
 

HIGH FREQUENCY ACOUSTIC BACKSCATTERING ENHANCEMENTS FOR FINITE 

CYLINDRICAL SHELLS IN WATER AT OBLIQUE INCIDENCE

By

SCOT FRANKLIN MORSE

A dissertation submitted in partial fulÞllment of
 the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Physics

AUGUST 1998



  
To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of SCOT 

FRANKLIN MORSE Þnd it satisfactory and recommend that it be accepted.

__________________________________________
                                  Chair

__________________________________________

__________________________________________

__________________________________________
ii



    
ACKNOWLEDGMENTS

This dissertation is the result of research performed at Washington State University, in

Pullman, Washington which I began in 1992.  In coming to this point in my life, truly I can

give thanks to only oneÑthank you God for my life and all the blessings youÕve given me.

Thank you for allowing and equipping me to do something I enjoy.  It seems I have learned

more about the Truth these last 6 years than anything having to do with science.  And I

believe that is as it should be,

For the wisdom of this world is foolishness with God  Ñ1 Cor. 3:19.

Thank you Mom and Dad for always supporting me.  I took you up on your offer to

support me for as long as I wanted to go to school.  Thank you Beth, my wife, for your love.

This dissertation is not, of course, something I could have done alone.  Thank you

Professor Marston for all the work youÕve put into me.  You truly care about your students.

Thank you David Ermer for putting up with me over the years and for all the philosophical

discussions over coffee.  I would never have studied as much as I did for prelims if it

werenÕt for you.  Thank you Greg Kaduchak for your friendship and all the help youÕve

given me with many aspects of this work.  Greg contributed signiÞcantly to the work

involving the approximate partial wave series calculations (Chapters 2 and 5) and the

synthetic aperture images (Chapter 3).  I would also like to thank all the members of the

group who have been a part of my life these years: John Stroud, Tom Asaki, David

Thiessen, Karen Gipson, Chris Kwiatkowski, Mark Marr-Lyon, Todd Hefner, Florian

Blonigen and Julie Foster.  Without all your help I probably wouldnÕt have been able to get

anything to run.  Thank you Bill Alspach.  You taught me how to use a machine shop and

helped me in building many pieces of my experiments; but having known you is what I

value.  Thank you Mickey Daniels, Marilyn Burns and Shirley Kanzler for all the

administrative and business work that you have done for me, so often without notice.

This research was supported by the OfÞce of Naval Research.
iii



  
HIGH FREQUENCY ACOUSTIC BACKSCATTERING ENHANCEMENTS FOR FINITE 

CYLINDRICAL SHELLS IN WATER AT OBLIQUE INCIDENCE

Abstract

by  Scot Franklin Morse, Ph.D.
Washington State University

August 1998

Chair:  Philip L. Marston

The scattering of sound by Þnite cylindrical shells in water is investigated.  Both

experimental and theoretical examinations are performed which include comparisons of

measured backscattering enhancements with a quantitative ray theory and an approximate

partial wave series solution.  Broadband backscattering experiments are carried out for the

full range of tilt angles (measured with respect to the cylinderÕs axis) to identify regions of

enhanced backscattering from moderately thick-walled steel cylindrical shells (having

thickness-to-radius ratios of 7.6% and 16.3%).  It is found that the backscattering is

signiÞcantly enhanced when conditions arise such that a generalization of a leaky Lamb

wave is launched on the shell.  This surface guided wave reßects off the shell truncation,

which is ßat and perpendicular to the cylinder axis, and reradiates into the backscattering

direction.  In addition to various helical ray contributions, particularly large enhancements

are observed for a ray propagating along the cylinderÕs meridian.  The meridional ray

enhancement for the generalization of the lowest order antisymmetric leaky Lamb wave is

observed over a large range of tilt angles, nearing end-on incidence in the coincidence

frequency region.  Coupling conditions are determined which locate the various

enhancements in frequency-angle space.  High-frequency narrowband backscattering

experiments are used to make quantitative measurements of enhancement amplitudes,

which agree well with theoretical predictions.  For highly oblique tilt angles the meridional

ray amplitudes are several times greater than the specular reßection amplitude for

scattering from a rigid sphere of like radius.  Both air-Þlled and water-Þlled cylindrical

shells are examined.  An abrupt drop in the backscattered meridional ray amplitude is
iv



  
observed at very high frequencies.  This drop is the result of the next antisymmetric leaky

Lamb mode and mode conversion upon reßection at the cylinderÕs end.  SimpliÞed

calculations display aspects of this threshold behavior.  In addition experimental

procedures are described for obtaining transient and wide bandwidth backscattering data

using a PVDF sheet source in water for frequencies extending up to 1 MHz.
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1

Introduction 1

1.1 Overview and Motivation

The subject of this investigation concerns the scattering of sound by truncated

cylindrical objects in water.  Investigations of this sort are clearly not new as the Þeld of

acoustic scattering from submerged elastic objects has been of great importance for

national defense and safety related purposes since the early part of the century.  A large

amount of research has been carried out in an attempt to better understand the way sound

interacts with structures (both natural and man-made), through scattering and radiation.

Applications of this basic research can be found in numerous Þelds which include: anti-

submarine warfare, mine countermeasures, remote sensing, Þsh identiÞcation and

counting, and non-destructive evaluation.  In these types of Þelds, with the exception of the

last two, the processes of acoustic interaction that have been studied most are found at low

frequencies, say below 10 kHz.  This is due to a number of factors, one of which is the fact

that submarines and ships are large structures with fairly low frequency resonance or

modal behavior.  Another inßuencing factor is that the range to the structure of interest is
1



often somewhat large, on the order of kilometers.  But over these distances high frequency

sound is attenuated signiÞcantly more than low frequency sound.  Most of the

investigations that relate to the scattering of sound by Þnite cylindrical objects have been

low frequency studies (see Section 2.1 for references to relevant papers); or at least they

assume the mechanics of the shell can be adequately modeled by thin shell theories.  This

typically requires low frequencies, where the wavelength of the incident sound is large in

comparison to the thickness of the shell.

With relatively recent advances in microelectronics, data acquisition, array systems and

processing, and transducer design, acoustical imaging systems have become popular and

are now fairly inexpensive.  High frequency -- high resolution systems are now frequently

employed in research as well as in industrial applications.  Examples of applications

include high-resolution side-scan sonar, synthetic aperture sonar and even short range

diver hand-held imaging sonar.  This increased interest in high-frequency systems brings

with it a need to more fully understand acoustic interaction problems at high frequencies.

In these high-frequency interaction problems, where the acoustic wavelength can be on the

order of the wall thickness in shell-like structures, it is generally not possible to simplify the

variations in stress and displacement components across the wall thickness as done in

some thin shell theories.  As a result full solutions must be used, which take into account

the three-dimensional nature of the elasto-dynamical problem.  This increases the difÞculty

of the problem and often hampers the interpretation of results in terms of simple concepts.

One example of a high-frequency application is described in a paper by Kaduchak1 and

in a dissertation by Dodd2.  In these investigations a high-frequency high-resolution

scanning sonar system was used to study the backscattering from freely-ßooded

submerged Þnite cylindrical shells over a range of incidence angles.  At certain angles a

large enhancement was observed which greatly enhanced the visibility of the ends of the

cylinder.  These enhancements were attributed to the launching of leaky Lamb waves on

the shell which reßected off the cylinder truncation and reradiated into the backscattering

direction.  These results quite clearly demonstrated that at high frequencies, where

geometric acoustics effects are commonly thought to dominate the scattering from
2



structures, elastic wave effects are present and can be signiÞcantly stronger than rigid-

body-like diffraction effects.

The purpose of this dissertation research is to characterize scattering enhancements for

thick Þnite cylindrical shells and to advance the understanding of the physical processes

which are responsible for the observed enhancements.  The Þrst step taken toward this goal

is to explore the broader conditions under which these enhancements are observable.

Much use is made throughout this dissertation of a  quantity called a form function, so a

brief review is warranted.  Scattering from objects is typically very frequency dependent;

therefore, most investigations usually quantify the scattering process in terms of the

complex pressure response as a function of frequency.  In the far Þeld, where the

dependence on the distance to the target can be represented in a simple analytic form, this

complex pressure is directly related to a dimensionless quantity called a form function,

which contains the dependence on the orientation angles of the scatterer and observer with

respect to the incident sound.  In spherical coordinates the relationship between the

scattered pressure and the form function is,

(1.1)

where f is the form function.  Also pinc is a reference pressure corresponding to the incident

pressure amplitude, a is a length scale appropriate for the scatterer (e.g. the radius if the

scatterer is a sphere), the set  deÞnes the spherical coordinate system with respect

to a chosen location at the scatterer,  is the wavenumber in the surrounding

medium,  is angular frequency and t is time.  This form is appropriate for a

monochromatic steady state scattering problem.  Using the above convention, the form

function magnitude for backscattering from a perfectly rigid sphere is unity in the high

frequency limit.  This is a convenient choice since the mathematical rigid sphere is

commonly used as a reference in scattering theories.  Also, hard spheres are frequently

used as a standard calibration in actual sonar systems.  In cylindrical coordinates, where

the spreading of wavefronts is often dominated by an inverse square root dependence on

distance, the form function is deÞned in the following relation:

p r θ φ ω t,;, ,( ) pinc
a
2
--- 

  f θ φ ω;,( )e
ikr

r
--------e iωt–=

r θ φ, ,( )

k ω c⁄=

ω
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(1.2)

where the set  deÞnes a cylindrical coordinate system.  For a cylindrical scatterer a

is usually the outer radius of the cylinder.  This expression assumes translational

invariance along the z direction; as such, only a traveling wave z dependence is found on

the right hand side.  This is the expected form for an inÞnitely long cylinder.

In Chapter 2 the scattering response of thick Þnite cylindrical shells is examined as a

function of frequency, through both experiment and theory.  Using the method of impulse

excitation (a short duration pressure pulse, either unipolar or bipolar, having broad

spectral content),  the response of the target can be measured over a broad range of

frequencies during a single experiment.  When properly normalized this response is

equivalent to a band-limited or Þltered version of the form function.  This experimentally

measured spectrum, subsequently labelled |S| in the Þgures, is then compared with the

appropriate portion of an approximate theoretical form function, labelled |f|.  The

development of this theoretical model is the subject of Chapter 5.  Since the scattering

response of the Þnite cylindrical shell is highly dependent on the orientation of the incident

sound and the observer, the backscattering response is measured over a range of

orientation angles.  For simplicity in the experiment and subsequent analysis only

backscattering is considered and only one orientation angle is varied.  This angle is called

the tilt or aspect angle and measures the angle between a speciÞc radial vector, which is

perpendicular to the axis of the shell, and the incident acoustic wavevector.  The reference

radial vector lies in the plane containing the axis of the cylinder and the incident

wavevector (see Figs. 2.1 and 2.3).  Because of the axial symmetry of the cylinder only one

Euler angle, corresponding to the tilt angle, needs to be speciÞed.

The results of these experiments and calculations are displayed in a color density plot

format that clearly shows the locations of enhancements and their progression through

frequency-angle space.  The enhancements observed in Refs. [1] & [2] are conÞrmed for

shells having a larger wall thickness and found to be present over a range of angles and

frequencies.  These enhancements are accurately identiÞed through comparison with

p ρ ψ z ω t,;, ,( ) pinc
a
2
--- f ψ ω;( )e

ikρ

ρ
--------ei kzz ω– t( )=

ρ ψ z, ,( )
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coupling loci (displayed in frequency - angle space as well) calculated with approximate

dispersion curves for the appropriate waves on the cylindrical shell.  After locating and

identifying the enhancements in Chapter 2, the remaining chapters attempt to more fully

understand the processes at work.  Chapter 3 examines the backscattered response in the

time - angle domain.  Besides a direct look at the raw backscattered time records, both

experimental and synthesized, the short time fourier transform (STFT) is used to examine

the time records at selected tilt angles and a simple implementation of a synthetic aperture

algorithm is applied to the experimental data to ÒimageÓ a cylinder.  This last analysis

technique aids in picturing where on the shell the enhancements originate from.  The time

domain analysis reveals distinct contributions from both meridional (see Section 2.1), and

helical waves excited on the shell.

Since a knowledge of the dispersion curves for various waves on the shell is useful in

identifying measured enhancements, and for gaining an understanding of such things as

radiation characteristics, Chapter 4 is devoted to calculating dispersion curves for the

inÞnite cylindrical shell using full 3-D elasticity theory.  Dispersion curves for several types

of waves for several mode numbers are calculated.  Chapter 5, as mentioned previously,

discusses the approximate partial wave series (PWS) calculation used to calculate the form

function for backscattering from Þnite cylindrical shells.  Besides the two shells examined

throughout this thesis, the form function for several other shell thicknesses are calculated.

Another step taken in understanding the physics of these high-frequency

enhancements is  to attempt to simplify the scattering process in terms of a ray theory.  This

way the factors which contribute most signiÞcantly to the observed enhancements can be

identiÞed.  If the ray theory correctly models the behavior of the response over regions in

which its assumptions hold it is considered to represent most of the physics involved in the

process.  In this way the ray theory becomes a useful tool in identifying and estimating the

response of more complicated systems.    Chapter 6 presents the results of a ray theory

developed by Marston3-6 for the scattered meridional ray amplitude in the meridional

plane of an inÞnite cylindrical shell when the tilt angle is close to a leaky wave coupling

angle.  These results are compared with the exact PWS solution for scattering from an
5



inÞnite cylindrical shell at oblique incidence (introduced earlier in Chapter 4).  The

comparisons are very good and conÞrm that the ray approach is applicable to cylindrical

shells, where the response is due to leaky Lamb waves, and not just to Rayleigh waves on

solid cylinders as shown in Refs. [5] and [7].  Chapter 7 presents the results of quantitative

experimental measurements of the backscattered meridional ray amplitudes for Þnite

cylindrical shells.  Comparisons of these results are made with an extension of the ray

theory discussed in Chapter 6 and with the approximate PWS solution of Chapter 5.  The

comparisons are quite good and serve to conÞrm that the ray approach works well for

Þnite cylinders also.  The comparisons are limited in the sense that the backscattered

meridional ray amplitude is dependent on the reßection coefÞcient for reßection of the

meridional leaky wave off the cylinder truncation.  Calculating this reßection coefÞcient is

extremely difÞcult and can only be approached in an approximate fashion.  Chapter 8

addresses this problem as well as that of the possibility of mode conversion when the leaky

wave reßects from the truncation.  It is noteworthy that while the calculated inÞnite

cylinder form function may be expressed using Eq. (1.2), the Þnite cylinder case uses Eq.

(1.1) with a taken to be the radius of the cylinder.

The measurements conÞrm one astonishing prediction about the meridional ray

backscattering enhancement from Þnite cylindrical shells: the amplitude of the

enhancement can be several times larger (nearly 7 times larger in one case examined) than

the specular reßection from a rigid sphere having the same radius as the cylinder.  This for

highly tilted cylinders too Ñ up to 60 degrees from broadside incidence Ñ where

transmission loss upon reßection from the end is present.  This is a signiÞcant result

recalling that a standard measure of sonar target strength is the rigid sphere and that the

high-frequency scattering from a highly tilted rigid cylinder with ßat ends has been usually

taken to be extremely small.

While not developed here, the aforementioned result has implications for the

backscattering by certain hemispherically capped cylinders.  Over a range of frequencies

and tilt angles of a hemispherically (or similarly) capped cylindrical shell, the meridional

ray backscattering response from the far end of the shell (or perhaps at an impedance
6



discontinuity, i.e. ring stiffener, weld, joint, or slope discontinuity) may be signiÞcantly

larger than the specular reßection off the front end cap.   The effect of an impedance

discontinuity other than a simple truncation on the meridional ray enhancement has not

been examined here.

A word about the organization of this dissertation is appropriate.  The author has

intended that each chapter be somewhat complete and independent in its own scope.

Therefore the Introduction section found in each chapter may overlap with and be

somewhat redundant to that in other chapters.  Most of Chapter 2, with slight omissions,

was published in 1997 in the Journal of the Acoustical Society of America (JASA) (Ref. [8]).

(Reprinted with permission from Ref. [8]. Copyright 1998 Acoustical Society of America.)

Appendix A of that paper has been expanded and is now Chapter 5 on page 135;

additionally Appendix B has been incorporated into Appendix A on page 277.  Chapter 3 is

an expanded version of a paper written by myself for the Structural Acoustics and

Vibration Student Paper competition at the 134th meeting of the Acoustical Society of

America in San Diego.  Chapters 6 and 7 are written with an expectation of submitting

them for publication in JASA with minor changes and omissions only.
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2

High-Frequency Backscattering 

Enhancements by Thick Finite 

Cylindrical Shells in Water at 

Oblique Incidence: Experiments, 

Interpretation and Calculations 2

2.1 Introduction

Recent high frequency sonar images of truncated cylindrical shells indicate that the

visibility of the ends of the shell can be improved by an elastic response of the shell.1  The

enhancements are associated with a category of leaky ray shown in Fig. 2.1.  The

enhancement occurs when the tilt angle γ of the cylinder is close to the leaky wave coupling

angle , where  is the phase velocity of the leaky wave and c is the speedθl c cl⁄( )1–sin= cl
9



of sound in the surrounding water.  This ray is referred to as a meridional ray5 since it is

propagated along the meridian deÞned by the direction of the incident wave vector and the

cylinder's axis.  An analysis shows that the backscattering enhancement is associated with

the vanishing of Gaussian curvature of the wavefront backscattered in the direction of the

receiver.  The enhancements reported1 were for tilts in the vicinity of 18° and 35°

corresponding to the excitation of symmetric and antisymmetric (s0 and a0) generalizations

of leaky Lamb waves on the ßuid-Þlled stainless steel cylinder used in those experiments.

The purpose of this chapter is to document the existence of high frequency backscattering

enhancements for tilted cylindrical shells relevant to larger values of the tilt γ and in some

cases, extending to γ = 90° (i.e. end-on incidence).

The method of our investigation concerns the global response in the frequency - angle

domain rather than the spatial responses emphasized in Ref. 1.  There are several reasons for

identifying such high-frequency enhancement mechanisms.  For example, such

enhancements may be relevant to the use of backscattering by cylinders lying at random

angles on the sea bottom to facilitate detection at the greatest practical range.  Other

γ

a b

L

FIG. 2.1  Scattering geometry and ray diagram of a meridional leaky ray on a Þnite cylindrical

shell.

Pi

A B

CD
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potential applications include remote ultrasonic detection of cracks or junctions in pipes.

Scattering mechanisms of interest are not limited to meridional rays since in certain

situations strong backscattering contributions from end-reßected helical leaky and

subsonic rays are also evident.  The frequency range investigated extends far above the

coincidence frequencies of the thick and moderately thick shells studied.  The combination

of frequency range and shell thickness investigated are such that the elastic responses of

the shell may not be adequately modeled with the assumptions of thin-shell mechanics.9-11

It is noteworthy, however, that frequency-angle domain displays of backscattering data

used previously for thin ßuid-loaded shells10,12,13 and various methods of approximation

previously used for such systems (see Chapter 5) are relevant to the present investigation.

The investigations mentioned above, as well as several by other authors14-17, have

demonstrated that signiÞcant backscattering enhancements from tilted cylindrical shells

result from the reradiation of surface guided waves for a range of tilt angles somewhat near

broadside incidence.   Large backscattering levels arise from the launching of helical leaky

waves which reßect off the shell truncation and reradiate into the backscattering direction.

Leaky waves are launched at an angle  with respect to the local shell normal according to

the trace velocity matching condition .  Figure 2.2 shows a ray diagram

for launching either a meridional or helical leaky wave.  These helical waves are launched

symmetrically about the shell at the polar angles  and travel along the helix angles

, deÞned with respect to a line parallel to the cylinder axis (i.e. a meridian).   These

angles may be found by the relations1,6,16:  and

.  Two types of waves contribute strongly to the scattering:

longitudinal and shear.  For the general problem of propagation on tilted cylinders these

waves are also known as quasicompressional and quasishear, since it is generally not

possible to completely uncouple shear and compressional displacements.  The

compressional wave, whose behavior at low frequency is similar to a compressional wave

in a plate, can be launched within the region from broadside incidence to a cutoff angle

, deÞned by the plate speed cp
18.  Shear waves can also be launched

within a range of angles around broadside, limited by cutoff at an angle given by

θl

θl c cl⁄( )1–sin=

φl±

Ψ± l

φlcos θlcos γsin⁄=

Ψlcos γsin θlsin⁄=

γs sin 1– c cp⁄( )=
11



, where cs is the shear speed in the shell material.  Using the values given

in Table 2.2  for SS304 these cutoff angles are γs = 16.5° and γT = 28.2°.  At each of these

cutoff angles the helix angle  is zero and propagation is strictly along the axial direction.

For purely circumferential propagation on an inÞnite cylindrical shell these waves are

identiÞed in the lowest order case as the s0 leaky Lamb wave and horizontally polarized

shear wave T0, respectively.  Acoustic coupling to these waves is cutoff for γ in excess of γs

and γT, respectively.  Coupling to the ßexural wave, denoted by a0 for broadside incidence,

should be possible, however, for tilt angles greater than γT
19.  Section 2.3 of this paper

describes the results of backscattering experiments carried out on two different shells

x

y

z

γmer

γ

θl

meridional ray

helical ray

Ψl

2φ

FIG. 2.2  Ray diagram for launching a meridional or helical leaky ray by trace velocity

matching.  When , here shown as , a meridional ray is launched which

travels along the cylinder meridian (in the x-z plane at y = 0).  For smaller angles of incidence

rays are launched at symmetric points off the cylinder meridian (at the polar angles ),

which travel helical paths deÞned by the helix angle .  At greater angles of incidence the

leaky waves of this class launched on the cylinder no longer have a propagating character and

are said to be ÒcutoffÓ.  For subsonic helical rays the launching points are tangent to the

cylinder at  and coupling occurs through evanescent tunnelling.

γ θl c cl⁄( )1–
sin= = γmer

φ±

Ψl

φ π± 2⁄=

γT sin 1– c cs⁄( )=

Ψl
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where the tilt of the cylinder was allowed to vary from broadside to end-on incidence.

These results are compared with theoretical predictions of the backscattering spectral

magnitude, which is the subject of Chapter 5.  Section 2.4 describes an approximate

calculation for the frequency-angle loci which correspond to launching and circumferential

resonance conditions for helical surface waves of interest.  These curves are used to identify

the elastic responses observed at mid to high tilt angles.

2.2 Scattering Experiment

Broadband backscattering experiments were carried out for slender cylindrical shells in

a large redwood water tank.  A schematic of the experimental setup is given in Fig. 2.3.  An

air Þlled Þnite cylindrical shell is placed in the near Þeld of a PVDF sheet source, which

radiates an approximately plane pressure impulse over the dimensions of the target.  A

hydrophone records the pressure response backscattered through the sheet.  This

nonconventional placement of the acoustically transparent PVDF source between the

scatterer and receiver has been discussed previously20.  The cylindrical shell was

suspended at each endcap by thin monoÞlament Þshing line.  Flat Plexiglas endcaps were

used, and a watertight seal was maintained by rubber O-rings and a light elastic strand

stretched between the endcaps inside the shell.  (Pictures of one of the cylinders along with

an endcap can be found in Figs. A.1 - A.3 in Appendix A.)  The center of the target was

placed approximately 25 cm from the source.  The receiver, a piston-like piezoelectric

transducer (Panametrics, model V302), was placed oppositely a distance of approximately

100 cm from the source.  The sheet source is constructed of 110 µm thick PVDF Þlm21 with

silver surface metallization and a 1 mil layer of Mylar on each side.  It measures 71  x 71 cm.

