared

glaciation is substantially faster than normal erosion in any climate,

with the present data, they show that valley
wide range,

but erosion by ice sheets not necessarily so. Values for polar and montane environments span a
perhaps reflecting the large range in rainfall.

Humid temperate climates show the lowest minimum and possibly the lowest maximum rates of denudation;
creep is slow, wash very slow owing to the dense vegetation cover, and solution fairly slow because of low
temperatures. It is ironic that the British Isles, the scene of such a disproportionately large amount of
geomorphological research activity, should prove to have such an inactive landscape! Other conditions being
equal, denudation in temperate continental climates is probably somewhat faster. Evidence for Mediterranean
regions is scanty, and hard to come by in the old-world Mediterranean owing to great acceleration by Man.

An earlier review (Langbein and Schumm, 1958) suggested for the U.S.A. a maximum rate of denudation in
the semi-arid zone. On limited evidence, it is possible that the tropical savanna zone may have equally high
rates, the greater (but still partial) protection by grasses being balanced by greater agressivity of rainfall, This
does not contradict Langbein and Schumm’s findings, since the U.S.A. lacks areas of savanna climate. The
rainforest environment has a special geomorphological interest; core regions have possibly escaped substantial
recent climatic change and thus show landforms resulting from present processes, and there remain areas little

altered by Man. Despite the protection afforded by the forest cover, denudation rates are moderately high, a |
result of the combined effects of creep, wash, solution and landsliding, all of which have been recorded at

substantial rates.
Badlands, or other sites where unconsolidated roc

denudation rates of 1000 B and upwards; this rate may be about the t

7-5

Steep

Igneous

ks are exposed without a vegetation cover, show
hreshold which prevents establishment of

Tropical
rainforest

3,
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Figure 5. Rates of denudation

a vegetation cover. One of the fastest eroding large catchments in the world is the Tamur basin in the
Himalayas, averaging 4700 B or nearly Smmy~!; besides very active uplift, the presence of weakly
consolidated formations and an input from glaciation, erosion in this catchment has been accelerated by Man,

In an earlier rzview it was suggested that denudation rates were of the order of 10 times as fast in
mountainous or steeply-sloping areas as on normal relief; typical rates of 50 B for normal relief and 500 B for
steep relief were quoted (Young, 1969). These estimates are not contradicted by the evidence in Figure 5,
although the ranges are so large that they are better given as 10-100 B for normal relief and 100-1000 B for
steep relief. The same fundamental causes, steepness of slope and rate of river erosion, account for previously
noted positive relationship between basin relief and rate of denudation, and the observation that small basins
on average erode faster than large ones. ’

The influence of man on denudation rates had previously been suggested as an acceleration of x 2to x 3.
This now appears to be a modest estimate. Four studies in Table X permit comparison between pre-Man and
Man-accelerated rates; they give multipliers of x 3 (temperate continental climate), x 10 (Mediterranean), x 3
to x8 (semi-arid) and x 10 to x 20 (savanna). Many other studies observe that the recorded rate is
undoubtedly accelerated without giving a figure. One might hazard the generalization that in catchments
where there is moderately intense land use but little apparent soil erosion, denudation may have been
accelerated by about 3 times; but where there has been intensive land use the multiplier may be as high as 10.
Recent support for both these rates of acceleration comes from a remarkable study of lake sedimentation in the
highlands of Papua New Guinea in which two increases in the rate of deposition were recorded, believed to
correspond to the onset of sparse and more intensive cultivation respectively (Oldfield et al., 1980). Areas witha
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recognized ‘soil erosion problem’ are omitted from the data recorded here, but frequently have rates 100 to
1000 times faster than normal erosion. Even the ‘maximum tolerable erosion’ employed in soil conservation
design is probably well above the rate of soil replacement by weathering; consequences have been discussed by
Stocking (1978).

Finally one may compare denudation rates with rates of uplift (Table XI). It appears from this selection of
records that where there is active uplift it is likely to be in the range 1000-10000 B, or 1-10mm y !, and
unusually active uplift may be still faster. By comparison, average denudation rates for all climates are 10-1000
B. This confirms the finding of Schumm (1963), that typical rates of uplift are of the order of 10 times faster
than denudation under most conditions. It may be that occasionally denudation can catch up; the Southern
Alps, New Zealand, are now in a steady state with uplift balancing erosion (Adams, 1980), whilst the Tamur
catchment in the Himalayas, eroding at 4700 B, attains a typical rate for uplift. Valley glaciation reaches the
same order of magnitude. Therefore it is possible that in high-altitude, steeply-dissected mountain ranges,
denudation can keep pace with still-active uplift for short periods.

Table XI. Rates of uplift; this table gives examples only, and is not intended as a comprehensive list

Location Rate of uplift Source Geo Abstracts Notes
B No.
Caucasus 2000025000 Gabrielyan, H. (1971) 73A/1888
Central Europe —2000-5000 Zuchiewicz, N. (1978) 79A/1678  Range from minus 2000 B
Sweden 50000—500000 Morner, N.-A. (1980) 81A/0540  Peak in glacio-isostatic
uplift
California, U.S.A. 7600 maximum  Scott, K. M., and 78A/1794
Williams, R. P. (1978)
California, U.S.A. 10000—17 000 Castle, R. O. et al. (1976) 76A/1520  Maximum along San
Andreas fault
California, U.S.A. 5000—8000 Bandy, O. L., and 74A /0052
Marincovich, L. (1973)
Japan 5002200 Pearce, A. J., and 73A/1130
Elson, J. A. (1973)
Nevada, US.A. 300 Wallace, R. E. (1978) 79A/1143  One 3m movement every
10000y
Antilles 50 Herweijer, J. P., and T9A /0737
Focke, J. W. (1978)
Continental platform areas 4000—5000 Gopwani, M. V., and T2A/0528 Review; Maximum
Scheidegger, A. E. (1971) 10000B
World, typical 7600 Schumm, S. A. (1963) 64/0156 Review
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