An approximately unipolar pressure pulse is generated when a voltage step is applied to

the sheet.  A discussion of the source spectral properties and normalization can be found in

Appendix A.   A high current pulse generator (Avtech Electrosystems LTD., model AVO-

8C-C) was used to supply a long duration square wave input during the experiment.  The

trailing voltage step-down was delayed until after the backscattered signal was received.
13



Due to the Þnite dimensions of the sheet source, edge contributions delayed relative to the

initial pressure impulse will contribute to the measured backscatter.  These edge

contributions are delayed in proportion to the difference in path length between the

scatterer and the center and edges of the sheet.  Because the scatterer is placed near the

sheet source the effects due to these contributions are expected primarily at low

frequencies; no attempt has been made to incorporate these effects in the present analysis.

Two stainless steel (SS304) scatterers with thickness to radius ratios of 7.6% and 16.3% were

examined separately and are labelled A and B,  respectively.  Tables 2.1 and 2.2 list the

dimensions of each shell as well as relevant material properties.

Time records were recorded for the full range of incidence angles, spanning end-on and

broadside incidence.  Multiple time signals were recorded and averaged at each angle; a

background record, taken with the target removed, was then subtracted to remove signals

arriving directly from the source.  The time window chosen for the experiment excluded

reßections from the tank walls.  The background subtracted time series data was Fourier

receiver
hydrophone

PVDF sheet source

cylinder
8 ft.

12 ft.

FIG. 2.3  Experimental setup.  A cylindrical shell is suspended from a rotation stage in a

cylindrical redwood tank.  The sheet source generates an approximately unipolar pressure

impulse from both its front and back sides.  Backscattered signals from the shell propagate

through the acoustically transparent sheet source to the hydrophone.
14



transformed (FFT) and the modulus normalized according to the source-receiver system

impulse response to obtain the backscattering spectrum.  In the region near end-on

incidence, reßections from the ßat endcaps are clearly observable and quite localized in

time.  Because the scatterers in this experiment were slender, the specular reßection from

the endcap closest to the source was well separated in time from the elastic responses of

interest excited on the shell.  To isolate the elastic backscattering response of the shell, a

rectangular window which excluded the leading endcap reßection was applied to all time

records before computing an FFT.

2.3 Measured and Calculated Backscattering 

Spectrum

Figures 2.4 and 2.5 compare measured and calculated spectral magnitudes for the two

shells studied.  Figure 2.4(b) shows the measured backscattering spectral magnitude from

the thinner of the two shells, A, over a range of aspect angles from end-on (γ = 90°) to

broadside (γ = 0°) incidence, in 0.3° increments (1 kHz resolution).  Figure 2.4(a) is the

theoretical form function magnitude resulting from an approximate calculation for a simply

supported Þnite cylindrical shell, which is the subject of Chapter 5.  The relative scattering

levels are set such that 0 dB corresponds to the maximum scattering response found at

broadside incidence in each Þgure for the frequency range shown.  The reader may wish to

refer to the discussion of dispersion relations for thick shells given in Section 2.A.  The

highest amplitude feature in each Þgure is found at γ = 0°.  This feature corresponds to

broadside incidence and includes the specular reßection from the cylinder.  It is composed

of broad peaks and oscillations which are not easily resolved in the Þgures due to the

amplitude scale chosen.  Figure 2.6 shows a comparison between the corresponding

broadside records in Figs. 2.4(a) and (b) and Figs. 2.5(a) and (b), with the exact partial wave

series (PWS) solution for backscattering at normal incidence from an inÞnite, air-Þlled thick

cylindrical shell.  Section 2.B discusses the alteration of the approximate PWS results which
15



enables the above comparison.  This comparison reveals good agreement in the location

and spacing of the broad peaks and dips for each shell (however the cause of the apparent

mismatch in ÒphaseÓ in Fig. 2.6(a) between the data and the calculated form functions

above 200 kHz is not clear).  This is the expected behavior for scattering from a slender

Þnite shell at normal incidence when the length of the shell signiÞcantly exceeds the width

of the Þrst Fresnel zone22,3, as is the case for most frequencies of interest here.  These broad

features are associated with the a0 antisymmetric leaky Lamb wave in the region where

that wave is supersonic23,24.  (For broadside incidence the narrow resonances are expected

to be more strongly affected by the Þnite length of the cylinder.)  Also clearly observable in

Figs. 2.4 and 2.5 are regions of high backscatter between broadside incidence and the cutoff

angle for shear wave propagation, corresponding to enhancements from helical leaky

waves (s0 and T0) as discussed in Section 2.1.  This is evident by comparison with the loci

shown in Fig. 2.7(b) discussed subsequently.

Table 2.1: Shell parameters

Outer radius Thickness Length

Shell a (mm) h (mm) L (mm) h/a L/a

A 19.05 1.45 228.60 0.076 12.0

B 21.02 3.42 245.05 0.1625 11.658

Table 2.2: Material parameters

Density
Longitudinal 

velocity
Shear 

velocity
Plate speed

Material (g/cm3) (mm/µs) (mm/µs) (mm/µs)

Stainless Steel 304 7.57 5.675 3.141 5.232

Water 1.00 1.483
16



FIG. 2.4  Scattering from Shell A: (a) Calculated and (b) measured backscattered spectral

magnitude of the impulse response as a function of frequency and aspect angle for an empty

SS304 cylindrical shell with thickness to radius ratio h/a = 0.076 and slenderness L/a = 12.0.

The maximum frequency displayed (f = 400kHz) corresponds to ka = 32.3.  Calculated values

beyond γ = 80° in (a) have been ßoored (shown as black) due to increased error in the

numerical calculation at high aspect angles.  These color raster images represent the sampling

intervals: (a) ∆ka = 0.05 (∆f = 619 Hz), ∆γ = 0.3125°; (b) ∆ka = 0.081 (∆f = 1000 Hz), ∆γ = 0.3°.
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FIG. 2.5  Scattering from Shell B: Same as Fig. 2.4 except h/a = 0.1625 and L/a = 11.658.  The

maximum frequency displayed (f = 300 kHz) corresponds to ka = 26.7.  These color raster

images represent the sampling intervals: (a) ∆ka = 0.05 (∆f = 561 Hz), ∆γ = 0.3125°; (b) ∆ka =

0.089 (∆f = 1000 Hz), ∆γ = 0.3°.
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FIG. 2.6  Comparison of broadside (γ = 0°) measured spectra of Figs. 2.4 (b) and 2.5 (b), (solid

lines) with the calculated spectrum (short dashed lines, modiÞed as described in Section 2.B)

from Figs. 2.4 (a) and 2.5 (a) respectively.  (a) Shell A, (b) Shell B.  The long dashed lines are

calculated for an inÞnite cylindrical shell at broadside incidence.  In each case the

experimental data was multiplied by an overall amplitude factor to qualitatively match the

calculated curves.  See Fig. A.14 for an extension of (b) up to f = 1 MHz.
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The most striking features evident in Fig. 2.4(a) and (b), and the principal focus of this

paper, are the regions of high backscatter which extend beyond the cutoff angle for shear

wave propagation (γ = γT =  28.2°) to end-on incidence.  Two features are distinguishable.

The Þrst is the broad peak curving from γ = 46° at the right edge of each Þgure to γ = 90° at

kHz.  The peak value along this curve in the experimental result reaches

approximately -17 dB.  The second feature is composed of multiple frequency-angle curves

which extend from broadside incidence to γ = 65°.  The two features merge near the

coincidence frequency [f = 193 kHz; ka = 15.6, see Fig. 2.9(a)] and exhibit strong

backscattering (up to -11 dB) out to end-on incidence.  The Þrst of these two features can be

associated with the meridional (axial) propagation of the a0 antisymmetric leaky Lamb

wave  along the front side of the cylinder, as shown in the ray diagram in Fig. 2.1.  Recall

that coupling to the meridional ray, and subsequent backscattering enhancement, occurs at

tilt angles .  To a good approximation in this frequency range the

phase velocity of the a0 wave can be modeled by the phase velocity calculated for a plate of

the same material and thickness.  The solid curve in Fig. 2.7(a) shows where the above

launching condition is satisÞed for the a0 wave, using phase velocity values calculated

with the exact solution for a plate ßuid loaded on one side with water.  Good agreement is

found between this curve and the broad feature evident in both the experimental and

theoretical Þgures.  The dashed curves show the results of a similar approximation applied

to the helical propagation of the subsonic Lamb wave a0- which will be discussed in the

following section.

Figure 2.5 shows theoretical and experimental results for a considerably thicker shell,

labelled B in Table 2.1.  The coincidence frequency is now found at a lower frequency f = 82

kHz (ka = 7.3).  Figure 2.8(a) displays phase matching conditions for the meridional

propagation of the a0 wave in the same way as for the thinner shell in Fig. 2.7(a).  The

broad curve extending from γ = 40° at the right edge of the Þgure to γ = 90° at kHz is

similarly identiÞed as resulting, at least in part, from the launching of the a0 wave in a

meridional fashion.  Also observable are what appear to be the higher order circumferential

resonances of the helical a0 supersonic waves, whose resonance loci are discussed below

f 200≈

γ θ= l c cl⁄( )1–sin=

f 80≈
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[in conjunction with the discussion of Fig. 2.8(b)].  Near the coincidence frequency, within

25° of end-on incidence, backscattering levels are considerable, reaching -10 dB at γ = 80°

and -7 dB at γ = 90°.  Below the coincidence frequency the backscattering response is

generally high over a large range of aspect angles although some frequency-angle ridges

and valleys are distinguishable.

2.4 Circumferential Resonances

An approximation will now be discussed which describes the frequency-angle loci

corresponding to circumferential resonances of helical waves.  It is known that

backscattering is enhanced when resonances of the shell are excited.  For the tilted Þnite

cylinder these are usually associated with circumferential and axial propagation.  Only

resonances associated with circumferential propagation will be examined here.  Resonances

associated with axial propagation are not considered in our analysis because for the high

frequency guided waves of interest (the a0 and a0- waves), the radiation damping is

usually sufÞciently large to inhibit scattering contributions from repeated axial reßections.

Counter-examples of this are the s0 and T0 meridional and helical waves which do exhibit

axial resonance features (e.g. see Fig. 5.4).  Consequently the frequency response is

expected to depend only weakly on the length L when L is large.  Circumferential

resonance occurs for helical waves when the azimuthal wave path on the cylinder equals

an integer number of wavelengths.  If it is assumed that reßection of the surface wave off

the truncation only introduces a change in sign of the axial wavevector, the previous

condition combined with the launching condition serves to deÞne speciÞc frequency-angle

combinations wherein high levels of backscattering are possible.  In terms of the

dimensionless frequency ka and the aspect angle γ, where k is the wavenumber in the ßuid

medium and a is the outer radius of the cylinder, the following relationship describes

circumferential resonance conditions25,26:
23



, (2.1)

where the integer n is the circumferential mode number.  It should be emphasized that this

relation only speciÞes where there exists an axial wavenumber matching between the

incident wavevector and a certain ÒresonantÓ mode of the shell.  The term resonant is here

used loosely as it is not a global resonance of the structure under consideration, which

would involve both axial and circumferential resonances.  Whether or not an enhancement

exists at these locations depends on many other factors, such as the nature of the coupling

between the ßuid and the shell, radiation losses, and the shape of the outgoing wavefront

in the direction of the observer.  The solution for n = 0 does not correspond to a resonance,

but rather describes purely axial propagation of a supersonic guided wave.  For this case

Eq. (2.1) reduces to the trace velocity matching condition of a meridional ray,

.  For sufÞciently high frequencies the phase velocity for propagation of a

guided wave on a tilted cylinder is approximately independent of helix angle [see Figs.

4.10(a) and 4.12(a)].  In this frequency region the phase velocity for all angles of incidence

in Eq. (2.1) can be approximated by the values calculated for broadside incidence or for a

plate.  Figure 2.7(b) shows the frequency-angle loci which satisfy Eq. (2.1) for the s0, T0 and

a0 waves for Shell A.  For each set of loci, except the a0 wave, the n = 0 curve enters at the

lowest frequency while higher order curves emerge with increasing frequency.  For the a0

wave the n = 0 curve corresponds to the limiting solid curve on the lower right side of the

Þgure.  For comparison the solid curve from Fig. 2.7(c), corresponding to propagation on a

plate, has been included and is now described by the long dashed curve.  Figure 2.8(b)

displays analogous results for Shell B.  Phase velocity and radiation damping curves for the

relevant waves, as well as a description of the method used to calculate them and a

discussion of their applicability, are given in Section 2.A.  Due to the aforementioned

approximation, the frequency-angle loci displayed in Figs. 2.4, 2.5, 2.7 and 2.8 are to be

used in identifying the responses excited on the shell and are not meant to be a precise

description of resonance locations (Chapter 4 discusses exact dispersion curves for inÞnite

shells).  The agreement with calculated and measured results is quite good, which can be

ka( )2 c
cl
---- 

  2
γ2sin– n2= n 0 1 2 …, , ,=

γ c cl⁄( )1–sin=
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shown by overlaying the calculated resonance loci on the backscattering response Þgures,

and the qualitative agreement serves to identify the wave types.

The regions of scattering below the coincidence frequency deserve attention.  The

resonance loci for the a0 wave in Figs. 2.7 (b) and 2.8 (b) have been carried through to the

region where the a0 wave becomes subsonic.  Any coupling to this wave in this latter

region must occur through evanescent tunneling at the azimuthal angles .  For

Shell A the scattering contribution is not expected to be signiÞcant due to the high

radiation damping  for l = a0 suggested by Fig. 2.9(b).  The features evident in Fig. 2.4,

primarily at and below the coincidence frequency at mid to high angles might better be

associated with the slightly subsonic a0- wave, which has been shown to lead to large

backscattering enhancements from spherical shells and right-circular cylindrical shells27-

31.  The dashed curves in Fig. 2.7(a) show the resonance loci for helical propagation of the

a0- wave, calculated using Eq. (2.1) with n > 0 and the cylindrical shell phase velocity.

Coupling to the a0- wave would occur at  through evanescent tunneling.

Referring to Fig. 2.9(b) the radiation damping of the a0- wave is small for f < 100 kHz and

increases quickly through the coincidence frequency region27-29.  It is through this region

where the a0- wave moves from exhibiting Òtrapped waveÓ to Òcreeping waveÓ behavior as

the thickness of the evanescent coupling layer decreases32.  SigniÞcant coupling to this

wave is expected in this region.  The interpretation for Shell B near and below the

coincidence region does not follow directly from the thinner shell results and is not as clear

from the present analysis.  The radiation damping of the a0- wave, seen in Fig. 2.10(b) is

large near the coincidence frequency region while the damping of the a0 wave is relatively

low.  For completeness the frequency-angle loci for helical propagation of the a0- and a0

waves are extended below the coincidence frequency in Fig. 2.8 (a) and (b).

Comparison of the solid curves in Fig. 2.8(b) in the region above 100 kHz with the

observations in Fig. 2.5(b) shows that several of the a0 helical wave coupling loci are visible

even when n is not small.  Inspection of Fig. 2.10(b) suggests that this may be a

consequence of the relatively weak damping of the a0 wave in comparison to the thinner

shell case shown in Fig. 2.9(b).  It is also noteworthy that towards end-on incidence in Figs.

ψ π± 2⁄=

βl

ψ π± 2⁄=
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2.4(b) and 2.5(b) there are signiÞcant backscattering enhancements near 20 and 40 kHz,

respectively, which are not present in Figs. 2.4(a) and 2.5(a).  The cause of these

enhancements is not presently identiÞed but is discussed in greater detail in Chapter 3.
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FIG. 2.7  Approximate coupling loci for Shell A calculated with Eq. (2.1).  (a) The solid curve

shows the frequency-angle locus for launching the meridional ray depicted in Fig. 2.1.  It is

calculated using the phase velocity for the a0 wave on a ßuid loaded plate having the same

thickness as the shell.  The dashed curves show the approximate resonance loci (n = 6 - 14) for

a0- helical waves, while in (b) the solid lines are l = a0, n = 0 - 10; alternating long and short

dashes, l = T0, n = 0 - 14, and short dashes, l = s0, n = 0 - 8.  These are all calculated using phase

velocity values calculated for an inÞnite, empty, thick cylindrical shell at broadside incidence

as discussed in Appendix C.  The curve with the long dashes is the solid curve from (a) for the

meridional ray.
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FIG. 2.8  Approximate coupling loci for Shell B (same as Fig. 2.7) calculated with Eq. (2.1).  The

family of dashed curves in (a) correspond to resonance conditions n = 2 - 11 for the a0-.  In (b)

the solid lines are for l = a0, n = 0 - 10; alternating long and short dashes, l = T0, n = 0 - 11, and

short dashes, l = s0, n = 0 - 7.  The curve with the long dashes is the solid curve from (a) for the

meridional ray.
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2.5 Discussion and Conclusions

The experimental data presented for backscattering from thick cylindrical shells clearly

shows regions of high backscatter at aspect angles considerably beyond the cutoff for shear

wave excitation on the shells.  An approximate theoretical treatment of the scattering

problem of a plane wave incident on a Þnite cylindrical shell using full elasticity theory has

been presented.  The agreement in the frequency-angle domain between the experimental

data and the theoretical locations of the ridges of enhanced backscattering is very good,

except in the region of aspect angles nearing end-on incidence where the numerical

evaluation of Eq. (5.42) becomes difÞcult.  One feature evident for both shells in the region

above the coincidence frequency is identiÞed as the backscattering contribution of an end-

reßected meridional ray.  The location in frequency-angle space of this backscattering

mechanism is easily approximated with knowledge of the phase velocity for the a0 leaky

Lamb wave on an inÞnite cylindrical shell or plate (the results for a plate in vacuum are

very similar) in this frequency range.  It should be emphasized that this mechanism does

not depend on the back side of the shell and is a local synchronization, rather than a

resonance phenomena in a global sense.  The associated backscattering amplitude is

expected to depend only weakly on the length L of the shell when, as in the present case,

βlL/a >> 1 where βl/a approximates the spatial attenuation rate of the a0 wave (see

Appendix C).  The one-way attenuation factor for propagation down the length of the shell

becomes exp(-βlL/a) << 1.  A second feature, identiÞed primarily for the thinner shell, is

associated with helical wave coupling loci for the subsonic a0- wave at and below the

coincidence frequency.  Distinct helical wave coupling loci can be resolved on the thick

shell for the supersonic a0 wave at high frequencies.

The frequency-angle domain response plots shown in Figs. 2.4 and 2.5 are only one of

several multidimensional plots which may be used for identifying the large number of high

frequency elastic scattering contributions.  Another example includes time-frequency

domain response plots for a Þxed scattering angle or target orientation33-35.  The plots

shown in Figs. 2.4 and 2.5 are especially relevant to the operation of high frequency sonar
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systems because the dependence on aspect angle is displayed.
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2.A Wave properties for thick cylindrical shells

This appendix discusses the guided wave properties for the thick cylindrical shell and

their applicability to the circumferential resonance condition given in Section 2.4.  Figure

2.9 displays the wave properties for an inÞnite empty cylindrical shell having the same

radii and material parameters as Shell A.  It displays the normalized phase velocity and

radiation damping (in Np/rad) parameters as a function of frequency where the angular

damping rate is for purely circumferential propagation.  Figure 2.10 displays analogous

results for a cylinder corresponding to Shell B.  The wave parameters given in these Þgures

are calculated using the Watson methodology applied to the exact partial wave series

(PWS) solution for an inÞnite cylindrical shell insoniÞed at normal incidence1,23,24.  These

curves are exact only for circumferential propagation (non-oblique incidence) on an inÞnite

cylinder.  In Figs. 2.9(a) and 2.10(a) the curve deÞned by the points corresponds to the

normalized phase velocity for the a0 Lamb wave on a plate of the same material and

thickness in vacuum.  Notice that unlike Fig. 2.9(a), in Fig. 2.10(a) the a0 and a0- curves for

 cross in the coincidence region.  This crossing behavior is representative of the

coincidence behavior for thick shells  in contrast to the repulsion for thin shells evident in

Fig. 2.9(a).

The phase velocities calculated above for the case of broadside incidence are a good

estimate for the phase velocities encountered at oblique incidence provided the frequency

is sufÞciently high.  For the case of thin shells this criteria is usually that the frequency is

cl c⁄
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sufÞciently above the cylindrical ÒringÓ frequency of the shell.  In Figs. 2.7 and 2.8 the low

end of the resonance loci are terminated at a somewhat arbitrary frequency, at or above an

estimate of the ÒringÓ frequency for each shell.

One consequence of using the phase velocities given above in Eq. (2.1) for the estimated

resonance loci is apparent by noting the difference between the a0 phase velocity curves for

the cylinder compared with the plate.  Evident in both Figs. 2.9(a) and 2.10(a) is a shift

toward higher phase velocities for the cylinder above the coincidence frequency.  This shift

can be attributed to the effects of curvature present in the cylinder analysis36.  For the

meridional ray (n = 0) the behavior of the a0 wave would be expected to follow that for the

plate, while for increasing n the behavior would tend toward that for the cylinder.  In Figs.

2.7(b) and 2.8(b) the lower order resonance loci for the supersonic a0 wave (solid curves)

tend to congregate very close together; furthermore, they are displaced relative to the plate

curve.  Removing the effect of curvature for low orders of n would have the effect of

broadening the spacing of these curves toward the plate curve.

For situations where the phase velocity cl is somewhat larger than c, it is anticipated

that the spatial leaky wave damping rate depends only weakly on curvature for those

waves where βl is shown in Figs. 2.9(b) and 2.10(b).  The spatial leaky wave damping rate

may be estimated as βl/a where a is the radius of the cylinder.  The relevant propagation

distance is determined by the cumulative length of the meridional or helical leaky ray on

the cylinder.    
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FIG. 2.9  (a) Normalized phase velocity and (b) radiation damping for guided waves on an

inÞnite, empty, thick cylindrical shell corresponding to Shell A for broadside incidence.  The

curve deÞned by the points shows the normalized phase velocity for the a0 wave on a plate of

the same thickness in vacuum.  The coincidence frequency is deÞned as the frequency where

this normalized phase velocity is equal to unity, which in this case is 193 kHz.
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2.B Form Function Comparison: Finite and 

InÞnite Cylinder PWS Results at Broadside 

Incidence

This appendix section describes the steps necessary to compare, at broadside incidence,

the approximate Þnite cylinder PWS form function (Chapter 5) with the exact inÞnite

cylinder PWS form function.  The inÞnite cylinder form function is deÞned in Eq. (1.2).  In

this case the cylindrical spreading of the far-Þeld wavefronts causes a  amplitude

dependence.  For objects of Þnite dimensions, i.e. spheres and in this case the Þnite

cylinder, the form function deÞned in spherical coordinates is most often used.  This form

function is deÞned in Eq. (1.1) and the far-Þeld spreading of wavefronts causes a 

amplitude dependence.  At distances very large compared to the dimensions of the

scatterer, , it is expected that the scattering amplitude will display this

behavior.  In each of these cases the magnitude of the form function for backscattering by a

rigid inÞnite cylinder or sphere approaches unity for  (Ref. [82]).

There is, however, a caveat.  For the case of the Þnite right circular cylinder, one of the

principle radii of curvature is inÞnite.  The Gaussian curvature of the reßected wavefront

therefore vanishes and one expects a far-Þeld caustic.  This far-Þeld caustic affects the

spreading of the wavefront and is built into the normalization for the inÞnite cylinder form

function.  For the tilted Þnite cylinder this caustic is located in the specular direction.  At

broadside incidence it is in the backscattering direction.  It can be shown (Sect. 2.12 of Ref.

[82]) in this case that the far-Þeld form function for backscattering by a rigid Þnite cylinder

is approximately

, (2.2)

where the deÞnition of the form function is as in Eq. (1.1) for spherical coordinates.  The

form function displays a  dependence and therefore diverges as .  This

behavior is also found in the approximate PWS solution for the Þnite cylindrical shell.  The

1 ρ⁄

1 r⁄

r 1 2⁄( )k L 2⁄( )2»

ka ∞→

f cyl
rigid γ 0=( ) 2

a
--- e i π 4⁄( )– L

ka
4π
------ 

 ≈

ka ka ∞→
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form function increases with ka in a general square root behavior.  Therefore to make a

comparison with the PWS result for the inÞnite cylindrical shell it is necessary to normalize

the approximate PWS result with Eq. (2.2).  More speciÞcally the approximate PWS form

function plotted in Figs. 2.6(a) and (b) (short dashed lines) is calculated with

, (2.3)

where  is the approximate form function described in Chapter 5.  The comparison

between the inÞnite and Þnite cylinder results is then quite good, except at low frequencies.

The experimental data seems to match these calculated curves very well.  In general this

indicates that the receiver is not in the true far-Þeld of the Þnite cylinder of length L and the

scattering is dominated by wavefronts which spread according to .  The fact that the

comparison with the measurements is so good indicates that the receiver is however in the

Òfar-ÞeldÓ when considering the other dimension of the shell, the radius a, and the

scattering is found to be weakly dependent on the Þnite length of the shell.  These same

arguments do not apply to the backscattering by a tilted Þnite cylindrical shell.  A more in-

depth discussion of the far-Þeld criteria may be found in Section A.3 of Appendix A.

f
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3

Time Domain Analysis of the 

Backscattering from Finite 

Cylindrical Shells 3

3.1 Introduction

Historically, the scattering of sound by Þnite cylindrical objects in water has been an

important problem to understand.  There has been recent interest in gaining a better

understanding of scattering processes in the high frequency regime.  In particular, high

frequency sonar images of Þnite cylindrical shells have displayed enhancements which

increase the visibility of the ends1.  These enhancements are associated with elastic effects on

the cylinder.  SpeciÞcally, the work in Ref. [1] found enhancements for a 5.5% thick (b/a =

0.945, where b and a are the inner and outer radii, respectively) water-Þlled steel shell near

600 kHz (ka = 145.6, where k = ω/c) at various cylinder aspect angles.  The enhancements

were found to occur when the aspect angle of the cylinder neared a leaky wave coupling
39



angle, given by .  Here  is the phase velocity of the lth class of leaky

wave and c is the speed of sound in the surrounding water.  The idea of launching surface

waves on tilted cylinders, which might then give enhanced backscattering after reßection

from the cylinder truncation, is obviously not new and experimental10 and

theoretical10,11,16,32 reports have been made concerning this.  A consequence, however, of

the greater fractional shell thickness and higher frequencies which are important for

speciÞc imaging applications is that thin shell mechanics is not suitable to describe the

scattering processes in these cases.  To address high frequency scattering Marston5

developed a ray model for meridional rays which qualitatively describes the results of Ref.

[1] (see Fig. 2.1; meridional rays are purely axial and travel along the meridian, or front

face, of the cylinder).  Furthermore he noted that the amplitude of the backscattered

meridional ray should be ÒsigniÞcantly strongerÓ than the end diffraction predicted, e.g.,

by GTD by a rigid cylinder.  Aspects of high frequency helical wave excitation have also

been analyzed6.

To explore these high frequency scattering and coupling processes, Morse, et al8 carried

out backscattering experiments with thick and moderately thick Þnite cylindrical shells.

This is the subject of Chapter 2.  Impulse response measurements made with a broadband

PVDF sheet source20 revealed various enhancements over the full range of cylinder aspect

angles which were identiÞed with the generalizations of the a0, a0-, s0, and T0 (transverse

shear) leaky waves.  Figure 2.4 shows some results from that investigation.  It displays

frequency-angle domain representations of the experimental and calculated backscattered

spectrum showing regions of high backscatter [Figs. 2.4 (a) and (b)] which were found to be

associated with favorable coupling conditions [Figs. 2.7 (a) and (b)] for meridional and

helical leaky waves calculated for inÞnite cylinders.  In addition to these conditions, called

coupling loci, it is important to gain an understanding of how the scattering processes are

manifest in the time domain.  Doing so will provide further insight into the scattering

problem.  The present investigation aims to further this understanding with the use of time

series analysis applied to the experiments of Chapter 2. 

θl c cl⁄( )1–sin= cl
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FIG. 3.1   Measured time series of the backscattered pressure versus cylinder aspect angle for

Shell A.  The linear color scale represents a logarithmic scale where red is positive high voltage

(1 --> 0 dB), blue is negative high voltage (-1 --> -0dB) and white corresponds to low levels (-45

dB re max @ γ = 0°).   The sheet source was used in the bipolar pulse mode for this data.  The

response shown is the measured direct backscattered signal where a background record has

been subtracted from each trace.  This background is recorded with the cylinder removed and

includes signals propagating directly from the source to the receiver.  Two backgrounds were

used in this Þgure: one for the angles 0°-90° and one for 90.4°-180.4°.  This was done to

improve the subtraction for the late time response over the latter range of angles since an

unknown experimental ÒdriftÓ occurred over the duration of the experiment (≈ 7 hours).  The

improved subtraction can be seen near 700 µs at γ =  90°.
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3.2 Experimental Results

Figure 3.1 shows the raw time series data versus cylinder aspect angle for impulse

response backscattering from an air-Þlled, slender, Þnite cylindrical shell.  A background

record has been subtracted from each time record to eliminate signals arriving directly

from the source.  This is the same shell and experimental setup as Shell A in Chapter 2 and

Ref. [8].  A description of the endcaps used for this experiment may be found in Appendix

A on page 278.  Broadside incidence corresponds to γ = 0° while end-on is γ = 90° and the

step size is 0.4°.  Recall the properties of the shell found in Table 2: stainless steel 304, b/a =

0.924, a = 19.05 mm, L/a = 12.0, where L is the cylinder length.  There are two minor

differences in the experimental setup in this case.  The Þrst is that the source was driven in

the bipolar pulse mode (see Appendix A for a discussion of the two modes of operation).

This mode was chosen since the bipolar mode results in less low frequency clutter after the

background subtraction is performed and increases high frequency performance.  The

second difference from the data presented earlier is that the separation distance between

the center of the cylinder and the receiver is 1.55 m as opposed to 1.25 m.

Figure 3.2 is a close-up of the Þrst 500 µs of Fig. 3.1.  The overlaid solid black lines are

the calculated return times for direct propagation from the source to the four ÒcornersÓ of

the cylinder and back to the receiver.  Expressions for the corresponding return times are

given in Section 3.B where account is made for the Þnite target-receiver distance.  These

points are labelled A through D in Fig. 2.1.  They would have the same locations in space as

the corners of a rectangle of dimensions 2a x L  lying in the plane of rotation of the cylinder

and centered about the bisection of the cylinder.  These locations on the cylinder are

henceforth referred to as corners.  The two lines having the earliest arrival times (lower

values of time) correspond to reßection from corners A and D while the lagging two

correspond to B and C.  This helps place the scattered response in perspective.  The earliest

arrivals are diffracted off the nearest corner edges.  Later arrivals are evident from the

closest rear corner [B, or C (γ > 90°)] but these tend to be overwhelmed by the elastic

response.
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At this point it is possible to make a few comments about the elastic response.  Within

30 degrees of broadside incidence (30° > γ > 0° and 180° > γ > 150° for the ranges shown) the

response is very complicated.  This is the region where, in Chapter 2, it was shown that

coupling to the helical waves of the s0, T0, and a0 waves are possible.  Coupling to the s0

meridional ray is possible as well, but is excluded for the T0 meridional ray due to the

nature of its propagation characteristics.  Recall that the cutoffs for the s0 and T0 helical

waves are roughly 16.5° and 28.2°, respectively.  Within these ranges of angles many orders

(circumferential, labelled n) of helical waves may be launched.  For the frequency range

shown in Fig. 2.7 the possibility exists of exciting 9 helical modes of the s0 and 14 modes of

the T0.  If excited, these are expected to exhibit low levels of radiation damping (see Fig.

2.9) and as a result the response would persist for some time.  This is generally what is

observed in Figs. 3.1 and 3.2.  At this point it is important to note that the next higher

modes, the s1 and T1, have mode thresholds well above the highest frequencies available in

this experiment.  As a result no contributions are expected from these higher modes.

Somewhat beyond the cutoff angle for shear wave propagation (about 28 degrees) the

elastic response is relatively short-lived, indicative of an elastic response with signiÞcant

damping.  In this region the only types of surface waves that may contribute are those with

phase velocities less than the T0 wave.  Referring to Fig. 2.9 this leaves only the

antisymmetric waves a0 and a0-.  These both exhibit larger levels of damping than the s0

and T0, and so their backscattered response would not persist as long.  One very interesting

characteristic of the response between γ = 40° and γ = 140° is that some of it precedes the

geometrical timing to the closest rear corner (tB or tC).  This is especially true at end-on

incidence (γ = 90°).  The only way this is possible is if the surface-wave wavepacket

responsible is launched prior to the closest rear corner and possesses a group velocity

greater than the sound speed in the water.  Without further analysis, it is not possible to

positively identify which of these contributions is the result of the a0 meridional ray and

which are due to the a0- helical rays.  This will be the subject of the next section.    

For the purpose of reminding the reader of the spectrum associated with Fig. 3.2, its

normalized spectrum is displayed in Fig. 3.3 for the same range of angles.  This can be
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FIG. 3.2   Close up of Fig. 3.1 with overlaid black lines indicating the calculated return times

for direct propagation through the water to each of the four ÒcornersÓ of the cylinder (see Fig.

2.1).  These times correlate well with observed diffraction returns.  Expressions for these

arrival times may be found in Section 3.B.
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FIG. 3.3   Magnitude of the spectrum of the backscattered response of Fig. 3.1 (or Fig. 3.2)

normalized with the spectrum of the incident bipolar pulse (see Section A.4 of Appendix A).

Most of the reßections from the earliest endcap are windowed out of the time signals of

interest before performing the Fourier transform.  Including the nearest endcap reßections

results in a large broadband feature near γ = 90° which is associated with the specular

reßection from the ßat endcap.  Excluding this response simpliÞes the interpretation of the

measured spectrum.  The horizontal streaks in the data above 400 kHz are a result of the

diminishing signal-to-noise ratio at high frequencies.  The spectrum below 35 kHz has been

ÒßooredÓ (shown as black) because of poor source normalization for the bipolar pulse mode at

low frequencies.
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compared directly with the spectrum in Fig. 2.4(b).  This Þgure is not quite symmetrical

about γ = 90°.  The cause of this is unknown.

3.3 Time-Frequency Analysis

Knowledge of the frequency response of a system is often very useful in identifying

important features, as it was in Chapter 2.  The corresponding time domain response can be

quite complicated, as is the case here.  One tool that is highly useful for making a

connection between features in the frequency domain and those in the time domain is time-

frequency analysis.  There are many different approaches and ßavors which include the

Short Time Fourier Transform (STFT) and Wavelet Transform33-35,37,38,39.  Slightly

different approaches are global transforms such as the Wigner-Ville or Choi-Williams

distributions.  The simplest of these is the STFT which has been used extensively in the

analysis of speech and is often referred to as a spectrogram.  The goal is to Þnd out what

frequencies are present at a given time and at what amplitude in a time series signal.  The

process is straightforward: 1) out of the entire time signal select a small region of interest

and apply a window function of length Tp which zeros out everything outside the window,

and then 2) take the Fast Fourier Transform (FFT) of whatÕs left.  In this way one is

essentially Þnding the frequencies present in a selected short span of time.  Now take this

window and FFT algorithm and move it along the time signal.  This generates a 2-D

representation of the signal with time on one axis (same as the original time axis) and

frequency on the other.  If the original time series is sampled at an interval of  up to a

maximum time of  then the corresponding frequency interval will be 

for  samples.  One can see, however, in the STFT the actual frequency resolution is

limited by the width of the window.  The longer the window the greater the frequency

resolution, but at a cost of time resolution in the time-frequency representation.  Likewise,

if the time window is made short to obtain better time resolution then the frequency

resolution is decreased.  For example, in the analysis to follow the sampling interval in the

original signal is µs for  samples.  This gives a frequency resolution for

∆t

N∆t ∆f N∆t( ) 1–=

N 2⁄

∆t 0.5= N 2000=
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the full transform of the original signal of kHz.  The length of window

chosen is µs which would give a frequency resolution of 25 kHz for the window

itself.  Since we are not extracting out a 40 µs portion of the original signal and then doing a

FFT the resulting frequency interval is not 1/40 µs = 25 kHz, but is still 1 kHz, in keeping

with the overall 2000 sample window.  The overall bandwidth of the windowed signal,

however, is essentially determined by the length of the window (i.e. poor resolution ≈ 25

kHz) and the increased resolution (1 kHz) can be thought of as a smoothing of the

spectrum.  A good discussion of the considerations involved in performing time-frequency

analysis can be found in the text by Cohen39.

The actual expression used to calculate the STFT, G(f,tÕ), is identical to that used in Ref.

[35] and is,

(3.1)

where g(t) is the original time signal, w(t) is the window function and FT[ ]  represents the

Fourier Transform of the quantity in brackets.  The window used is the Blackman window

given by,

(3.2)

where Tp is the window length.  For  the window is zero.  The routine is

relatively easy to implement in a high-level programming language such as Matlab¨.  The

code used is given in Appendix B.

Figures 3.4 - 3.9 display the results of applying this STFT algorithm to six individual

time records from Fig. 3.1.  Each has been normalized along the frequency axis with the

spectrum of the incident pulse.  SpeciÞcally they are γ = 0°, 39.6°, 44°, 52°, 71.2°, and 90°.

Overlaid on each plot is a vertical white line which corresponds to the geometric reßection

timing from the closest rear corner (at tB, see Section 3.B).  From the result for broadside

incidence in Fig. 3.4, γ = 0°, one may identify strong contributions from the a0- coincidence

frequency enhancement27,29,35 near 140 kHz as a series of individual wavepackets.  (Recall

∆f N∆t( ) 1 1= =

Tp 40=
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that the coincidence frequency is roughly 193 kHz.)  Also present is a broadband a0

wavepacket above the coincidence frequency just after the specular reßection.  Consider

now what happens as the tilt angle of the cylinder is allowed to increase.  The response for

angles less than the shear cutoff angle (≈ 28°) is complicated and no new individual

contributions are evident, i.e. individual wavepackets due to s0 or T0 helical waves are not

distinguishable.  As the tilt angle increases further, only a few features are left.  At γ = 39.6°

(Fig. 3.5) three features are clear.  The Þrst is the broadband wavepacket at about 165 µs

corresponding to the corner reßection from the closest corner (labelled A).  The second

feature is evident below 200 kHz as a series of regularly spaced wavepackets.  The third

feature is barely distinguishable near 500 kHz right at the corner timing, tB.  These last two

features may be identiÞed by inspecting Figs. 2.4, 2.7 and 3.3.  The contribution previously

identiÞed as the a0 meridional ray should be present around 600 kHz for this angle.

Furthermore it should appear fairly broadband due to the slope of the meridional ridge in

Fig. 3.3.  What is seen in Fig. 3.5 is the lower frequency portion of the a0 meridional ray

wavepacket.  The other feature at lower frequencies, appearing as 6 individual

wavepackets delayed from the corner timing, is identiÞed through the same process as

several helical returns of the a0-.  These contributions have traversed a helical path on the

cylinder and as a result are delayed with respect to the meridional ray wavepacket, which

only propagates along the cylinder front meridian.  They have been reßected once at or

near point C in Fig. 2.1.  Now tilt the cylinder further away from broadside to γ = 44° (Fig.

3.6).  The a0 meridional ray wavepacket is now fully distinguishable at about 460 kHz as

the most prominent feature.  The visible a0- helical wavepackets have decreased in number

to three and are now closer together.  At γ = 52° (Fig. 3.7) the a0 meridional ray wavepacket

has moved down in frequency to 330 kHz.  The a0- helical wavepackets are no longer

distinguishable as separate wavepackets but they still lag the corner reßection time.  At γ =

71.2° (Fig. 3.8) these two features have merged in time and frequency and are

indistinguishable.  This merging in the frequency domain is also seen in Figs. 2.4 and 3.3.

The timing of this feature is roughly coincident with the closest rear corner timing (at tB).

At end-on incidence, γ = 90° (Fig. 3.9), these features are still indistinguishable but now
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display three interesting characteristics, which together suggest an interpretation of the

scattering mechanism.  First of all the primary return precedes the corner timing

signiÞcantly.  This suggests that the wavepacket speed exceeds that of the speed of sound

in water.  Secondly, two additional returns are evident at equally spaced intervals behind

the original.  Thirdly, there appears to be one dominant frequency interval over which

these features are found.  To help in identifying the contributing mechanism consider the

following: the time necessary for a wave to travel twice the length of  the cylinder at the

speed of sound in water is µs.  The interval

between the observed returns is roughly 225 µs.  This corresponds to a wavepacket group

speed of about 1.4 times cw.  This is consistent with what is known about the group velocity

of the a0- wave in this frequency range.  Figure 3.21 in Section 3.A of this chapter shows the

phase and group velocities of the a0 meridional ray and n = 8 a0- helical ray for this

cylinder.  Reference may also be made to Figs. 4.3, 4.4, 4.15 and 4.16.  The group velocity of

the a0- is supersonic in this frequency range and varies between 1.2 cw and 1.4 cw.

Furthermore its damping is extremely small between 60 - 180 kHz, which would enable it

to make the multiple traversals without additional losses due to radiation.  Furthermore

the multiple wavepackets are all found near 150 kHz.  This is also suggestive of the

propagation of the a0- for the following reason.  For impulsive loading of a dispersive

propagating system (such as in the present case) it is known that certain resulting

disturbances may propagate over large distances with less attenuation than other

disturbances having similar damping characteristics.  This disturbance is associated with a

group velocity extrema in the corresponding dispersion curve.  This type of disturbance is

well known and has been termed an Airy phase (see pp. 142-151 of Ref. [40] and Ref. [41]).

In Fig. 3.21 it can be seen that the group velocity of the a0- wave indeed has a maxima near

150 kHz.  The group velocity of the a0 meridional ray is also supersonic and is comparable

to the a0-, however its damping is considerably larger and no extrema exists in this

frequency range.  The observations, therefore, suggest that the mechanism responsible for

the early arrivals for γ > 70° is primarily due to coupling to the a0- guided helical waves.

For this to be the case near end-on incidence the coupling process must primarily be associated

2a L a⁄( ) cw⁄ 2 19.05 12 1.483⁄⋅ ⋅ 308= =
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with the cylinder truncations and endcaps as opposed to trace velocity matching on the outer

surface of the shell.  This is for the following reason.  The a0- wave on a ßuid-loaded plate is

subsonic (as it is on a cylinder) and therefore cannot be coupled to the external ßuid

through the typical trace velocity matching of wavevectors at the elastic-ßuid interface.

Coupling to the a0- on a cylindrical shell at broadside incidence (or a spherical shell) is

responsible for the coincidence frequency enhancement mentioned earlier.  The coupling

process in this case requires that the guiding structure have curvature.  It is because of the

curvature that the spacing between phase fronts a certain distance above the structure in

the ßuid can match an acoustic wave and radiate energy27,32.  On a tilted cylinder the

coupling to the a0- becomes dependent on the tilt angle because the tilt angle determines

the projected curvature along the direction of the incident wavevector.   At broadside

incidence the curvature is at a maximum and at end-on there is no curvature.  At end-on

incidence the a0- could not, therefore, be excited except at the ends.  A quantitative

description of high-frequency coupling to elastic waves in a ßuid-loaded structure at a

discontinuity, such as a truncation on a cylinder or the edge of a semi-inÞnite plate is a

relatively difÞcult problem.

One other feature of the scattering response is a large low frequency peak at high

cylinder aspect angles seen to arrive after the closest rear corner timing, tB.  It is visible in

Fig. 3.8 (γ = 71.2°) and in Fig. 3.9 (γ = 90°) near 25 kHz  and is not an artifact of the relatively

poor spectral magnitude source normalization below 25 kHz.  This is slightly below the

ring frequency ( kHz) for an inÞnite cylinder and is much higher than modes

associated with the volume of air enclosed by the cylinder.  This feature can also be seen in

Fig. 2.4(b) between γ = 50° and γ = 80°.  It is not presently identiÞed.  Another feature not

identiÞed is the high-frequency relatively broadband response found at about 230 µs in Fig.

3.9.

40≈
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FIG. 3.4   Time-frequency analysis.  Short Time Fourier Transform (STFT) of the bipolar

impulse response of Shell A, (b/a = 0.924), at broadside incidence, γ = 0°.  The full spectrum

and the STFT are normalized with respect to the spectrum of the incident pulse.  The vertical

white line corresponds to tB.
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FIG. 3.5   Time-frequency analysis.  Short Time Fourier Transform (STFT) of bipolar impulse

response of Shell A, (b/a = 0.924), at γ = 39.6°.  The full spectrum and the STFT are normalized

with respect to the spectrum of the incident pulse.  The vertical white line corresponds to tB.
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FIG. 3.6   Time-frequency analysis.  Short Time Fourier Transform (STFT) of bipolar impulse

response of Shell A, (b/a = 0.924), at γ = 44.0°.  The full spectrum and the STFT are normalized

with respect to the spectrum of the incident pulse.  The vertical white line corresponds to tB.
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FIG. 3.7   Time-frequency analysis.  Short Time Fourier Transform (STFT) of bipolar impulse

response of Shell A, (b/a = 0.924), at γ = 52.0°.  The full spectrum and the STFT are normalized

with respect to the spectrum of the incident pulse.  The vertical white line corresponds to tB.
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FIG. 3.8   Time-frequency analysis.  Short Time Fourier Transform (STFT) of bipolar impulse

response of Shell A, (b/a = 0.924), at γ = 71.2°.  The full spectrum and the STFT are normalized

with respect to the spectrum of the incident pulse.  The vertical white line corresponds to tB.
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FIG. 3.9   Time-frequency analysis.  Short Time Fourier Transform (STFT) of bipolar impulse

response of Shell A, (b/a = 0.924), at end-on incidence, γ = 90.0°.  The full spectrum and the

STFT are normalized with respect to the spectrum of the incident pulse.  The vertical white

line corresponds to tB.
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3.4 Interpretation of the Angle-Time Domain 

Data and Comparison with Synthesized 

Time Series

With the interpretation given above one may then return to the raw time data of Figs.

3.1 and 3.2 to observe the evolution of these processes over cylinder aspect angle.  The

meridional ray contribution lies along the overlaid closest rear corner timing (tB, tC) and

slightly precedes it.  The helical a0- wavepackets follow behind this timing in arcs until γ

nears 60° where they begin to merge with the meridional ray return.

One feature not presently identiÞed is the relatively low-frequency early arrival near γ

= 60° and 120°, between 170 and 300 µs in Fig. 3.2.  This response appears in Fig. 3.3 at

about 100 kHz.  It does not correspond to reßections off the lines used to suspend the

cylinder.        

It is useful to know which of these features are present in the approximate calculated

scattering response, which compared very well with the experimental data in the

frequency domain (e.g. see Figs. 2.4 and 2.5).  An impulse response can be synthesized from

the form function by performing an inverse Fourier Transform20,27.  Figure 3.10 shows the

Þrst 90° of Fig. 3.2, which is the experimental data corresponding to impulse response

backscattering from Shell A.  (The impulse in this case is a bipolar pulse which is shown in

Fig. A.8 on page 290.)  Figure 3.11 shows the results of synthesizing the time series for this

shell using the computed far-Þeld band-limited form function shown in Fig. 2.4(a).  The

relatively poor resolution and wrap-around effect due to the Fourier Transform are due to

the fact that the approximate form function (see Chapter 5) is numerically costly to

calculate on available computers.  As a result the data set is undersampled and does not

lead to a clean calculation of the time series.  As it is, however, it easily displays relevant

scattering features.  Notably present are the a0 meridional ray wavepacket which slightly

precedes the closest rear corner timing (tB), and the a0- helical wavepacket arcs.  Notably

lacking are any responses at high tilt angles which signiÞcantly precede the rear corner

timing.  In addition the anomalous structure near γ = 60° is not present.  This is expected
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FIG. 3.10   Same as Fig. 3.2 but only showing the region 0° - 90°.  This experimental data was

acquired with the sheet source driven in bipolar mode.  Dynamic range displayed is 45 dB.

Compare this with the synthesized far-Þeld impulse response backscattering in Fig. 3.11.
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FIG. 3.11   Band-limited synthesized impulse response time series for Shell A.  Dynamic range

shown is 65 dB.  This time series was obtained by inverse Fourier transforming the calculated

backscattering form function shown in Fig. 2.4(a).  The form function used had a maximum

normalized frequency of ka = 45 and was sampled at ∆ka = 0.05.
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FIG. 3.12   Measured backscattering for Shell B analogous to Fig. 3.10 for Shell A.  This

experimental data was acquired with the sheet source driven in unipolar (step) mode.

Dynamic range displayed is ± 45 dB.
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FIG. 3.13   Band-limited synthesized impulse response time series for Shell B.  Dynamic range

shown is 65 dB.  This time series was obtained by inverse Fourier transforming the calculated

backscattering form function shown in Fig. 2.5(a).  The form function used had a maximum

normalized frequency of ka = 45 and was sampled at ∆ka = 0.05.
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since the approximate calculation does not include any mechanics of the end in the

coupling process.  Figures 3.12 and 3.13 show similar results for the thicker of the two

shells studied, Shell B.  Similar responses are observed.  In calculating Figs. 3.11 and 3.13,

no Þltering was performed to approximate the spectral response of the source.  The only

conditioning of the form function included was the application of a raised cosine window

to the highest spectral components (kamax-5 < ka < kamax).  This allowed for a smooth

transition to |f| = 0 at high frequencies.  This is important in regions where there is

considerable response at the edge of the calculated region, such as the highest frequency

region of the meridional ray feature.

3.5 Broadband Synthetic Aperture Images

Another tool with which to examine time series data is the synthetic aperture image42-

44.  Applied to a sequence of time records (typically pulse-echo type measurements)

representing a spatial aperture  the synthetic aperture algorithm coherently sums the

scattered response to yield a ÒpictureÓ of the target.  This technique has been used

extensively in radar systems including ground, airborne and space based systems to

increase cross-range resolution.  The idea behind it is quite simple: increase the effective

aperture length or width and the cross-range resolution increases.  This can be understood

through a simple example.  In an ideal diffraction limited imaging system (Fraunhofer

regime) the theoretical resolution maximum is determined by wavelength and aperture.

Using RayleighÕs criterion45 for the resolution of a slit aperture of length l, which

corresponds to a line array, one Þnds the minimum angular separation of two resolvable

intensity peaks in the cross-range direction to be .  A gain in resolution can

therefore generally be made by decreasing the wavelength or increasing the length of the

aperture.  The synthetic aperture itself is typically made up of measurements taken at

speciÞc locations along a track, such as the path of a satellite or an ocean surface vessel.

With detailed knowledge of each measurement position, the individual scattering records

may be processed in software to yield an image of a speciÞc location.  It should be noted

∆φ 0.5 λ l⁄( )=
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that a popular technique used to increase range resolution is to use chirp waveforms.

Using a matched Þlter decompression-compression process, in hardware or software, a

chirped signal may be compressed to yield a narrower pulse than a simple pulse generated

manually, and at signiÞcantly greater power transmission levels.  The shorter the pulse the

better the range discrimination of the radar or sonar.  The higher peak power also greatly

increases signal-to-noise.  The author has implemented pulse compression in the present

scattering system with success: a linear FM chirp burst transmitted by the sheet source can

be compressed to yield a very short pulse (< 2µs FWHM) at much higher peak levels than

can be generated by the sheet in impulse mode.  However, one unavoidable consequence of

the pulse compression technique is the presence of sidelobes in the compressed time signal.

It was observed that the sidelobes of the specular reßection at broadside incidence from the

Þnite cylindrical shells studied were of comparable amplitude to the elastic responses

observed at later times.  Also it is not clear what the effects of pulse compression are on the

elastic responses themselves.  Since the present use of the synthetic aperture technique is

concerned with visualizing the elastic scattering processes and not simply identifying

targets, no pulse compression methods were used.  For a discussion on the effect of

chirping the incident pulse in backscattering by a thin spherical shell in the coincidence

frequency region see Ref. [46].

A very simple synthetic aperture consists of a Þxed source/receiver and a rotating

target.  This is equivalent to a source/receiver that moves in a circular arc centered about

the center of rotation of the target.  The synthetic aperture algorithm is fairly simple to

implement in this case.  Qualitatively, here is how the algorithm works in this case: 1)

Multiply the time element entry of each time series record at each orientation angle by 2

times the speed of propagation in the surrounding medium (i.e. the sound speed in water)

to account for the round trip travel times inherent in the pulse-echo setup, 2) compute the

analytic signal (see Section B.2 of Appendix B) to obtain a complex representation of the

real time signal, 3) shift this signal so that the zero distance corresponds to the center of

rotation of the target, 4) deÞne a 2-D square x-y position matrix with the origin at the center

of rotation, setting the discretization equal to 2 times the spatial length of one time interval
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sample in the original signal (i.e. 2*c∆t), 5) for orientation angle number 1, Þll all the rows

of this matrix with the complex signal for that angle, then 6) rotate the matrix so its

orientation is correct for that angle and add it to the original position matrix (unrotated),

which is initially full of zeros or the values for the Þrst angle, as closely as possible point for

point, 7) Þnally, repeat steps 5 and 6 for each remaining orientation angle in the aperture.

After each angle is included, the absolute magnitude of the position matrix is taken,

forming an image in spatial coordinates.  One can see that this method is sensitive to the

angular sampling interval as well as the temporal sampling rate.  This is because rotating

the Þlled-in position matrix requires sampling of the original waveform at points in-

between the data points.

This synthetic aperture algorithm was applied in a straightforward manner to the time

series data of Fig. 3.1.  The results are shown in Figs. 3.14 - 3.19.  The white rectangle in each

plot is the calculated position of the outline of the cylinder, based on the timing of the

specular at broadside incidence.  Using the full range of available angles in the algorithm

results in Fig. 3.14.  The locations of the specular reßections off the cylinder accurately

reßect the targetÕs position.  The effects of the Þnite target-receiver distance were not fully

taken into account, which has resulted in straight surfaces appearing slightly curved.  The

primary image in Fig. 3.14 is what one would expect for an image of the reßection from a

rigid cylinder.  But other signiÞcant contributions are also present which are the result of

the elastic effects discussed above.  For the full aperture the effects are difÞcult to interpret;

however, for selected smaller apertures particular elastic effects are more noticeable.

Figures 3.15 and 3.16 cover a range of angles from γ = 0° to 40° for apertures of 20° in

angular width and should include helical contributions of the s0 and T0 waves.  Large

amplitude echoes are seen to appear away from the cylinderÕs position.  As the center angle

is increased to 50° and 70° these contributions are cutoff and the a0 meridional ray and a0-

helical ray contributions are clearly observable.  The a0 meridional contribution appears as

a bright spot right over the closest rear corner, considerably brighter than even the nearest

corner diffracted signals.  The a0- helical contributions are seen in Fig. 3.17 to the right of

the meridional ray peak as a series of regularly spaced peaks starting at the rear corner.
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With the aperture centered about end-on incidence (Fig. 3.19) the elastic responses clearly

precede the end of the cylinder, as discussed in the previous section.
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FIG. 3.14   Synthetic aperture image of Shell A.  Angular aperture is 180° centered about γc =

90°.  The white rectangular outline is the calculated position of the cylinder.  The dynamic

range displayed in this Þgure, as well as the next 5 Þgures, is 20 dB with respect to a Þxed

arbitrary initial voltage [i.e. the amplitude (color) scale is the same for all 6 Þgures]: red is

high, blue is low.  The features extending off the end of the cylinder along each broadside face

are sidelobe features inherent in the processing of the image.  The sidelobe structure could be

reduced by increasing the angular sampling interval.
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FIG. 3.15   Synthetic aperture image of Shell A.  Angular aperture is 20° centered about γc =

10°.  The white arrow indicates the direction of the incident sound at the center angle, while

the white rectangular outline is the calculated position of the cylinder.
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FIG. 3.16   Synthetic aperture image of Shell A.  Angular aperture is 20° centered about γc =

30°.  The white arrow indicates the direction of the incident sound at the center angle, while

the white rectangular outline is the calculated position of the cylinder.
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FIG. 3.17   Synthetic aperture image of Shell A.  Angular aperture is 20° centered about γc =

50°.  The white arrow indicates the direction of the incident sound at the center angle, while

the white rectangular outline is the calculated position of the cylinder.
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FIG. 3.18  Synthetic aperture image of Shell A.  Angular aperture is 20° centered about γc = 70°.

The white arrow indicates the direction of the incident sound at the center angle, while the

white rectangular outline is the calculated position of the cylinder.
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FIG. 3.19   Synthetic aperture image of Shell A.  Angular aperture is 20° centered about γc =

90°.  The white arrow indicates the direction of the incident sound at the center angle, while

the white rectangular outline is the calculated position of the cylinder.
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3.6 Relevance of the Results and Conclusion

Analysis of the time domain data for high frequency backscattering by thick Þnite

cylindrical shells has provided insight into the coupling and radiation mechanisms

responsible for enhanced backscattering over the full range of incidence angles.  Time-

frequency representations allow for the identiÞcation of individual elastic wave

contributions in time and synthetic aperture images help to show where on the cylinder

responses appear to originate.  The analysis has shown that the meridional leaky ray

contribution is large and arrives at or slightly prior to the geometric corner arrival time

from the closest rear corner, in the case of the a0.  This shows that, for far-Þeld

backscattering, the most important spatial region on the cylinder for the meridional ray

ÒreßectionÓ process is a fairly small region at the closest rear corner.  If this were not the

case the arrival time would be expected to signiÞcantly precede the rear corner timing.

This can be understood by looking at Fig. 3.21 which shows that the group velocity of the

a0 is supersonic in this frequency range.  If the principle meridional ray enhancement

process was described by the path ABE shown in Fig. 3.20 then the arrival time would

precede the rear corner geometrical timing (EBE) by 

(3.3)

where cgl and cl are the group and phase velocities of the wavepacket.  Since the a0

meridional wave is dispersive this equation must be understood as approximating the

arrival time of the spectral component of the wavepacket used in the evaluation of cgl and

cl; this frequency is taken to be the primary spectral component of interest.  The second

expression uses the deÞnition of the meridional ray coupling angle γ in Eq. (2.1).  Note that

if the phase and group velocities are approximately equal, as is the case for high-frequency

meridional Rayleigh waves on a tilted solid cylinder or half space, then the arrival time is

always coincident with the corner geometrical timing.  For chosen values from Fig. 3.21 this

advancement would be on the order of -45 µs, for cgl/c = 1.85 and cl/c =1.2 (≈ 300 kHz).
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This amount of advance is not observed for any of the cylinders examined.  Instead the

small advances are consistent with launching near the closest rear corner over a length

scale on the order of an attenuation length.  The attenuation length for a leaky wave is

deÞned to be the propagation length over which the leaky wave amplitude decreases by a

factor of e-1 due to radiation losses.  In terms of the imaginary part of the axial

wavenumber-radius product this corresponds to a length

. (3.4)

For the cylinder examined here this length is on the order of 25 mm (compare with the

cylinder length of 228.6 mm).  The leaky wave launched a greater distance away from the

corner is largely attenuated before reaching the corner and will not contribute signiÞcantly

to the backscattering.  This also explains why the observed meridional ray enhancement

does not appear to exhibit characteristics of axial resonances, which would give a

modulation of the amplitude periodic in frequency.  The primary path for the meridional

ray should be understood as that of FAÕBAÕF in Fig. 3.20 (or simply EBE) as opposed to

ABE.  Incidentally this is not always expected to be the case for all wave types.  For

example Bao16 determined delay times for helical waves on a very thick Þnite cylindrical

shell for launching positions over the entire cylinder length and found good agreement

with experimental results.  In addition, Gipson47 recently compared delay times in a

similar fashion for meridional and helical leaky Rayleigh wave propagation on a Þnite

solid cylinder and found good agreement with experiment.

  The analysis of this chapter has also shown that the large coincidence frequency response

observed near end-on incidence arrives considerably ahead of the geometric rear corner

arrival time and also displays multiple axial reßections in the long time signature.  Due to

their propagation characteristics these contributions are most likely due to subsonic a0-

waves corresponding to small azimuthal mode indices, for tilt angles approaching end-on

incidence, and the subsonic a0- n = 0 mode at end-on incidence.  A notable characteristic is

that the backscattered contributions of these waves is not diminished at end-on incidence,

suggesting the coupling mechanism includes end effects.
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The author would like to point out that in addition to the examples presented for the

time-frequency plots and the synthetic aperture images, movies were constructed for each

of these which very nicely display changes with tilt angle.  These movies are in MPEG

format (relatively low quality) and on VHS tape (high quality).  Visualizing the changes in

this way helps in the identiÞcation process.
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FIG. 3.20  Because the meridional ray enhancement wavepacket arrives at or just prior to the

geometric reßection from point B it is not principally due to a wave launched at A which

travels the length of the cylinder L, reßects at B and radiates into the backscattering direction

(path ABE).  The radiation damping is too high to allow signiÞcant scattering amplitudes from

this process.  Rather the signiÞcant contributing spatial region is just prior to the corner B;

having a length comparable to the attenuation length of mm.  The

enhancements, then, are the result of the process FAÕBAÕF.
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aperture images.  The core of the synthetic aperture code was written by him and he has

graciously allowed its use here.

3.A Phase and Group Velocities

Figure 3.21 shows the calculated total phase and group velocities, and damping, for the

a0 meridional wave (n = 0) and a selected a0- helical wave (n = 8).  They are calculated by

numerically solving  where Dn is the denominator of the nth partial wave

series for the problem of scattering of an obliquely incident plane wave by an inÞnite,

empty, thick cylindrical shell14.  The index n corresponds to the azimuthal mode index and

kza is the axial wavenumber.  Solving this equation for a particular azimuthal mode index

and normalized frequency, ka, yields the complex axial wavenumber, from which the

phase and group velocity may be calculated.  See Chapter 4 for a complete discussion on

the calculated wave parameters for an inÞnite cylindrical shell and the method used to

compute them.  Plotted in Fig. 3.21 are the phase and group velocity in the direction of

propagation on the shell, computed using Eqs. (4.13) and (4.14) of Chapter 4.  For the

helical wave these are the total phase and group velocities along the helical arc which

describes the propagation of the helical wave on the shell.  For the meridional wave, n = 0,

these total phase and group velocities coincide with the axial phase and group velocities as

the wave propagates purely in the axial direction.

For the present analysis, calculating the n = 0 root for the a0- wave would have been

more relevant to the discussion in this chapter.  It has not been calculated because of

difÞculties in isolating and evaluating the root in question with the present root Þnding

routine.  The computations in Chapter 4, however, show that at high frequencies above the

coincidence frequency the phase and group velocities for different azimuthal mode orders

depend only weakly on n provided n is not very large.  

Dn ka kza,( ) 0=
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FIG. 3.21    (a) Phase and group velocities and (b) damping for the a0, n = 0 (solid) and a0- n = 8

(dashed) leaky Lamb waves on an empty inÞnite cylindrical shell (Shell A) submerged in

water.  The group velocity of the a0- in this case is supersonic over a range of frequencies.

Similar behavior is found for the a0- on a plate or cylindrical shell at broadside incidence.
83



3.B Corner Reßection Timing

This appendix section gives the expressions for the return times for geometrical

propagation through the water from the source to each of the four ÒcornersÓ of the cylinder

and back to the receiver.  Since the sheet source was used exclusively in the experiments

described in this chapter, only timings for this setup will be given.  Consider the scattering

setup shown in Fig. 3.22.  The distances from each of the four corners to the receiver can

easily be shown to be:

(3.5)

where

(3.6)

For propagation through water, having a sound speed of cw, the travel times referenced to the

timing of the specular reßection at broadside incidence are given by:

RA rc δ_sin( )2 Rrec rc δ_cos–( )2+[ ] 1 2⁄=

RB rc δ+sin( )2 Rrec rc δ+cos+( )2+[ ] 1 2⁄=

RC rc δ_sin( )2 Rrec rc δ_cos+( )2+[ ] 1 2⁄=

RD rc δ+sin( )2 Rrec rc δ+cos–( )2+[ ] 1 2⁄=

rc
L
2
--- 

  2

a2+=

δ_ 90° γ–( ) a
L 2⁄
---------- 

 1–

tan–=

δ+ 90° γ–( ) a
L 2⁄
---------- 

  .
1–

tan+=
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FIG. 3.22  Geometry used to determine the return timings (tA, tB, tC, tD) for geometrical

reßection from each of the four ÒcornersÓ of the cylinder.  Distances to corners A and B are

shown; those to C and D are analogous.  Diagram is not shown to scale.
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(3.7)

For the Þgures in this chapter containing overlays of these timings with experimental

data it is required to know the timing of the broadside specular feature in addition to the

separation distance Rrec.  These may be obtained by examining the broadside time trace

directly and an overall long time scattering signature also at broadside incidence.  The

latter of these includes three important features: 1) an initial voltage spike followed by a

relatively slow decay corresponding to the direct electrical signal propagating through the

water from the sheet source to the receiver and the subsequent RC decay of the receiver/

preamp system; 2) an impulse voltage signal corresponding to the direct acoustic signal

from the sheet source; and 3) the specular reßection from the cylinder at broadside.  From

these features it is possible to deduce Rrec and Rsh.  The electrical coupling mentioned in 1)

has been reduced signiÞcantly by coating the sheet source with an electrically insulating

waterproof layer of epoxy and/or varnish (for the frame pieces) and mylar and/or

Kapton¨ tape (for the PVDF Þlm).  It is, however, difÞcult to eliminate the electrical

coupling completely.  Appendix A discusses the sheet source in greater detail.

For the synthesized impulse response Þgures (Figs. 3.11 and 3.13) the scattering is

strictly in the far-Þeld.  This may be approximated in the above equations by allowing Rrec

to be a very large number with respect to the length of the cylinder, or by explicitly

reducing the equations for an inÞnite cylinder-to-receiver distance.

tA
1
cw
----- 

  RA rc δ_ Rrec– 2a+cos–[ ]=

tB
1
cw
----- 

  RB rc δ+ Rrec– 2a+cos+[ ]=

tC
1
cw
----- 

  RC r+ c δ_ Rrec– 2a+cos[ ]=

tD
1
cw
----- 

  RD rc– δ+ Rrec– 2a+cos[ ] .=
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4

Meridional and Helical Wave 

Properties on an InÞnite Cylindrical 

Shell from Complex Root Analysis 4

4.1 Introduction

In Chapter 2 it was demonstrated that the backscattering from Þnite thick cylindrical

shells is enhanced along certain curves in frequency-angle space.  These curves extend

beyond the shear wave cutoff angle in several cases and represent considerable scattering

amplitudes which dominate the response.  An approximate partial wave series (PWS)

solution, the details of which will be discussed in Chapter 5, displays these same

enhancement curves over a broad range of angles for the shells studied.  This form of

theoretical investigation is very useful for predicting the response of other shells of interest

and for estimating the extent to which the ends inßuence the scattering mechanics (by

comparing the results with experiments).  It is very poor, however, for providing insight
87



into the speciÞc coupling, propagation and radiation mechanisms which are responsible

for the enhancement features.  To Þll this gap in understanding, a very simple ray

approximation was introduced in Chapter 2 which allowed certain leaky wave processes to

be identiÞed as the primary enhancement mechanisms.  This simple approach was based

on two assumptions.  The Þrst being that at sufÞciently high frequencies, or equivalently

for large radius of curvature, the propagation characteristics of leaky waves on a

cylindrical shell, e.g. phase velocity, group velocity and radiation damping, should be

nearly isotropic, i.e. independent of the direction of propagation on the shell.  In other

words the curvature of the shell does not signiÞcantly affect the elasto-dynamics of

propagation.  This assumption is often quite adequate and can be checked for simple

structures by comparing the exact dispersion curves for the guided waves of interest on the

curved structure with those for a planar structure.  These types of comparisons have been

made for leaky waves on spheres48, spherical shells24,28 and inÞnite solid cylinders49 and

for circumferential waves on cylindrical shells50,8.  When examining these types of results

it may be noticed that the dispersion curves for a planar structure are slightly offset

although they follow the exact behavior in a parallel sense.  This difference can sometimes

be accounted for through simple geometric kinematic curvature corrections36.  The second

assumption concerns the process of reßection of the leaky wave from the cylinder

truncation (assumed to be sharp, ßat and perpendicular to the cylinder axis).  To Þrst order

the reßection process was taken to be as simple as possible, namely that the axial

component of the wavevector of the impinging leaky wave simply experiences a change in

sign upon interaction with the end.  This corresponds to ideal reßection.  In the case of

helical leaky waves this produces no change in sign of the circumferential component of

the wavevector.  These two assumptions, combined with the trace velocity matching

condition for supersonic leaky waves and axial wavevector matching for subsonic leaky

waves, were sufÞcient to qualitatively model the observed enhancement features near and

above the coincidence frequency for each shell.  These calculated Òcoupling lociÓ as they

were called, were used to identify the leaky waves responsible for the enhancements.  For

this purpose these approximations are sufÞcient.  It is anticipated, however, that a better
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understanding of the propagation characteristics of leaky waves on an inÞnite cylindrical

shell is needed.  For example, knowledge of the leaky wave phase velocity and damping

are crucial parameters in some quantitative ray theories5,6,51.  In Chapters 6 and 7 a ray

theory is tested for these enhancement mechanisms which requires knowledge of the phase

velocity and damping of the leaky wave under consideration.  For certain cases,

approximating these wave parameters with those for a ßat plate or a cylindrical shell at

broadside incidence may not be sufÞcient.  The purpose of this chapter is to present the

results of exact calculations for meridional and helical leaky wave dispersion curves for an

inÞnite thick cylindrical shell.  The primary hypothesis is that, at sufÞciently high

frequencies, the propagating characteristics of meridional and helical leaky waves which

are launched on a tilted cylindrical shell by an incident plane wave may be described by

the dispersion curves for the normal modes of vibration of a ßuid-loaded inÞnite

cylindrical shell.  It is expected that the axisymmetric modal solutions (n = 0) are the ones

which most closely correspond to meridional rays, though the actual excitation will

ordinarily consist of a superposition of modes.

4.2 Review of the Boundary Value Problem

In order to compute the exact dispersion curves, i.e. normal modes, for the propagation

of Lamb-type waves on an inÞnite tilted cylindrical shell, the general boundary value

problem must Þrst be solved.  For the case of plane wave scattering by an inÞnite

cylindrical shell ßuid loaded both on the inside and outside, the exact solution was Þrst

published in detail by L�on, et al (Ref. [14]) although results appeared in the Soviet

literature earlier by Veksler, et al (Ref. [25]).  This solution is just a more complicated

extension of the inÞnite solid cylinder solution Þrst published by Flax, et al (Ref. [52]) which

drew from the solution for an inÞnite cylindrical inclusion in an inÞnite elastic solid given

by White (Ref. [53]).  It should also be noted that an approximate solution for a thin

cylindrical shell at oblique incidence was derived by Lyamshev (Ref. [54]).  For the case of

hollow inÞnite cylindrical shells with no external ßuid loading the exact solution for
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normal mode vibrations is attributable to Greenspon (Refs. [55] and [56]).  Work published

at nearly the same time by Gazis (Ref. [57]) and later by Armenakas and Gazis (Ref. [58])

covers similar material and provides a large set of numerical calculations.

The approach taken here is exactly that given in the paper by L�on, et al (Ref. [14]).  It is

not necessary, therefore, to present a thorough derivation of the solution here.  For the

purposes of clarity and convenience a short outline of the solution, in nearly the same

z

x
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γ
Pi

ψ

ρ

P(ρ,ψ,z)

z

1 2 3

FIG. 4.1   Scattering geometry for an inÞnite cylindrical shell.  A plane wave is incident at an

angle γ and the scattered pressure is desired at the location (ρ,ψ,z) described in terms of

cylindrical coordinates.
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notation, is given below.

Figure 4.1 shows the scattering geometry under consideration.  A time harmonic plane

wave of inÞnite extent is incident on an inÞnite cylindrical shell at an angle deÞned by γ

with respect to the cylinder normal.  The incident pressure may be expanded in cylindrical

coordinates as

(4.1)

where , ,  (ω is the angular frequency) and Jn is

the nth order ordinary Bessel function.  The term  is called NeumannÕs factor80 and is

deÞned to be 

(4.2)

The outer ßuid is characterized by its sound speed, c1, density, ρ1 and Lam� constant λ1;

similarly, the inner ßuid has parameters c3, ρ3 and λ3.  The elastic shell material is

characterized by its longitudinal (dilatational) sound speed, cL, shear sound speed, cS,

density, ρ2, Lam� constants λ2 and µ2, and inner and outer radii b and a, respectively.  The

scattered pressure may be written in the form

, (4.3)

where the gn are the expansion coefÞcients to be determined by the boundary conditions

and Hn
(1) is the Hankel function of the Þrst kind.  The boundary conditions in this case are

that the tangential stress vanish (4 conditions) and the normal stress (2 conditions) and

displacement (2 conditions) be continuous on the inner and outer surfaces of the shell.
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These eight conditions lead to eight equations in eight scattering unknowns.  The resulting

set of linear equations can be written in matrix form as 

(4.4)

where M is an 8 x 8 square matrix and C is an 8 element column vector.  The column vector

A contains the 8 unknown scattering coefÞcients.  The solution for the ith coefÞcient may be

written using CramerÕs rule as  where ,  and M i is

the matrix deÞned by replacing the ith column of M with the column vector C.  This system

has a unique solution if and only if .  The elements of M, A and C may be found in

Section 4.B.  In this way the scattered pressure may be written as

. (4.5)

The subscript n for the ratio of determinants above is to remind the reader that the

elements of these matrices are functions of the partial wave index n, in addition to the non-

dimensional frequency,  and angle of incidence, γ.  Using the asymptotic

representation of the Hankel function

(4.6)

the far Þeld form function [see deÞnition in Eq. (1.2)] is found from Eq. (4.5) to be

. (4.7)

Note that  and .  In the meridional plane,  and Eq.

(4.7) simpliÞes to

(4.8)
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since .  If the cylinder were perfectly rigid, requiring the normal

component of the velocity to vanish in the outer ßuid at the surface of the cylinder,  then

the determinants N1 and D reduce to simple forms and Eq. (4.8) becomes

, (4.9)

where the primes denote differentiation with respect to the argument.  Equations (4.8) and

(4.9) will prove useful later in Chapter 6 where the form function is evaluated near a

meridional wave contribution and compared with an approximate ray theory.  For the

purposes of comparison, the rigid cylinder form function is subtracted out of the full elastic

form function.  This is an example of an attempt to subtract out a ÒbackgroundÓ

contribution to the scattering to yield only the elastic response.

For the purposes of this chapter only a portion of the full scattering solution, Eq. (4.8), is

required.  We wish to Þnd the natural modes of vibration of the inÞnite cylindrical shell.

The previous scattering solution is a ÒforcedÓ solution, i. e. the inÞnite cylindrical shell is

ÒdrivenÓ by the incident plane wave.  A forced problem can usually be manifest as an

inhomogeneous equation, whether it be the original differential equation or a set of linear

equations to be solved.  This is the case here, where the set of linear equations to be solved

is inhomogeneous, i.e. the column vector C above has non-zero elements.  There exists a

unique solution to this set of linear equations only when .  But it is

precisely the condition  that deÞnes the natural modes of vibration of

the shell.  To Þnd the natural modes of vibration of the shell one solves the homogeneous

problem.  This is the problem where there exists no incident sound.  By examining the

solution reviewed above more closely, e.g. see the matrix elements in Section 4.B, one Þnds

that removing the incident plane wave simply results in the vanishing of the elements of

the column vector C.  This reduces the problem to solving the homogeneous set of linear

equations, 

, (4.10)
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 which has a non-trivial solution only when

. (4.11)

This transcendental equation is often referred to as the characteristic equation.  These non-

trivial solutions correspond to the natural modes of vibration of the shell.  One Þnds, then,

that the natural modes of vibration of the inÞnite cylindrical shell correspond to the zeros

of the determinant of M, which is precisely the denominator in the scattering solution Eq.

(4.8).

For the inhomogeneous problem the incident pressure wave determines the axial

wavevector of the shell, kz, through the incidence angle γ.  In the homogeneous problem kz

is the quantity to be determined that, together with the azimuthal integer n and non-

dimensional frequency ka, deÞnes the normal mode of vibration.  In the present analysis ka

and n are taken to be purely real quantities while the ÒrootÓ of Eq. (4.11) to be found is

located in terms of kz, which is complex.  This form of analysis is found to be more

convenient for interpreting the scattering in terms of a ray theory than analyzing Eq. (4.11)

in terms of its complex eigenfrequencies (i.e. complex ka for real kz).  This latter form of

analysis has proven useful in the Singularity Expansion Method (SEM) and in Resonance

Scattering Theory (RST) (see e.g. Ref. [60]).

It is found to be convenient to write most quantities in non-dimensional form and so

the normal modes are  located in terms of the complex quantity kza.  The modes of a

cylindrical shell are often characterized by two integers (l,n)14,25,26.  The Þrst of these

usually corresponds to the family to which the wave belongs, e.g. Rayleigh and

Whispering Gallery waves for a solid cylinder and the generalizations of the waves a0, a0-

s0, T0, a1, s1, T1, s2b, . . . for a cylindrical shell.  Presently the notation characterizing Lamb

waves on plates will be used, as it is in other chapters, and should be understood as

representing the families l = a0, l = a0-,l = s0, l = T0, . . .  Subsequently the l notation will be

dropped.  The other integer, n, refers to the mode shape in the circumferential direction.  An

inÞnite number of integers n exist for each l.  The lowest order, n = 0, corresponds to the

axisymmetric case.  The displacements in this case have components only in the radial and

D det M[ ] 0= =
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axial directions.  A theoretical and experimental examination of the axisymmetric solutions

for inÞnite cylindrical shells with and without ßuid loading was carried out by Sinha, et al

(Ref. [61]).  The n = 0 mode is expected to approximate the meridional ray, as it travels only

in the axial direction.  The n = 1 mode has one wavelength around its circumference and is

characterized by a planar ßexural motion of the entire shell at low frequencies (i.e. a bar

bending motion).  The n = 2 mode has two circumferential wavelengths.

For high-frequency propagation the mode order n may be regarded as the helical

wavenumber of a surface guided helical wave62,63.  This is because the eigenfunctions in

Eqs. (4.3) and (4.5), representative of the eigenfunctions for the displacement equations in

the shell, are standing wave solutions in the circumferential direction and may

equivalently be written in exponential form representing traveling wave solutions62,63.

The eigenfunction solutions then represent the sum of two counter-propagating traveling

waves.  The dispersion relation describing the propagation of these helical waves on the

cylindrical shell is62,63,64

(4.12)

where  is the total wavenumber for helical propagation on the shell and .

Once kza is found for a particular mode, the normalized helical or total phase velocity is

determined by

(4.13)

and the group velocity is

, (4.14)

which must be determined numerically.  For the phase velocity corresponding to the axial

wavevector one Þnds
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(4.15)

and the group velocity is similarly

. (4.16)

To calculate the phase and group velocities for various waves on the cylindrical shell one

must Þrst Þnd the kzaÕs.  To do this one chooses a value of n and ka, and then proceeds to

solve Eq. (4.11). 

The method used to Þnd these roots is exactly as found in Ref. [59].  This method

involves the computation of one contour integral in the complex kza plane to isolate a

single root and the evaluation of another to Þnd the complex value of the root.  An initial

guess for kza is required, which may be taken from the corresponding root for a ßat plate.

Once a root is found the value of ka is incremented or decremented by a small amount and

the previous root is used as the guess for the new value of ka.  In this way the root may be

ÒtrackedÓ in ka.

This method is chosen simply because it works very well.  Other methods of Þnding

roots of a complex function, such as the Newton-Raphson or Secant methods, either fail

frequently or are extremely inefÞcient to implement in this case.  The reason for this can be

seen in Fig. 4.2 which displays a region of the complex kza plane of Eq. (4.11) for chosen

values of n and ka in a way that is easy to visualize the root.  Near the root the function

varies between very large positive and negative values over a very short length.  It may

change from 1 x 10+12 to -1 x 10+12 over a length shorter than ∆kza = 0.1 while the regions

away from the root are relatively slowly varying.  On the scale of Fig. 4.2 a 1-D slice across

the root often looks something like a step function.  It is easy to see, therefore, how typical

root Þnding routines, which often depend on evaluating derivatives, would have a very

slow convergence rate.  This behavior is lessened as the frequencies decrease and would

pose less problems to traditional root Þnding routines below ka = 1.

The numerical scheme used to calculate the group velocities found in many of the
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following graphs is relatively simple.  After having computed the axial wavenumber, kza,

over a range of values of ka, at Þnely sampled intervals (such as ), one

proceeds to evaluate Eq. (4.14) or (4.16) numerically.  The exact method used is a

symmetrized derivative (or central difference) such as is found in Eq. (5.7.7) of Ref. [66].  It

has the form of  where for our purposes .
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FIG. 4.2   An example of the complex  space for an inÞnite cylindrical shell where a

root is found.  The quantity plotted is .  Zeros (roots) are manifest in

this Þgure as a crossing of two zero lines, which are lines separating regions of opposite

polarity.   This case is for Shell A at ka = 5.0208 and n = 11, which corresponds to an a0 helical

wave.  The root is at the center of the Þgure at kza = 2.1560 + 8.9589i.  Very abrupt changes,

such as 10 orders of magnitude over , make root Þnding extremely difÞcult with

traditional methods such as Newton-Raphson or Secant.

Dn kza( )

Re Dn kza( )[ ] Im Dn kza( )[ ]⋅

∆kza 0.1=

0.1 ∆> ka 0.001>

f ′ x( ) f x h+( ) f x h–( )–[ ] 2h( )⁄≈ 2h ∆ka=
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4.3 Numerical Results: Axisymmetric and Purely 

Circumferential Solutions

The Þrst results presented are for the n = 0 (axisymmetric) solutions of Eq. (4.11).  Before

beginning a search for the roots of Eq. (4.11) the relevant roots were computed for a plate

having the same thickness as the cylinder and ßuid loaded on both sides with water65.

(The case with ßuid loading on only one side of the plate would be a better comparison

with an empty cylindrical shell but is more complicated; nonetheless, the comparison is

still good.)  Roots for the a0, a0-, s0, and a1 were calculated for a plate having a thickness

equal to the wall thickness of the thinner of the two shells (Shell A) studied in the earlier

chapters.  For a plate analogous to Shell B roots for the a0, a0-, s0, a1, s2b, s1, s2, and a2 were

calculated.  These roots were the starting points for Þnding the corresponding roots for the

cylindrical shell.  For Shell A the phase velocity [Eq. (4.13)] and damping are shown in Fig.

4.3.  The n = 0 root of the a0- proved difÞcult to evaluate and is not shown.  In addition the

torsional waves, T0 and T1, were not computed as they are not coupled to the external ßuid

in the axisymmetric case (or in the purely circumferential case for that matter).  The group

velocity for each of these waves is shown in Fig. 4.4.  Also displayed in these Þgures are the

corresponding curves for purely circumferential propagation.  Figures 4.5 and 4.6 show

similar results for Shell B.  Purely circumferential propagation is characterized by

displacements in the  plane only.  These waves propagate strictly around the cylinder

and are important for example in scattering at normal incidence from an inÞnite cylinder.

They are calculated as in Ref. [23].  It is apparent in these Þgures that the phase velocity for

purely circumferential waves is almost always greater than the axisymmetric (n = 0) phase

velocities.  This difference can often be accounted for with curvature and thickness related

corrections36.  The comparison of the damping for the circumferential and axisymmetric

waves is to be understood in the following sense.  For axisymmetric waves the damping on

the surface of the cylinder goes as  while for purely circumferential waves it is

, where  is the angular damping rate determined through the use of the

Sommerfeld-Watson transformation applied to that problem23.  Considering propagation

ρ ψ–

e Im kz[ ] z–

e βlψ– βl
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of these waves over a surface length on the shell comparable to , where a is

the outer radius of the shell, one Þnds that  for equivalent spatial damping

rates.  As the relative thickness of the shell increases the Lamb-type surface wave

propagation is not strictly along the outer surface at radius a, but may be regarded as

propagating along the arc at the median radius  (see Ref. [36]).  This shift is not

applied in the comparisons shown here.

As mentioned previously, related axisymmetric solutions for a thick cylindrical shell

with and without ßuid loading were investigated by Sinha, et al61.  The results presented

here are consistent with the dispersion curves given in their work although some

discrepancies are present (see below for comments).  The steel shell they studied had a

thickness to radius ratio of 16.7% which makes it close for comparison with Shell B

(16.25%).  Furthermore their Þgures cover frequencies up to ka = 50 which is within the

region examined here.  With external ßuid loading they identiÞed a new branch, which

they labelled the (S-T) slow tube branch, in addition to the ÒsteelÓ branches labelled S1, S2,

and S3.  These correspond to the a0-, a0, s0, and a1 waves, respectively, discussed here.

A comment is appropriate concerning the discrepancies mentioned above.  First of all it

is important to stress that Sinha, et al locate complex ka roots of Eq. (4.11) while the present

work isolates complex kza roots.  A connection between the two, for appreciable imaginary

values of ka or kza, is not well understood.  With this in mind a direct comparison of much

of the results of that paper with the present work is not possible.  However, Sinha, et al

computed the phase slowness (reciprocal of the phase velocity) in terms of frequency for

the various modes and performed experiments in order to compare with their theoretical

results.  Knowledge of the phase velocities for various modes (here including helical

modes) is also one of the goals at present.  Therefore it is reasonable to make a qualitative

comparison of the respective phase velocities.  At mid to high frequencies the slowness

results of that paper correspond well with the calculations presented in Figs. 4.5.  In the

next section it will be shown that the effect of ßuid loading is prominent at low frequencies

and has a marked effect on the axisymmetric mode characteristics (see Fig. 4.11).

Principally the phase velocity results calculated in the next section for a free cylindrical shell

∆z a ∆ψ( )=

βl Im kza[ ]≈

a b+( ) 2⁄
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(no ßuid loading) agree very well over all frequencies with the results of the paper by

Sinha, et al.  However, at low frequencies the present results for exterior ßuid loading show

a signiÞcant change from the free shell results, while SinhaÕs results show no discernible

change (aside from the generation of a new subsonic root which is analogous to the splitting

of the antisymmetric Lamb wave on a ßuid loaded plate).  One would expect the ßuid to

have a large effect on the propagation characteristics at low frequencies, in particular near

the ÒringÓ frequency, where for the lowest compressional root (here s0) the particle motion

in the shell is primarily radial in nature.  This effect should be manifest in the radiation

damping and phase velocity curves.  The author has not deÞnitively identiÞed the cause of

the discrepancies just mentioned.  It is interesting to note that Sinha did not explain the

reasoning behind the choice of analyzing the complex eigenfrequencies of the problem or

give a discussion as to its validity for the ßuid loaded problem where radiation damping is

important.  It has been stated by Scott67 concerning the use of zeros of the real part of the

dispersion relation (i.e. real kz) that, Òthis is, of course, perfectly correct over those parts of

the real [kz] (or ω) axis for which the dispersion relation is real (subsonic modes of

propagation), but when the ßuid-loading is important it is not at all obvious that roots in

other parts represent genuine complex roots.Ó  His examination of the inÞnite thin

cylindrical shell problem showed that the presence of ßuid loading has a pronounced effect

on the roots below the ring frequency.  Furthermore the ßuid loading effect did not

diminish with an increase in the fractional shell thickness, but in fact caused the imaginary

part of the roots to increase.  This suggests the ßuid loading is very signiÞcant, especially at

low frequencies.
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FIG. 4.3   Axisymmetric (n = 0 solutions) and purely circumferential (corresponding to

broadside incidence) wave properties for a submerged empty inÞnite cylindrical shell

corresponding to Shell A (h/a = 0.076).  (a) Phase velocity, and (b) damping.
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4.4 Numerical Results: Helical Solutions with 

and without Fluid Loading

Consider now solutions of the characteristic equation, Eq. (4.11), for , that include

non-axisymmetric mode shapes.  At high frequencies these solutions may be regarded as

helical waves.  Besides locating these solutions for use in ray theory approaches to

scattering, it is important to understand the propagation characteristics of the helical wave

solutions themselves.  In particular it is useful to know the effects of exterior ßuid loading

on the dispersion curves as well as the effect of the helical mode number.  Take as the

starting point the solutions for the cylindrical shell without ßuid loading and consider the

case of the solution identiÞable as the a0 wave at high frequencies.  Figures 4.7(a) and 4.8(a)
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FIG. 4.6   Axisymmetric (n = 0 solutions) and purely circumferential (corresponding to

broadside incidence) wave group velocities for a submerged empty inÞnite cylindrical

corresponding to Shell B (h/a = 0.1625).
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show the axial phase velocities [Eq. (4.15)] of the lowest four modes of a free cylindrical

shell for Shell A and Shell B, respectively.  (The term free is used to denote a shell with

vacuum on both the inside and outside of the shell.)  Note that in this case the phase

velocity and non-dimensional frequency are normalized to the plate wave speed18 (kP = ω/

cP).  The phase velocity for each mode is nearly identical above kPa ≈ 1.  Below that the

modes split.  The n = 0 solution has an abrupt increase in phase velocity at about the ring

frequency kPa ≈ 1.  (The ring frequency is the frequency at which the wavelength of the

lowest compressional wave in a thin cylindrical shell equals the circumference of the shell,

i.e.  or kPa = 1.)  It then approaches the plate speed at low frequencies.

The n = 1 solution corresponds to ßexural bending in a plane.  All the higher solutions in

this family are cutoff at particular frequencies.  Similar plots to these may be found in Refs.

[64] and [68] using the same convention.  Figures 4.7(b) and 4.8(b) show the corresponding

phase velocities with ßuid loading (water) present.  With the addition of a ßuid the a0

dispersion curves are split, just as for a ßuid loaded plate for example, and one Þnds roots

corresponding to the a0- waves as well.  The supersonic portions of several of these

solutions are shown as dashed lines.  The curves for the a0 change very little above kPa ≈ 1

but can be seen to behave drastically different below this value compared with the free

cylinder solutions.  It will be seen subsequently that the imaginary part of the axial

wavevector for each of these modes becomes very large in this region, possibly indicating

that these modes are cutoff.  The cutoff conditions of the ßexural modes (here the a0) of a

thin-walled free cylindrical shell are known62,64.  The cutoff frequencies in Fig. 4.7 (a) agree

well with at least the cutoff conditions in Ref. [62] (not listed here).  The agreement in Fig.

4.8 (a), however, is not as good as this shell (Shell B) is fairly thick-walled.  The cutoff

condition (in the axial phase velocity) occurs when the axial wavevector goes to zero.  This

corresponds to letting kza = 0 in Eq. (4.13) which gives the condition for a cutoff of

.  It may then be possible to approximate the cutoff condition simply

with knowledge of an appropriate phase velocity curve.  For the present cases it will be

shown that the phase velocity curves are very similar to those for a ßat plate provided n is

not large.  What is interesting about Figs. 4.7 (b) and 4.8 (b) compared to panel (a) of each

λP 2π kP⁄ 2πa= =

ka( )cutoff n⁄ cl c⁄( )=
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Þgure is that it is the ÒsubsonicÓ root, i.e. the a0-, which displays the typical cutoff behavior

and not the a0.  This raises the possibility that the axial phase velocity of the n = 0 mode of

the a0-, which was not easily evaluated in the present study, may actually turn upwards, as

the n = 0 mode does for the free cylinder, and become supersonic near the ring frequency.

This would enable acoustic coupling to this mode in this region through trace velocity

matching of wavefronts and allow for an a0- meridional wave.  It is possible that this is the

mechanism which gives rise to the observed scattering response at low frequencies (just

below the ring frequency) and relatively large tilt angles discussed in Chapters 2 and 3.

This response was not previously identiÞed.

Now consider these same solutions in a more familiar form over a broader range of

frequencies.  Figure 4.9 shows the same n = 0 - 3 wavenumber dispersion curves for Shell A

for both the free and exteriorly ßuid loaded cases.  Figure 4.10 shows the corresponding
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FIG. 4.9   Dispersion curves for the n = 0 - 3 solutions for a free cylindrical shell (dashed lines)

and with an external ßuid (solid lines), corresponding to Shell A.  Above about ka = 4 these

solutions are easily identiÞable as the a0 meridional (n = 0) and helical (n > 0) leaky waves.
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Above about ka = 10 (the coincidence frequency is about ka = 15.6) propagation of the helical

waves (here a0) on the shell is nearly isotropic, i.e. independent of propagation angle on the shell,

for the lowest orders.
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phase and group velocities which are calculated from Eqs. (4.13) and (4.14), respectively.

These are the total phase and group velocities on the shell, not just the axial component.  As

such they should only be regarded as applicable when the wave may be considered as a

helical wave and not as a global mode of the shell.  Figures 4.11 and 4.12 show similar

results for Shell B.  For each shell the effects of ßuid loading are again seen to be small at

high frequencies.  It is in this region that the phase velocity is greater than the speed of

sound in the outer ßuid.  Once the phase velocity in the ßuid loaded case is comparable to

the outer ßuid sound speed the effect is generally to increase the phase velocities with

respect to the free cylinder phase velocities.  This similar shift due to ßuid loading is

present for ßuid loaded plates69,70, and cylindrical8 and spherical shells28. 

The dependence on helical mode number is readily apparent in these Þgures as well.
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FIG. 4.11   Dispersion curves for the n = 0 - 3 solutions for a free cylindrical shell (dashed lines)

and with an external ßuid (solid lines), corresponding to Shell B.  Above about ka = 4 these

solutions are easily identiÞable as the a0 meridional (n = 0) and helical (n > 0) leaky waves.
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Above about ka = 12 (the coincidence frequency is about ka = 7.3) propagation of the helical waves

(here a0) on the shell is nearly isotropic, i.e. independent of propagation angle on the shell, for the

lowest orders.
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Unless the helical mode number is large (see the next section) the dispersion characteristics

are nearly independent of helical mode number above  ( ) for Shell A (Shell

B).

4.5 Numerical Results: Meridional and Helical 

Dispersion and Coupling Curves for the 

Fluid Loaded Case

A closer look at the ßuid-loaded solutions is now made.  The primary Lamb-type

waves of interest in earlier chapters were the a0 and a0-.  For the frequency range studied

these two types of waves were the major contributors in the backscattering enhancements.

In calculating the approximate coupling conditions (Figs. 2.7 and 2.8) for these two types of

waves on each of the shells studied it was assumed that the propagation of helical waves

on the shell was isotropic (independent of propagation direction).  Figures 4.10 and 4.12

showed that this is a good approximation above  ( ) for Shell A (Shell B), at

least for n = 0 - 3.  Figures 4.13(b) and 4.17(b) extend these calculations up to n = 11 and n =

10 for the a0 on each shell.  Figures 4.15(b) and 4.19(b) show dispersion curves for the a0-

helical waves for n = 3 - 12 and n = 2 - 10 respectively.  These show the regions over which

the approximation of isotropic propagation is valid.  In addition the curves for propagation

of the corresponding Lamb wave on a doubly ßuid-loaded plate are shown.  Comparison

with these curves show that the propagation behavior of helical waves on a cylindrical

shell at high frequencies is very comparable to propagation on a plate.   The similarities,

however, are not as good for the thicker shell, where curvature plays a more important role.

Also shown for reference are the real and imaginary parts of the wavenumber dispersion

curves in Figs. 4.14, 4.18, and 4.16 and 4.20.

Just as in Figs. 2.7 and 2.8, coupling conditions may be computed for these ÒexactÓ

helical wave dispersion curves for the inÞnite cylindrical shell.  Figures 4.13(a) and 4.17(a)

show these curves for the a0 while Figs. 4.15(a) and 4.19(a) are for the a0-.  These are

ka 10≈ ka 12≈

ka 10≈ ka 12≈
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computed by simply matching the real part of the calculated axial wavenumber, kza, with

the axial component of an incident plane wave  which yields,

. (4.17)

The coupling conditions are terminated at an arbitrary point chosen to be when the

damping, Im[kza], exceeds 2.5.  These coupling curves agree very well with the calculated

and measured backscattering enhancements in Figs. 2.4 and 2.5.  This may be seen by

examining Figs. 4.21 and 4.22 in Section 4.A of this chapter which shows an overlay of Figs.

4.13 (a) and 4.15 (a) with Figs. 2.4 (a) and (b), and an overlay of Figs. 4.17 (a) and 4.19 (a)

with Figs. 2.5 (a) and (b).       

In examining the following Þgures it should be useful to recall the conversion from ka

to f  in kHz is:

(4.18)

kza( )inc ka( ) γsin=

γ
Re kza[ ]

ka
-------------------- 

  ,
1–

sin= Re kza[ ] ka<

f 12.39 ka( )= Shell A

f 11.23 ka( )= Shell B.
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0 - 11 solutions which correspond to the a0 Lamb wave at high frequencies.  (Shell A).  The

points correspond to the phase velocity for the a0 Lamb wave on a plate having the same
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points correspond to the phase velocity for the a0 Lamb wave on a plate having the same

thickness as the cylinder wall and ßuid loaded on both sides.
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FIG. 4.20   The computed real, (a) and imaginary part, (b) of the axial wavevectors for the n = 2

- 10 solutions which correspond to the a0- Lamb wave at high frequencies.  (Shell B).
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4.6 Discussion

The dispersion curves calculated in this chapter provide useful information about the

propagation of meridional and helical leaky waves on an inÞnite cylindrical shell.  At high

frequencies the solutions of the characteristic equation for the normal modes of vibration of

an exteriorly ßuid-loaded cylindrical shell can be identiÞed in terms of Lamb-type leaky

waves, for both meridional and helical waves.  Several Lamb waves were identiÞed.  The

leaky waves responsible for the enhancements reported in Chapter 2 were conÞrmed to be

the a0 meridional and helical waves, and the a0- helical waves.  The high-frequency

coupling to these waves on a Þnite cylinder may be modeled using the dispersion curves

for propagation on an inÞnite cylinder.  Furthermore the damping of the a0 meridional ray

was determined and found to be in agreement with the suppositions stated in Chapters 2

and 3.  This was that the damping of the a0 meridional ray is large enough that the

attenuation length is small compared to the length of the Þnite cylinder.  This has the

consequence that multiple axial resonances are not likely for the a0.  It was also conÞrmed

that the propagation of low azimuthal order a0 and a0- helical waves is nearly isotropic on

the cylinder above certain frequencies.  For the a0 this corresponds to the region where the

phase velocity is greater than the sound speed in the outer ßuid.  The effect of ßuid loading

on these helical waves was investigated and it was shown that the effects are mostly

limited to low frequencies.

4.A Comparison of the Calculated Coupling 

Curves with the Measured and Calculated 

Backscattering
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FIG. 4.21  Overlays of the calculated coupling curves with the calculated form function and

measured backscattering spectrum (Shell A).  The backscattering plots are from Figs. 2.4 (a)

and (b) of Chapter 2 and the coupling curves are from Figs. 4.13 (a) and 4.15 (a).  Compare

these coupling curves with those of Figs. 2.7.  The comparison here supports the identiÞcation

of scattering features made in Chapter 2 for the a0- helical waves and a0 meridional wave.
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FIG. 4.22  Overlays of the calculated coupling curves with the calculated form function and

measured backscattering spectrum (Shell B).  The backscattering plots are from Figs. 2.5 (a)

and (b) of Chapter 2 and the coupling curves are from Figs. 4.17 (a) and 4.19 (a).  Compare

these coupling curves with those of Figs. 2.8.  The comparison here supports the identiÞcation

of the a0 meridional ray and a0 helical wave features made in Chapter 2.  In addition three of

the ridges of high backscatter at low frequencies in the top Þgure are identiÞed as resulting

from the n = 4, 5, and 6, a0- helical waves.  The progression of change between the

backscattering features displayed by Shell A and those by Shell B may be seen in Figs. 5.6.  For

thin shells (e.g. Shell A or the 2% thick shell in Fig. 5.5) the backscattering is dominated by the

a0 meridional and a0- helical features.  In contrast, the thicker shells display greater

enhancements by a0 helical waves.
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4.B Matrix Elements

This appendix section gives the matrix and vector elements in the characteristic

equation .  These matrix elements were Þrst published in detail in Ref. [14].

The elements listed here are identical (some notation is different) although the unsimpliÞed

versions are given for each element.  When such lengthy mathematical expressions are

given it is sometimes a good idea to explicitly give the expressions in raw form.  These are

often the easiest to conÞrm.  These are explicitly given here for clarity and convenience

only; nothing new is presented.  First a few quantities must be deÞned.  The wavevector

components for the system are deÞned in the following way.

(4.19)

The following convention is used in the matrix elements:

(4.20)

M A⋅ C=

k⊥ i
ω2

c1
2

------ kz
2– 

  k 1 γ2sin–( )= =

h
ω2

cL
2

------ kz
2– 

 ±=

K
ω2

cS
2

------ kz
2– 

 ±=

h3
ω2

c3
2

------ kz
2– 

 ±=

kz
2 ω2

cL
2

------< ω2

cL
2

------ kz
2 ω2

cS
2

------< < ω2

cS
2

------ kz
2<

h= ω2 cL
2 kz

2–⁄ kz
2 ω– 2 cL

2⁄ kz
2 ω– 2 cL

2⁄

K= ω2 cS
2 kz

2–⁄ ω2 cS
2 kz

2–⁄ kz
2 ω– 2 cS

2⁄
Un ha hb,( )= Jn ha hb,( ) I n ha hb,( ) I n ha hb,( )
Vn ha hb,( )= Nn ha hb,( ) Kn ha hb,( ) Kn ha hb,( )
Un Ka Kb,( )= Jn Ka Kb,( ) Jn Ka Kb,( ) I n Ka Kb,( )
Vn Ka Kb,( )= Nn Ka Kb,( ) Nn Ka Kb,( ) Kn Ka Kb,( )

δ= 1 1– 1–

κ= 1 1 1–
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The terms Nn, In and Kn are the Bessel function of the second kind, and modiÞed Bessel

functions, respectively. The terms δ and κ are used for bookkeeping purposes because the

matrix elements contain derivatives, and different Bessel functions have different recursion

relations.  Depending on whether the appropriate Bessel function is to be evaluated on the

inner (b) or outer (a) surface determines which argument is used, either Kb or Ka, for

example. The matrices are

(4.21)

(4.22)

The coefÞcients to be determined in A belong to the solutions in the three regions of space.

M

M11 0 M13 M14 M15 M16 M17 M18

0 M22 M23 M24 M25 M26 M27 M28

M31 0 M33 M34 M35 M36 M37 M38

0 M42 M43 M44 M45 M46 M47 M48

0 0 M53 M54 M55 M56 M57 M58

0 0 M63 M64 M65 M66 M67 M68

0 0 M73 M74 M75 M76 M77 M78

0 0 M83 M84 M85 M86 M87 M88

= A

gn

qn

an

bn

cn

dn

en

f n

=

C
ρ2

ρ1
-----

k⊥ ia( )– Jn′ k⊥ ia( ) nJn k⊥ ia( ) k⊥ ia( )Jn 1+ k⊥ ia( )–[ ]–=

0

λ– 1
ωa
c1
------- 

  2
Jn k⊥ ia( )

0

0

0

0

0

=
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(4.23)

The following convention is used,

(4.24)

and the equations of motion in the shell are

(4.25)

for the scalar and vector displacement potentials.  Each of the eight boundary conditions

provide and equation which is then combined into the matrix equation given above.  Going

from top to bottom the rows of the matrix equation are Þlled with the following boundary

condition equations and elements.

Φ 1( ) 1–
ρ1ω2
------------ εni n Jn k⊥ iρ( ) gn

Hn
1( ) h1ρ( )

Kn h1ρ( ) 
 
 

+ nψ( )e
ikzzcos

n 0=

∞

∑=

Φ 2( ) 1
ρ2ω2
------------ εni n an

Jn hρ( )

I n hρ( ) 
 
 

bn

Nn hρ( )

Kn hρ( ) 
 
 

+ nψ( )e
ikzzcos

n 0=

∞

∑=

Aρ
1

ρ2ω
2

------------ εni n cn

Jn 1+ Kρ( )

I n 1+ Kρ( ) 
 
 

dn

Nn 1+ Kρ( )

Kn 1+ Kρ( ) 
 
 

+ nψ( )e
ikzzsin

n 0=

∞

∑=

Aψ
1

ρ2ω
2

------------ εni n c– n

Jn 1+ K pρ( )

I n 1+ K pρ( ) 
 
 

dn–
Nn 1+ Kρ( )

Kn 1+ Kρ( ) 
 
 

nψ( )e
ikzzcos

n 0=

∞

∑=

Az
1

ρ2ω
2

------------ εni n en

Jn Kρ( )

I n Kρ( ) 
 
 

f n

Nn Kρ( )

Kn Kρ( ) 
 
 

+ nψ( )e
ikzzsin

n 0=

∞

∑=

Φ 3( ) 1–

ρ3ω
2

------------ εni nqn

Jn h3ρ( )

I n h3ρ( ) 
 
 

nψ( )cos e
ikzz

n 0=

∞

∑=

U UL US+=

UL Φ∇= US A∇×=

UL∇× 0= US∇• 0=

Φ∇ 2 1

cL
2

-----
t2

2

∂
∂ Φ

– 0=

A∇ 2 1

cS
2

----
t2

2

∂
∂ A

– 0=
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: (4.26)

(4.27)

: (4.28)

(4.29)

uρ
1( ) uρ

2( )–[ ]
ρ a=

0=

M11

ρ2

ρ1
----- k⊥ ia( )

Hn
1( )′ k⊥ ia( )

Kn′ k⊥ ia( ) 
 
  ρ2

ρ1
----- n

Hn
1( ) k⊥ ia( )

Kn k⊥ ia( ) 
 
 

k⊥ ia( )
Hn 1+

1( ) k⊥ ia( )

Kn 1+ k⊥ ia( ) 
 
 

–==

M12 0=

M13 ha( )Un′ ha( ) nUn ha( ) δ ha( )Un 1+ ha( )–[ ]==

M14 ha( )Vn′ ha( ) nVn ha( ) ha( )Vn 1+ ha( )–[ ]==

M15 i kza( )Un 1+ Ka( )=

M16 i kza( )Vn 1+ Ka( )=

M17 nUn Ka( )=

M18 nVn Ka( )=

uρ
2( ) uρ

3( )–[ ]
ρ b=

0=

M21 0=

M22

ρ2

ρ3
----- h3b( )

Jn′ h3b( )

I n′ h3b( ) 
 
  ρ2

ρ3
----- n

Jn h3b( )

I n h3b( ) 
 
 

h3b( )
Jn 1+ h3b( )

I– n 1+ h3b( ) 
 
 

–= =

M23 hb( )Un′ hb( ) nUn hb( ) δ hb( )Un 1+ hb( )–[ ]= =

M24 hb( )Vn′ hb( ) nVn hb( ) hb( )Vn 1+ hb( )–[ ]= =

M25 i kzb( )Un 1+ Kb( )=

M26 i kzb( )Vn 1+ Kb( )=

M27 nUn Kb( )=

M28 nVn Kb( )=
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: (4.30)

(4.31)

Tρρ
1( ) Tρρ

2( )–[ ]
ρ a=

0=

M31 λ1

ρ2

ρ1
----- ωa

c1
------- 

  2 Hn
1( ) k⊥ ia( )

Kn k⊥ ia( ) 
 
 

=

M32 0=

M33 2– µ ha( )2Un″ ha( ) λ ωa
cL
------- 

  2
Un ha( )+=

λ ωa
cL
------- 

  2
Un ha( ) 2– µ n2 δ ha( )2– n–( )Un ha( ) δ ha( )Un 1+ ha( )+[ ]=

M34 2– µ ha( )2Vn″ ha( ) λ ωa
cL
------- 

  2
Vn ha( )+=

λ ωa
cL
------- 

  2
Vn ha( ) 2– µ n2 δ ha( )2– n–( )Vn ha( ) ha( )Vn 1+ ha( )+[ ]=

M35 i2– µ kza( ) Ka( )Un 1+ ′ Ka( ) i2– µ kza( ) n 1+( )– Un 1+ Ka( ) Ka( )Un Ka( )+[ ]==

M36 i2– µ kza( ) Ka( )Vn 1+ ′ Ka( ) i2– µ kza( ) n 1+( )– Vn 1+ Ka( ) κ Ka( )Vn Ka( )+[ ]==

M37 2– µn Ka( )Un′ Ka( ) Un– Ka( )[ ] 2– µn n 1–( )Un Ka( ) κ Ka( )Un 1+ Ka( )–[ ]= =

M38 2– µn Ka( )Vn′ Ka( ) Vn– Ka( )[ ] 2– µn n 1–( )Vn Ka( ) Ka( )Vn 1+ Ka( )–[ ]= =
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: (4.32)

(4.33)

Tρρ
2( ) Tρρ

3( )–[ ]
ρ b=

0=

M41 0=

M42 λ3

ρ2

ρ3
----- ωb

c3
------- 

  2 Jn h3b( )

I n h3b( ) 
 
 

=

M43 2– µ hb( )2Un″ hb( ) λ ωb
cL
------- 

  2
Un hb( )+=

λ ωb
cL
------- 

  2
Un hb( ) 2– µ n2 δ hb( )2– n–( )Un hb( ) δ hb( )Un 1+ hb( )+[ ]=

M44 2– µ hb( )2Vn″ hb( ) λ ωb
cL
------- 

  2
Vn hb( )+=

λ ωb
cL
------- 

  2
Vn hb( ) 2– µ n2 δ hb( )2– n–( )Vn hb( ) hb( )Vn 1+ hb( )+[ ]=

M45 i2– µ kzb( ) Kb( )Un 1+ ′ Kb( ) i2– µ kzb( ) n 1+( )– Un 1+ Kb( ) Kb( )Un Kb( )+[ ]==

M46 i2– µ kzb( ) Kb( )Vn 1+ ′ Kb( ) i2– µ kzb( ) n 1+( )– Vn 1+ Kb( ) κ Kb( )Vn Kb( )+[ ]==

M47 2– µn Kb( )Un′ Kb( ) Un– Kb( )[ ] 2– µn n 1–( )Un Kb( ) κ Kb( )Un 1+ Kb( )–[ ]==

M48 2– µn Kb( )Vn′ Kb( ) Vn– Kb( )[ ] 2– µn n 1–( )Vn Ka( ) Ka( )Vn 1+ Ka( )–[ ]==
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: (4.34)

(4.35)

: (4.36)

(4.37)

Tρψ
2( )

ρ a=
0=

M51 0=

M52 0=

M53 2– n ha( )Un′ ha( ) Un– ha( )[ ] 2n 1 n–( )Un ha( ) δ ha( )Un 1+ ha( )+[ ]==

M54 2– n ha( )Vn′ ha( ) V– n ha( )[ ] 2n 1 n–( )Vn ha( ) ha( )Vn 1+ ha( )+[ ]==

M55 i kza( ) Ka( )Un 1+ ′ Ka( ) n 1+( )– Un 1+ Ka( )[ ]=

i kza( ) 2 n 1+( )Un 1+ Ka( ) Ka( )Un Ka( )+–[ ]=

M56 i kza( ) Ka( )Vn 1+ ′ Ka( ) n 1+( )– Vn 1+ Ka( )[ ]=

i kza( ) 2 n 1+( )Vn 1+ Ka( ) κ Ka( )Vn Ka( )+–[ ]=

M57 2 Ka( )Un′ Ka( ) Ka( )2 2n2–[ ] Un Ka( )+=

2n2– κ Ka( )2 2n+ +[ ] Un Ka( ) 2κ Ka( )Un 1+ Ka( )–=

M58 2 Ka( )Vn′ Ka( ) Ka( )2 2n2–[ ] Vn Ka( )+=

2n2– κ Ka( )2 2n+ +[ ] Vn Ka( ) 2 Ka( )Vn 1+ Ka( )–=

Tρψ
2( )

ρ b=
0=

M61 0=

M62 0=

M63 2n hb( )Un′ hb( ) Un hb( )–[ ] 2n 1 n–( )Un hb( ) δ hb( )Un 1+ hb( )+[ ]=–=

M64 2n hb( )Vn′ hb( ) Vn hb( )–[ ] 2n 1 n–( )Vn hb( ) hb( )Vn 1+ hb( )+[ ]=–=

M65 i kzb( ) Kb( )Un 1+ ′ Kb( ) n 1+( )– Un 1+ Kb( )[ ]=

i kzb( ) 2 n 1+( )Un 1+ Kb( ) Kb( )Un Kb( )+–[ ]=

M66 i kzb( ) Kb( )Vn 1+ ′ Kb( ) n 1+( )– Vn 1+ Kb( )[ ]=

i kzb( ) 2 n 1+( )Vn 1+ Kb( ) κ Kb( )Vn Kb( )+–[ ]=

M67 2 Kb( )Un′ Kb( ) Kb( )2 2n2–[ ] Un Kb( )+=

2n2– κ Kb( )2 2n+ +[ ] Un Kb( ) 2κ Kb( )Un 1+ Kb( )–=

M68 2 Kb( )Vn′ Kb( ) Kb( )2 2n2–[ ] Vn Kb( )+=

2n2– κ Kb( )2 2n+ +[ ] Vn Kb( ) 2 Kb( )Vn 1+ Kb( )–=
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: (4.38)

(4.39)

: (4.40)

(4.41)

Tρz
2( )

ρ a=
0=

M71 0=

M72 0=

M73 i2 kza( ) ha( )Un′ ha( ) i2 kza( ) nUn ha( ) δ ha( )Un 1+ ha( )–[ ]= =

M74 i2 kza( ) ha( )Vn′ ha( ) i2 kza( ) nVn ha( ) ha( )Vn 1+ ha( )–[ ]= =

M75 n Ka( )Un 1+ ′ Ka( )– Ka( )2 n n 1+( )– kza( )2–[ ] Un 1+ Ka( )+=

κ Ka( )2 kza( )2–[ ] Un 1+ Ka( ) n Ka( )Un Ka( )–=

M76 n Ka( )Vn 1+ ′ Ka( )– Ka( )2 n n 1+( )– kza( )2–[ ] Vn 1+ Ka( )+=

κ Ka( )2 kza( )2–[ ] Vn 1+ Ka( ) κn Ka( )Vn Ka( )–=

M77 in kza( )Un Ka( )=

M78 in kza( )Vn Ka( )=

Tρz
2( )

ρ b=
0=

M81 0=

M82 0=

M83 i2 kzb( ) hb( )Un′ hb( ) i2 kzb( ) nUn hb( ) δ hb( )Un 1+ hb( )–[ ]= =

M84 i2 kzb( ) hb( )Vn′ hb( ) i2 kzb( ) nVn hb( ) hb( )Vn 1+ hb( )–[ ]= =

M85 n Kb( )Un 1+ ′ Kb( )– Kb( )2 n n 1+( )– kzb( )2–[ ] Un 1+ Kb( )+=

κ Kb( )2 kzb( )2–[ ] Un 1+ Kb( ) n Kb( )Un Kb( )–=

M86 n Kb( )Vn 1+ ′ Kb( )– Kb( )2 n n 1+( )– kzb( )2–[ ] Vn 1+ Kb( )+=

κ Kb( )2 kzb( )2–[ ] Vn 1+ Kb( ) κn Kb( )Vn Kb( )–=

M87 in kzb( )Un Kb( )=

M88 in kzb( )Vn Kb( )=
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5

Approximate Partial Wave Series 

Solution to the Scattering of a 

Plane Wave by a Finite Elastic 

Cylindrical Shell at Oblique 

Incidence 5

5.1 Introduction

In studying the scattering of sound from complex elastic objects it is of the foremost

importance to thoroughly understand scattering from simpler objects.  Great focus has

been placed, therefore, on studying the ÒcanonicalÓ shapes of the elastic sphere and inÞnite

cylinder, for which analytical solutions may be found within the framework of linearized

elasticity (i.e. wave equations).  These solutions are typically in the form of inÞnite series
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solutions [commonly called partial wave series solutions (PWS)] and can be quite

complicated depending on the exact geometry and material under consideration.  For

example the inÞnite series solution for a transversely isotropic cylinder71 is considerably

more weighty than for a solid cylinder, even though the method of solution is similar.  To

the best of the authorÕs knowledge the following persons were responsible for the Þrst

publication of comprehensive ÒexactÓ solutions to the following problems: solid sphere,

Faran, Ref. [72]; spherical shell, Goodman and Stern, Ref. [73]; inÞnite solid cylinder at

normal incidence, Faran, Ref. [72]; inÞnite cylindrical shell at normal incidence, Doolittle

and �berall, Ref. [74];  inÞnite solid cylinder at oblique incidence, Flax, et al, Ref. [52]; and,

inÞnite cylindrical shell at oblique incidence, L�on, et al, Ref. [14] (earlier results were

published by Veksler, et al, Ref. [25] but did not include the comprehensive solution).  Exact

solutions exist for these shapes primarily because: 1) all the boundaries of each object can

be described by holding one or more coordinates Þxed (and the wave equation is separable

in the deÞned coordinate system), and 2) the boundary conditions required at the object

boundaries uniquely specify a solution and do not over-determine the problem.  When it is

not possible to write a series solution one must often resort to approximate methods.

The case considered here, of a Þnite elastic cylinder or shell, presents a considerably

more difÞcult problem than the inÞnite cylinder.  In this case the wave equation is of course

separable in cylindrical coordinates.  The difÞculty arises in specifying boundary

conditions at the cylinder ends simultaneously with those on the surface of the cylinder.

The inÞnite cylinder problem is well deÞned, but the additional boundary conditions for

the ends of the Þnite cylinder seem to over-determine the problem.  According to LurÕe75,

Ònot a single solution is known which satisÞes completely and rigorously all the boundary

conditions on the side surface and on the ends of a cylinder.Ó  One must then resort to

numerical methods, such as Þnite difference time domain, Þnite element or transition

matrix (T-matrix) calculations, or to approximate analytical methods.  The approach

presented here is associated with the latter.  The frequency range investigated in the

previous chapters is high enough that global resonances of the Þnite cylinder are not

important for the enhancements studied.  These frequencies are, however, high enough to
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present signiÞcant difÞculties to numerical approaches where the spatial discretization of

Þeld quantities must be on the order of many points per wavelength.  The analytical

approach presented here is based on a partial wave series (PWS) solution, like the

canonical solutions mentioned above.  These solutions are known to be efÞcient to

implement numerically over the frequencies of interest here.  At much higher frequencies,

however, this approach becomes numerically inefÞcient.

The solution presented here was originally worked out by Greg Kaduchak, but was

Þrst published in a combined paper with the present author (Ref. [8], Chapter 2) and Philip

L. Marston.  It can be thought of as an extension of the work presented by Muzychenko

(Ref. [17]) and somewhat by Tran-Van-Nhieu (Ref. [15]).  (Also relevant to this discussion is

a paper by Ye (Ref. [76]) for a Þnite ßuid cylinder.)  In those papers the behavior of a Þnite

cylindrical shell is modeled by a section of a corresponding inÞnite shell with appropriate

periodic axial constraints.  The resulting modal behavior is composed of the normal inÞnite

shell solution with a Fourier sum axial dependence.  The scattering effect of this section of

the shell is then evaluated in the far-Þeld.  Both of these published solutions assume that

the mechanics of the shell can be modeled with thin shell theories.  Because of the range of

frequencies and thicknesses investigated presently, thin shell mechanics is not sufÞcient

and full 3-D elasticity must be incorporated.  This chapter presents the derivation of the

Þnite cylindrical shell solution using the approach of Ref. [17] but incorporating full 3-D

elasticity.

5.2 Kirchhoff Diffraction Integral Solution

A Þnite scatterer bounded by the surface S is placed within the closed volume V having

the surface SV.  The displacement potential anywhere in the region exterior to the surface S

and inside the volume V can be written in the following form, known as the scalar

Kirchhoff integral45,77:
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(5.1)

where ,  and  and  are locations in the volume V (Þeld point)

and on the surface S (source point) respectively.  For the Þnite cylinder geometry Fig. 5.1

deÞnes the coordinates and the surface S used in the evaluation of Eq. (5.1).

The surface SV is taken to be at inÞnity.  Assuming the radiation condition at inÞnity is

satisÞed the contribution to Eq. (5.1) from SV vanishes.  The scattered Þeld is then

Φ x( ) 1–
4π
------ eikR

R
--------n'ˆ ′∇ Φ x'( ) ik 1 i

kR
------+ 

  R
R
----Φ x'( )+ S'd⋅

SV S+
∫=

R x x′–( )= R R= x x ′

a

S
ψÕ

T

P
θ

φ

r

R L

2

z

zÕ

x

y

ρÕ

FIG. 5.1   Scattering geometry used in the approximate analysis.  DeÞned with respect to the

origin at the center of the cylinder, a point T on the surface is deÞned by the cylindrical

coordinates (ρ' = a, ψ', z'); the observation point P is deÞned by the spherical coordinates (r, θ,

φ).  The surface S is the outer surface of the cylinder at r = a and includes the end surfaces at z'

= +/- L/2.  (In the derivation that follows the contribution to Eq. (5.1) from the end surfaces is

left out.)
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determined solely with the knowledge of the displacement potential and its normal

derivative on the surface S.

The source-to-Þeld point distance (T - P) can be written

(5.2)

and the vector relationship  is

. (5.3)

In the far Þeld, where  and , the Fraunhofer approximation may be used.

Taking  in the exponential and  in the denominator, while keeping

only lowest order terms in (1/r), Eq. (5.1) becomes,

. (5.4)

Substituting

(5.5)

and

(5.6)

into Eq. (5.4) gives the integral relation for the scattered pressure in the far Þeld:

(5.7)

R r θ φ a ψ'cos–cossin( )2 r θ φ a ψ'sin–sinsin( )2 r θ z'–cos( )2+ +[ ] 1 2⁄=

r 1 a2

r2
----- z'2

r2
-----

2
r
--- a θ ψ' φ–( ) z' θcos+cossin( )–+ +

1 2⁄
=

n'ˆ R⋅

n'ˆ R⋅ r θ ψ' φ–( ) a
r
---–cossin 

 =

a r 1«⁄ z' r 1«⁄

R r x x ′⋅( )–≅ R r≅

Φscatt x( ) 1–
4π
------eikr

r
------- e ik x̂ x ′⋅( )– n'ˆ ′∇ Φ x'( )⋅ ik n'ˆ x⋅( )Φ x'( )+[ ] S'd

S
∫≅

n'ˆ x⋅ r θ ψ' φ–( )cossin=

x̂ x ′⋅ a θ ψ' φ–( ) z' θcos+cossin=

Ps r θ φ, ,( ) 1–
4π
------eikr

r
------- I I I II+[ ]≅

I I e ik a θ ψ' φ–( ) z' θcos+cossin( )–

ρ'∂
∂ ρ1ω2Φ– x'( )( ) a ψ'd z'd

S
∫=

I II e ik a θ ψ' φ–( ) z' θcos+cossin( )– ik θ ψ' φ–( )cossin ρ1ω2Φ– x'( )( )[ ] a ψ'd z'.d
S
∫=
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The familiar relation for time harmonic Þelds,

(5.8)

has been used.

It remains, then, to Þnd a suitable expression for the displacement potential on the

surface of the Þnite cylinder.  In the next section the solution to the inÞnite cylindrical shell

problem is derived when the axial eigenfunctions are those corresponding to a periodic

quasi Òsimply supportedÓ cylinder.  The displacement potential found from this analysis

will then be inserted into Eq. (5.7) above to Þnd the approximate far Þeld scattered

pressure.

5.3 Solution of the InÞnite Shell Problem in 

Terms of Periodic ÒSimply SupportedÓ Axial 

Eigenfunctions

Consider a plane wave travelling in the +x and +z direction at an angle γ and incident

on an inÞnite cylindrical shell having an outer radius a and inner radius b.  The shell is an

isotropic, linear elastic material (medium 2) and is surrounded by an ideal ßuid (medium

1).  The shell is also Þlled with another ideal ßuid (medium 3).  Figure 5.2 shows the

scattering geometry and coordinate axes.  The shell is quasi Òsimply supportedÓ at regular

intervals of length L.  The incident pressure is given by

(5.9)

where ,  and  (ω is the angular frequency and c1

is the speed of sound in the outer ßuid).  In anticipation of the form of the axial

eigenfunctions describing motion on the shell we expand the z-dependence of the incident

P ρω2Φ–=

Pi Poe
i kxix kziz+( ) ωt–[ ]

=

Pi Poe
i kziz ωt–( )

i nεnJn k⊥ iρ( ) nψ( )cos
n 0=

∞

∑=

kzi k γsin= kxi k⊥ i k= γcos= k ω c1⁄=
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plane wave in eigenfunctions corresponding to periodic quasi Òsimply supportedÓ

conditions by

L
2

z

x

y

γ
Pi

ψ

ρ

P(ρ,ψ,z)

quasi-

z

1 2 3

FIG. 5.2   Scattering geometry for the inÞnite cylindrical shell.  The shell is quasi Òsimply

supportedÓ at periodic intervals of L.  A plane wave is incident at an angle γ and the scattered

pressure is desired at the location (ρ,ψ,z) described in terms of cylindrical coordinates.

“Simply supported”
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(5.10)

This can easily be shown by noting the following orthogonality condition,

. (5.11)

This form of the axial dependence leads to simply supported end conditions in the thin

shell case10,15,78.  The rigorousness of the Òsimply supportedÓ deÞnition for the thick shell

case has not been presently investigated and therefore the end boundary conditions used

presently are referred to as quasi Òsimply supportedÓ to denote the similarity to the thin

shell case.  The incident pressure now takes the following form:

. (5.12)

The displacement amplitudes in each region are derived from scalar  and vector

 displacement potentials, corresponding to irrotational and equivoluminal motion,

respectively, with the following convention

(5.13)

Explicitly the displacements are

e
ikziz βp kzp z

L
2
---+ 

   ,sin
p 1=

∞

∑= kzp
pπ
L

-------=

βp i p 1–( )

kzi kzp+( )L
2
---sin

kzi kzp+( )L
2
---

----------------------------------------- 1–( )p

kzi kzp–( )L
2
---sin

kzi kzp–( )L
2
---

----------------------------------------–

 
 
 
 
 

.=

pu( ) su( )sinsin ud
0

π

∫ π
2
---δps=

Pi Poeiωt εni nβpJn k⊥ iρ( ) nψ( ) kzp z
L
2
---+ 

 sincos
p 1=

∞

∑
n 0=

∞

∑=

Φ( )

A( )

U UL US+=

UL Φ∇= US A∇×=

UL∇× 0= US∇• 0=
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(5.14)

The equations of motion for the potentials are the uncoupled wave equations

(5.15)

where in cylindrical coordinates,

(5.16)

and

. (5.17)

The subscript notation referring to the shell (medium 2) in the sound speeds is disregarded

where the elastic terms L and S are now used to refer to longitudinal (dilatational) and

shear (transverse) wave speeds, respectively.  Equations (5.15) constitute 6 equations for the

6 unknown potentials,  and , in the three regions.  (Since an

ideal ßuid cannot sustain shear motion its displacement is completely described by a scalar

potential; thus, there are only the three components of the vector potential in the shell that

are unknown and the superscript (2) is dropped for convenience.)  In the coordinate system

chosen the wave equation, Eqs. (5.15), are separable.  The general solution can be written as

a product of the solutions for each coordinate variable.  The solutions take the following

uρ ρ∂
∂Φ 1

ρ
---

ψ∂
∂Az

z∂
∂Aψ– 

 +=

uψ
1
ρ
---

ψ∂
∂Φ

z∂
∂Aρ

ρ∂
∂Az– 

 +=

uz z∂
∂Φ 1

ρ
---

ρ∂
∂ ρAψ( ) 1

ρ
---

ψ∂
∂Aρ– 

  .+=

Φ∇ 2 1

cL
2

-----
t2

2

∂
∂ Φ

– 0=

A∇ 2 1

cS
2

----
t2

2

∂
∂ A

– 0=

∇ 2

ρ2

2

∂
∂ 1

ρ
---

ρ∂
∂ 1

ρ2
-----

ψ2

2

∂
∂

z2

2

∂
∂+ + +=

A∇ 2 êρ Aρ∇ 2 Aρ

ρ2
------–

2
ρ2
-----

ψ∂
∂Aψ– 

  êψ Aψ∇ 2 Aψ

ρ2
------–

2
ρ2
-----

ψ∂
∂Aρ+ 

  êz Az∇ 2( )+ +=

Φ 1( ) Φ 2( ) Φ 3( ), ,( ) Aρ Aψ Az, ,( )
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general form

(5.18)

where Jn, Nn, In, Kn, Hn
(1) are Bessel functions of integer order n and real argument.  With

the scattering geometry in mind the general solutions of these equations of motion in the

three regions can be reduced to

(5.19)

ρ:     

Jn n 1+, Nn n 1+,

I n n 1+, Kn n 1+,

Hn
1( )

 
 
 
 
 

ψ:     
nψsin

nψcos 
 
 

z:     kzp z L 2⁄+( )[ ]sin

Φ 1( ) 1–
ρ1ω2
------------ εni n βpJn k⊥ iρ( ) gn p,

Hn
1( ) h1pρ( )

Kn h1pρ( ) 
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p 1=

∞

∑
n 0=

∞
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kzp z L 2⁄+( )[ ]sin×

Φ 2( ) 1
ρ2ω2
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Jn hpρ( )
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bn p,
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Aρ
1

ρ2ω
2

------------ εni n cn p,

Jn 1+ K pρ( )
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dn p,

Nn 1+ K pρ( )

Kn 1+ K pρ( ) 
 
 

+ nψ( )sin
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∑
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∞

∑=

kzp z L 2⁄+( )[ ]cos×

Aψ
1

ρ2ω
2
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+ nψ( )sin
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ρ3ω
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∞

∑
n 0=
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where

(5.20)

The upper functions in Eqs. (5.19) correspond to the plus signs in Eqs. (5.20) while the

lower functions correspond to the minus signs. These correspond to solutions of Eqs. (5.15)

when the respective wavevectors are real or imaginary, respectively.  Two things are

important to mention at this point about the form of the solutions in Eqs. (5.19).  The Þrst is

the order of the Bessel functions in Aρ and Aψ.  These possess order n+1 while the

remaining potentials have order n.  This is a result of the speciÞc form of the differential

equation for these two components of the vector potential.  It stems from the added terms

present in the vector relationship Eq. (5.17) for  and  in comparison with .  The

second thing to clarify concerning Eqs. (5.19) is the choice of expansion coefÞcients in the

expression for Aψ.  One may notice that the coefÞcients of Aρ and Aψ are the same, i.e. cn,p

and dn,p.  This is a result of the fact that Eq. (5.13) is invariant under a transformation of

gauge (i.e. the displacement Þeld displays gauge invariance); i.e. the vector displacement

 remains unchanged under the transformation

(5.21)

where a is a completely arbitrary scalar function.  Choosing the gauge  enables

the 3 components of the vector potential to be reduced to 2 independent components.  A

clear example of this process can be seen in Ref. [57].  Gazis states in this paper that

h1p
ω2

c1
2

------ kzp
2– 

 ±=

k⊥ i
ω2

c1
2

------ kzi
2– 

  k 1 γ2sin–( )= =

hp
ω2

cL
2

------ kzp
2– 

 ±=

K p
ω2

cS
2

------ kzp
2– 

 ±=

h3p
ω2

c3
2

------ kzp
2– 

 ± .=

êρ êψ êz

U

A A a∇+→

A∇• 0=
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Òphysically, this implies that the displacement Þeld corresponding to an equivoluminal

potential [Aρ, Aψ or Az] . . . can also be derived by a combination of the other two

equivoluminal potentials.Ó 

The reduced general solutions, Eqs. (5.19), must satisfy the boundary conditions on the

shell.  Figure 5.3 shows pictorially the nature of the stresses on the shell.  The tangential

stress must vanish on each surface,

(5.22)

and there must be continuity of normal stress,

a

z

b

Tρz

Tρψ

Tρρ

1
2

3

FIG. 5.3   Stress components used in the boundary conditions.  Tρz and Tρψ are tangential

stresses which must vanish at the interfaces with the ßuids.  Tρρ is the radial stress which,

along with the radial displacements, must be continuous at these interfaces.

Tρz
2( )

ρ a=
0=

Tρz
2( )

ρ b=
0=

Tρψ
2( )

ρ a=
0=

Tρψ
2( )

ρ b=
0=
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(5.23)

as well as radial displacement

(5.24)

Equations (5.22) - (5.24) represent 8 equations which allow the unique determination of the

8 unknown constants in Eqs. (5.19): gn,p, qn,p, an,p, bn,p, cn,p, dn,p, en,p and fn,p.  To evaluate

these we need expressions for the stresses in terms of the displacement potentials.  This is

afforded by the tensor form of HookeÕs Law (summation convention is used),

(5.25)

and the strain tensor,

. (5.26)

Explicitly, in cylindrical coordinates, Eq. (5.26) is

(5.27)

and Eq. (5.25) is

Tρρ
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(5.28)

At this point it is instructive to note the z-dependence of the above stresses as they relate to

the boundary conditions at the ÒendsÓ of the cylinder at z = ±L/2 for the assumed general

solutions in Eqs. (5.19).  Substituting Eqs. (5.19) into Eqs. (5.14) and then into Eqs. (5.28)

above one Þnds that in the elastic material (region 2)  all have

a  z-dependence while  have a  z-

dependence.  Therefore since  the displacements  and  and the

stresses  and  vanish at all points on the ÒendsÓ of the shell (i.e. for

) at z = ±L/2.  The displacement  and the stresses  need not vanish at

the ÒendsÓ.  Note also that in the ßuid interior  has a  z-dependence

and also vanishes at the ÒendsÓ.  This has the consequence that in the interior ßuid the

ÒendsÓ are in effect pressure release boundaries and no energy is transmitted through the

ÒopenÓ end of the ÒÞniteÓ cylinder.  Most often in the present work it is assumed that the

interior is a vacuum and therefore this boundary condition on the interior ßuid is

unimportant; however, in Chapter 7 experiments are performed for water-Þlled shells

(without endcaps) and the results compared with the approximate PWS solution

developed here.  In this case it must be understood that the present solution may include

signiÞcant reßections of sound from the ÒendsÓ which would not be present in the

experiments.
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Upon substitution of the reduced general solutions, Eqs. (5.19), into Eqs. (5.14) and Eqs.

(5.28), and then in the boundary conditions, Eqs. (5.22) - Eqs. (5.24), one obtains the set of

linear equations  where M is an 8 x 8 matrix and A and C are 8 element column

vectors.  The matrix elements are listed in Section 5.A.  For numerical implementation an

alternate form is also given which does not explicitly include derivatives of Bessel

functions.  The second expression for each matrix element (where present) is a simpliÞed

version of the Þrst which has been rewritten using the appropriate recursion relation for

each Bessel function to remove derivatives with respect to the argument.  These recursion

relations are

(5.29)

The following convention is used:

(5.30)

The matrices are

M A⋅ C=

xZn′ nZn xZn 1+–= Zn Jn Nn Kn, ,→

xIn′ nIn xIn 1++=

xZn′ n– Zn xZn 1–+= Zn Jn Nn I n, ,→

xKn′ n– Kn xKn 1– .–=

kzp
2 ω2

cL
2

------< ω2

cL
2

------ kzp
2 ω2

cS
2

------< < ω2

cS
2

------ kzp
2<

hp = ω2 cL
2 kzp

2–⁄ kzp
2 ω– 2 cL

2⁄ kzp
2 ω– 2 cL

2⁄

K p = ω2 cS
2 kzp

2–⁄ ω2 cS
2 kzp

2–⁄ kzp
2 ω– 2 cS

2⁄
Un hpa hpb,( ) = Jn hpa hpb,( ) I n hpa hpb,( ) I n hpa hpb,( )
Vn hpa hpb,( ) = Nn hpa hpb,( ) Kn hpa hpb,( ) Kn hpa hpb,( )
Un K pa Kpb,( ) = Jn K pa Kpb,( ) Jn K pa Kpb,( ) I n K pa Kpb,( )
Vn K pa Kpb,( ) = Nn K pa Kpb,( ) Nn K pa Kpb,( ) Kn K pa Kpb,( )

δ = 1 1– 1–

κ = 1 1 1–
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(5.31)

(5.32)

The elements of the matrix M can be found in Section 5.A.  A solution for the expansion

coefÞcient gn,p, which corresponds to the scattered portion of the solution in region 1, is

provided by CramerÕs rule.  Let D = det[M] and N1 = det[M1] where M1 is the matrix

deÞned by replacing the 1st column of M with the column vector C.  For D ≠ 0 the

coefÞcient has the unique solution gn,p = N1/D.  The condition D = 0 deÞnes the normal

modes of the shell, e. g. as discussed in Chapter 4, for particular values of γ, ka, n, and kzp.

No attempt has been made to localize these roots.

The displacement potential in the external region is now given by

(5.33)

It now remains to show how this displacement potential is used in the Kirchhoff integral to

M
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0 0 M53 M54 M55 M56 M57 M58
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∑
n 0=

∞

∑=
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obtain an approximate solution for the Þnite cylinder.

5.4 Approximate Far Field Scattered Pressure 

Due to a Finite Section of the InÞnite 

Cylinder

The scattered displacement potential derived in the previous section is now used as the

source in the Kirchhoff integral; the result is an approximation of the far Þeld scattered

pressure from a Þnite quasi Òsimply supportedÓ cylinder.  Once Eq. (5.33) is inserted into

the expression for the scattered pressure, Eq. (5.7), the integrals II and III can be evaluated

in a straightforward manner.  The following deÞnition and properties of the Bessel function

are necessary, however

(5.34)

Here α is an arbitrary constant, n is any integer and z is an arbitrary complex number.

These may be found, for example, in Ref. [80].  Upon evaluation one Þnds,

(5.35)

and

(5.36)
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where

. (5.37)

Combining these together and writing in terms of the complex dimensionless form

function in spherical coordinates

(5.38)

gives

(5.39)

or explicitly

(5.40)

In the special case of backscattering in the direction opposite the incident wavevector,

 and  giving . In this case Eq. (5.40) reduces somewhat

to
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(5.41)

In the numerical evaluation of Eq. (5.41) for the far Þeld scattering shown in Figs. 2.4(a)

and 2.5(a), the terms  in the square brackets above

are not included.  These represent the incident plane wave Þeld, which was assumed to

have inÞnite extent in both the spatial and temporal dimensions, at the observer.  This

Òsteady stateÓ Þeld is not present in the experiments and is therefore left out of the

calculations.  The Þnal expression for the far Þeld backscattering (monostatic) form

function is:

(5.42)

5.5 Numerical Results

To implement Eq. (5.42) numerically one must choose a truncation point of the inÞnite

sums over n and p.  The sum over the partial wave index n is chosen to be truncated at nmax

in a similar fashion to previous PWS calculations81.  The actual expression is

, (5.43)

where nint represents the nearest integer.  The accuracy of these truncation points was

estimated by calculating values for nmax = 3*nmax over a range of frequencies and angles.
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For the frequency ranges shown in Figs. 2.4(a) and 2.5(a) the error,

, was typically less than 10-5.

The truncation limit for the summation over p had to be chosen differently.  Notice in

Eq. (5.42) one must evaluate  and  where

 . (5.44)

This poses a problem since when

(5.45)

the argument of the Hankel functions approach zero.  Equation (5.42) diverges in this

region and it does not appear possible to reduce it to a form which remains Þnite, even

while taking into account the determinant relation.  Note that it does not appear possible to

reduce Eq. (5.42) with a Wronskian type relation since the form of the quantity in curly

brackets is

, (5.46)

which does not appear to be related to expressions listed in standard tables.  As a result of

this divergent behavior, pmax was set to

. (5.47)

This is equivalent to computing the scattering for supersonic axial wavenumbers only, i.e.

.  Note that Rumerman10 limited his discussion to supersonic modes as well.  Since

we are primarily interested in high frequency scattering, where global motion of the shell is

relatively unimportant, one would not expect subsonic axial modes to contribute

signiÞcantly to the far-Þeld scattered pressure.  This can be thought of through the

principle of reciprocity.  Since it is not possible to excite subsonic axial modes of vibration
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on an inÞnite cylindrical shell by an incident plane wave in the surrounding ßuid, then one

would not expect to observe radiation from subsonic axial modes.

It is important to recognize that this exclusion of subsonic axial modes is not the same

as excluding subsonic waves such as the a0- (or the low frequency regions of the a0), whose

phase velocity is less than the sound speed in the surrounding ßuid.  One may observe in

Figs. 4.16 and 4.20 that portions of the dispersion curves for this wave still have .

This is why limiting the evaluation of Eq. (5.42) to supersonic axial modes still includes the

scattering enhancements due to the coincidence frequency enhancements of the a0- helical

waves.

5.6 Examples

Figures 5.4 - 5.6 show examples of the evaluation of Eq. (5.42) for several empty shells,

none of which corresponds to an actual shell examined in the experiments.  The Þrst Þgure

(Fig. 5.4) shows the low frequency response of a very thin-walled shell (1% thick).  This

Þgure is an attempt to compare the present analysis with the thin-shell analysis of

Rumerman10.  The comparison is not completely accurate since Rumerman did not include

enough information about the shell he used to reproduce his results.  Values of cylinder

length and water sound speed are estimated.  Nevertheless the comparison is good and all

pertinent features are reproduced.  The shape of these enhancement curves (due to the s0

and T0 waves) is often referred to as a ÒchaliceÓ presumably because of its resemblance to a

chalice cup.

Figure 5.5 shows the scattering response at high frequencies for a thin-walled shell (2%

thick).  Since most theoretical investigations of thin-walled structures are performed at

frequencies well below the coincidence frequency, where thin shell mechanics is

appropriate, it is not often one sees evidence of the coincidence frequency enhancement for

these cases.  Figure 5.5 shows that the present method of analysis recovers the coincidence

frequency effects for thin shells at high frequency.  The wide area of individual

enhancements stretching from broadside to about 70° is almost certainly due to the

kz k<
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coincidence frequency enhancement of the helical a0- waves.  One may also just make out

the beginning of the meridional ray enhancement of the a0 to the right of these features.  As

it is presently implemented this Þgure represents the rough limit of reasonable calculations

for our scattering code.  At these frequencies ßoating point exceptions are common and the

Bessel function routines used produce errors.  It is reasonable to assume that modiÞcations

to the code could enable better accuracy at high frequencies; however, the computations

are still slow on presently available computers.

Figure 5.6(a) and (b) represent two cylinders that are between those of Shell A and Shell

B in thickness-to-radius ratio (b/a).  Figures 2.4(a), 5.6(a), 5.6(b) and 2.5(a) show results for

a progression of shell thickness of 7.6%, 10%, 12%, and 16.25%, respectively.  By comparing

these it is possible to observe how the shell thickness inßuences such things as: the location

and number of the coincidence frequency a0- helical wave enhancements, the position of

the a0 meridional ray enhancement curve, and the relative amplitude of the a0 helical wave

contributions.  Generally speaking as the relative thickness of the shell increases all effects

shift towards lower values of ka.  In addition, the amplitude of the a0 helical waves

increases and apparently the number of helical a0- waves contributing to that enhancement

increases.    
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FIG. 5.4   Calculated backscattering form function for a 1% thick steel shell showing

membrane wave coupling regions.  This cylinder is close to that found in the paper by

Rumerman, Ref. [10].  The results here compare well with the thin shell mechanics approach

used in that paper.  Shell and water parameters are: cw = 1.483, cL = 5.74, cs = 3.07 (in mm/µs),

ρ = 1.0, ρe = 7.8 (in g/cm3), L/a = 12 and b/a = 0.99.  This color raster image represents the

sampling intervals: (a) ∆ka = 0.05, ∆γ = 0.25°.
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FIG. 5.5   Calculated backscattering form function for a 2% thick SS304 shell.  Shell (see Table

2) and water parameters are: cw = 1.483, cL = 5.675, cs = 3.141 (in mm/µs), ρ = 1.0, ρe = 7.57 (in

g/cm3), L/a = 12 and b/a = 0.98.  Calculations at these high ka values are presently very slow

(3 days computing time on a 300MHz Digital AlphaStation for this Þgure) and are prone to

ßoating point exceptions (i.e. the vertical line at ka = 92.6) and errors in Bessel function

routines.  This color raster image represents the sampling intervals: (a) ∆ka = 0.1, ∆γ = 0.3125°.
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FIG. 5.6   Calculated backscattering form function for a 10% (a) and 12% (b) thick SS304 shell.

These shells are between Shell A and Shell B in thickness [i.e. compare these results with Figs.

2.4(a) and 2.5(a)].  Shell (see Table 2) and water parameters are: cw = 1.483, cL = 5.675, cs = 3.141

(in mm/µs), ρ = 1.0, ρe = 7.57 (in g/cm3), L/a = 12 and b/a = 0.90 & 0.88.  These color raster

images represent the sampling intervals: ∆ka = 0.05, ∆γ = 0.3125°.
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5.A Matrix Elements

: (5.48)

(5.49)

: (5.50)

(5.51)
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: (5.52)

(5.53)
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6

Scattering from an InÞnite 

Cylindrical Shell in the 

Meridional Plane: Meridional 

Ray Amplitudes 6

6.1 Introduction

The results of Chapter 2 (Ref. [8]), as well as the investigations by Kaduchak1 and

Dodd2, have shown that signiÞcant enhancements to the backscattering by tilted Þnite

cylindrical shells (both empty and ßuid-Þlled) and solid cylinders47 are due to the

launching of a meridional leaky wave which reßects off the cylinder truncation and

reradiates into the backscattering direction.  A meridional wave propagates strictly in the

axial direction and for the high frequencies studied in the references above, it is well suited

for interpretation by ray approaches.  The meridional ray path on the cylinder, shown in
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Fig. 2.1, lies in the plane deÞned by the incident wavevector and the cylinder axis.  This

axial path can be thought of as one of the limiting paths taken by helical waves on the

cylinder, the other being a purely circumferential path.  A meridional ray enhancement can

be signiÞcantly greater in amplitude than the edge diffracted returns from the ends of the

cylinder.  The meridional leaky ray is launched when the angle of incidence of an

impinging acoustic plane wave nears a leaky wave coupling angle.  This angle is

determined by the phase velocity of the (necessarily supersonic) leaky wave on the

cylinder through the trace velocity matching condition as

(6.1)

where cl is the phase velocity of the lth class of leaky wave and c is the speed of sound in the

surrounding ßuid.  One can see from Eq. (6.1) that the angle at which an enhancement may

be found for a particular frequency is dependent on the dispersion characteristics of the

leaky wave.  For a relatively dispersionless leaky wave, e.g. a meridional leaky Rayleigh

wave on a solid cylinder, which has similar propagation characteristics to a Rayleigh wave

on an elastic half space, the enhancement angle is relatively constant5,47.  For the

enhancements Þrst observed on cylindrical shells1,2 the contributing leaky waves were the

generalizations of the a0 and s0 leaky Lamb waves, which are not particularly dispersive

over the frequency range studied by those authors.  To investigate more thoroughly the

conditions for these effects, Morse (Ref. [8], Chapter 2) carried out broadband impulse

response measurements on empty thick cylindrical shells which showed continuous

enhancement curves in frequency-angle space, some of which extended to end-on

incidence near the coincidence frequency.  The leaky waves responsible for the

enhancements at large cylinder tilt angles were identiÞed as the generalizations of the a0

and a0- meridional and helical waves, respectively.  These waves are highly dispersive in

the frequency range studied, which explains the large range of angles over which the

enhancements were observed.  Lesser contributions were observed from a0, s0 and T0

(shear) helical waves.  That investigation also showed that the general locations of the

measured backscattering enhancements were consistent with an approximate partial wave

γ θl≈ c
cl
---- 

  ,
1–

sin= cl c,>
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series solution (which reproduced most of the observed enhancement features). 

For the purpose of estimating the amplitudes of these enhancements on more

complicated objects it is desirable to develop and verify a quantitative ray theory for these

enhancement processes.  A successful ray treatment of the problem would be useful, for

example, in interpreting images from high-frequency imaging or scanning sonar systems

γ

a b

L

Pincident γ

S

FIG. 6.1   Schematic of scattering (bistatic) from an inÞnite cylindrical shell.  A plane wave is

incident on the cylinder at an angle γ with respect to the normal.  The observer is situated in

the far-Þeld in the meridional plane (deÞned by the incident wavevector and the cylinder axis)

at an angle γ in the specular direction.  Scattering in this direction includes the strong specular

contribution as well as contributions from leaky waves launched on the shell.  In particular a

strong enhancement occurs when  as a leaky ray is launched along the cylinder

meridian.  This meridional ray then reradiates sound at an angle .

γ θl≈

θl

Observer
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or in predicting the response of materials and structures with cracks or truncations

examined with acoustic non-destructive evaluation techniques.  Marston3-6 has previously

developed a ray theory for this process which utilizes an approximation of spatial

amplitudes of leaky waves on weakly curved elastic structures.  It has already proven

successful in modeling the meridional plane backscattering enhancement by leaky

Rayleigh waves on an inÞnite solid cylinder5, and on a Þnite solid cylinder47.  The present

work extends these comparisons to leaky waves on hollow inÞnite cylindrical shells and

hollow and ßuid-Þlled Þnite cylindrical shells (Chapter 7).

6.2 Global Scattering Response in the 

Meridional Plane from the Exact PWS 

Solution

Figure 6.1 shows a diagram of a scattering geometry which provides for a comparison

of the ray theory with an exact partial wave series solution (PWS) of the scattered Þeld.  A

time-harmonic plane wave is incident at an angle γ on an inÞnite hollow cylindrical shell in

an ideal ßuid of inÞnite extent.  The exact solution to this problem under the framework of

linearized 3-D elasticity is given in Ref. [14] and in Chapter 4.  Figures 6.2 and 6.3 show the

results of this PWS calculation of the far-Þeld scattering form function for Shells A and B,

respectively, examined in earlier chapters.  They show the global scattering response as a

function of frequency and angle.  Since only the scattering response associated with the

elastic behavior is desired a ÒbackgroundÓ, corresponding to the exact scattering by a rigid

cylinder, has been subtracted from the total scattering.  Explicitly, Eq. (4.9) is subtracted

from Eq. (4.8) before taking the absolute magnitude.  If one were to plot the full scattering

response it would include the interference between the specular reßection and the

reradiation of any elastic waves launched on the shell; as a result it would be much more

difÞcult to interpret.  The subtraction method works well except at low frequencies and

large tilt angles.
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Figures 6.2 and 6.3 are strikingly similar to Figs. 2.4 and 2.5, respectively.  All the elastic

features previously identiÞed are present in Figs. 6.2 and 6.3.  The a0 meridional ray

enhancement peak dominates the response at these frequencies and is fairly isolated from

the other features, making it a good candidate for comparison with the ray theory.    
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FIG. 6.2   Calculated form function modulus for scattering in the specular direction (i.e.

bistatic) in the meridional plane for Shell A.  The exact form function expression for a rigid

cylinder has been subtracted.  The highest ka displayed ( kHz) is below the mode

thresholds for the generalizations of the s1 and a1 waves.  The primary contributions to the

scattering are from the generalizations of the a0, a0-, s0 and T0 waves.  This color raster image

represents the sampling intervals: ∆ka = 0.05 (∆f = 619 Hz), ∆γ = 0.2°.  The amplitude scale is

in dB with respect to the maximum response at γ = 0°.
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FIG. 6.3   Calculated form function modulus for scattering in the specular direction (i.e.

bistatic) in the meridional plane for Shell B.  The exact form function expression for a rigid

cylinder has been subtracted.  The range of ka displayed (up to MHz)  includes portions

of the s1, s2, s2b, and a1 waves, in addition to the a0, a0-, s0 and T0.  This color raster image

represents the sampling intervals: ∆ka = 0.05 (∆f = 561 Hz), ∆γ = 0.2°.  The amplitude scale is

in dB with respect to the maximum response at γ = 0°.
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6.3 Meridional Plane Scattering Amplitude from 

Approximate Ray Analysis

The approximate ray analysis of Ref. [5] provides an expression for the far-Þeld

scattering form function for backscattering in the meridional plane from an inÞnite solid

cylinder near a leaky wave coupling angle.  No modiÞcation is required to extend this

result to the case of an inÞnite hollow cylindrical shell.  The modulus of the far-Þeld form

function for the lth meridional ray is given as a function of incidence angle by

, (6.2)

where the wavenumber associated with the meridional leaky ray is

, (6.3)

and

, (6.4)(a)-(c)

. (6.5)

The leaky wave coupling angle is 

, (6.6)

where ;  also, a is the cylinder radius and erfc is the complementary error

function.  Equation (6.5) must be evaluated numerically.  Equation (6.2) is valid for a small
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range of angles near the leaky wave coupling angle.  A noteworthy approximation used in

the derivation of Eq. (6.2) is that the curvature of the radiated wavefront is approximated

by using values derived for  even when .  This is because the reduction in

amplitude when  should be dominated by dephasing.  To evaluate Eq. (6.2) for the

form function one must possess knowledge of the meridional leaky wavenumber, kp.  For a

hollow cylindrical shell (or a solid cylinder) the meridional wavenumber may be

approximated by the wavenumber of the axisymmetric mode of the cylinder, which may

be found, as in Chapter 4 for n = 0, by locating the appropriate root of the characteristic

equation for that problem5,61.  Alternately the meridional wavenumber may be

approximated with the wavenumber of the corresponding Lamb wave on a ßuid loaded

plate (single-sided).

If the shell is sufÞciently thin and contains ßuid on the interior, rather than being

hollow, the expressions above must be modiÞed to account for the leaky wave radiation

into the ßuid interior.  SpeciÞcally Eq. (6.2) should be multiplied by (1/2) and the

appropriate wavenumber [Eq. (6.3)] chosen accordingly (see Section I of Ref. [4] where in

the notation used there j becomes 1).  For a ßuid-Þlled cylindrical shell the wavenumber

cannot be found directly as was done in Chapter 4 for a hollow cylinder.  The modes of

vibration of the shell, in this case, cannot be separated from the modes of the ßuid

interiorÑeliminating the possibility of Þnding a single leaky wave pole corresponding to

the doubly ßuid-loaded problem.  It is often sufÞcient to simply approximate this leaky

wavenumber with that for a hollow shell with the modiÞcation of doubling the damping

rate.  This modiÞcation accounts for the leakage of energy into the ßuid on both sides of the

elastic material rather than on only one side and can be implemented by multiplying the

imaginary part of the wavenumber by 2.

γ θl= γ θl≠

γ θl≠
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6.4 Comparison of the Ray Theory with the 

Exact PWS Solution

The approximate ray theory reviewed above will now be compared with the exact PWS

solution discussed in Chapter 4 and Ref. [14].  Figures 6.4 and 6.5 show this comparison for

six successive frequencies (ka) as a function of cylinder tilt angle for Shell A.  These show

the full range of angles while Figs. 6.6 and 6.7 display only a close-up of the meridional ray

peak for each frequency.  Figures 6.8 - 6.11 show similar calculations for Shell B.  For the

PWS calculations each of these Þgures corresponds to a horizontal slice through Fig. 6.2 or

6.3.

For Shell A the prominent enhancement feature is due to the a0 meridional ray.  The

solid points in Figs. 6.4 - 6.7 are calculated with the ray theory, Eq. (6.2), using

wavenumbers calculated for the axisymmetric mode of a hollow inÞnite cylindrical shell

corresponding to the generalization of the a0 leaky Lamb wave (see Section 4.3).  The

results for Shell B are similar; however, in this case a signiÞcant enhancement from the s0

meridional ray is also present above  at a lesser tilt angle.  Table 6.1 lists the

wavenumbers used in the ray calculations and also shows the comparable wavenumbers

for a ßat plate of the same material and thickness as the cylindrical shell with ßuid-loading

on one side.

The agreement between the ray theory and exact PWS result is very good.  For example

the average percent error (||fpws|-|fray||/|fpws|) between the peak values predicted by

the ray theory and the PWS solution is 0.36% for Shell A and 1.96% for Shell B, for the

Þgures shown (a0 peak only).  The average percent error in the angular location of the peak

enhancement is 0.06% and 0.09%, respectively .  If the wavenumbers for the ßat plate were

used instead of the exact cylinder wavenumbers the average percent errors for the

magnitude of the form function are 0.29% and 0.63%, respectively, for an average percent

error in the angular location of the peak enhancement of 0.13% and 0.27%.  Similar

comparisons for the s0 meridional ray peak, such as is found in Figs. 6.9 and 6.11, are not

nearly as good.  This is because the s0 meridional ray enhancement peak is found over a

ka 60≈
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region where other helical wave responses are present.  These additional, mostly smaller,

responses interfere with the meridional ray response and tend to confuse the comparison

with the single meridional ray contribution.  The panel of Fig. 6.11 for ka = 60 shows this

clearly.  This illustrates why the a0 meridional ray was chosen for comparison with the ray

theory. 

The ray theory also correctly models the shape of the enhancement peak, for a limited

range of angles.  Generally, at low frequencies (ka) the peak is fairly broad and narrows as

the frequency increases.  The enhancement peak in the exact solution is slightly

asymmetric; this characteristic is not recovered by the ray theory.  Furthermore the exact

solution displays a number of smaller broad enhancement peaks at tilt angles less than the

meridional ray peak, which are also not present in the ray theory.  These are due to various

modes of the helical a0 which necessarily circumnavigate the shell.  Including these effects

would require an extension of the present ray theory.

One feature which requires a comment is found in Fig. 6.9 at ka = 70 and  (see

also the corresponding region in Fig. 6.3).  This feature is associated with the onset of the

s2b and s1 leaky waves on the cylinder (see Fig. 4.5 on page 103 and Figs. 8.1 and 8.2

Table 6.1: Meridional ray wavenumbers

Shell A: a0 Shell B: a0, (s0)

ka kpacylinder,n = 0 kpaplate kpacylinder,n = 0 kpaplate

20 13.7506+i 0.2302 13.8658+i 0.2184

30 23.2856+i 0.5908 23.3423+i 0.5780 18.5529+i 0.2033 18.6222+i 0.1930

40 28.2585+i 0.4927 28.3065+i 0.4821 23.2728+i 0.1997 23.3219+i 0.1890

50 33.0842+i 0.4492 33.1208+i 0.4394 27.9945+i 0.2058 28.0324+i 0.1935

60 37.8336+i 0.4275 37.8629+i 0.4180 32.7439+i 0.2176
20.7627+i 0.3681(s0)

32.7749+i 0.2031
20.8253+i 0.3735(s0)

70 42.5476+i 0.4172 42.5720+i 0.4077 37.5283+i 0.2341
29.2365+i 0.4777(s0)

37.5546+i 0.2162
29.3016+i 0.4833(s0)

80 47.2490+i 0.4139 47.2698+i 0.4040

c=1.483, cL=5.675, cS=3.141 (mm/µs); Shell A: a=19.05 mm, h/a=0.076; Shell B: a=21.02 mm, h/a=0.1625

γ 5°≈
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starting on page 259).  Because of its angular location it is most likely due to the s2b

meridional ray, which is a backward wave81 (i.e. its group and phase velocity have

opposite signs).
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FIG. 6.4   Meridional plane scattering form function for an inÞnite hollow cylindrical shell in

water corresponding to Shell A for several values of ka.  The solid curve is the exact PWS

result with a rigid cylinder background subtracted while the solid points are the results of the

ray formulation discussed in Section 6.3.  The principle enhancement feature is due to the a0

meridional ray.
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FIG. 6.5   Meridional plane scattering form function for an inÞnite hollow cylindrical shell in

water corresponding to Shell A for several values of ka.  The solid curve is the exact PWS

result with a rigid cylinder background subtracted while the solid points are the results of the

ray formulation discussed in Section 6.3.  The principle enhancement feature is due to the a0

meridional ray.
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FIG. 6.6   Close-up of the a0 meridional ray peaks in Fig. 6.4 for Shell A.
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FIG. 6.7   Close-up of the a0 meridional ray peaks in Fig. 6.5 for Shell A.

b
a
--- 0.924=
184



| f
 -

 f 
(r

) |

γ (degrees)

ka = 20

ka = 30

ka = 40

| f
 -

 f 
(r

) |
| f

 -
 f 

(r
) |

0 10 20 30 40 50 60 70 80 90

1

2

0 10 20 30 40 50 60 70 80 90

1

2

0 10 20 30 40 50 60 70 80 90

1

2

FIG. 6.8   Meridional plane scattering form function for an inÞnite hollow cylindrical shell in

water corresponding to Shell B for several values of ka.  The solid curve is the exact PWS result

with a rigid cylinder background subtracted while the solid points are the results of the ray

formulation discussed in Section 6.3.  The principle enhancement feature is due to the a0 meridional

ray.
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FIG. 6.9   Meridional plane scattering form function for an inÞnite hollow cylindrical shell in

water corresponding to Shell B for several values of ka.  The solid curve is the exact PWS result

with a rigid cylinder background subtracted while the solid points are the results of the ray

formulation discussed in Section 6.3.  For ka = 60 and ka = 70, besides the a0 meridional ray an

enhancement due to the s0 meridional ray is present.  The large peak near γ = 5° is associated

with the mode thresholds of the s1 and s2b leaky waves (see Fig. 6.3).
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FIG. 6.10  Close-up of the a0 meridional ray peaks in Fig. 6.8 for Shell B.
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6.5 Discussion

The results presented here show the ray theory developed by Marston is applicable to

meridional Lamb-type waves on hollow cylindrical shells in regions where the meridional

ray feature is isolated from other Lamb wave responses.  The agreement between the ray

theory and the exact PWS solution is good, though it is noteworthy that the tails of the

angular maxima differ slightly from the PWS solutions.  It is not clear whether this small

discrepancy arrives from interference with helical waves not included in the model or from

the approximation of the wavefront curvature for  previously noted.  These results

are signiÞcant since the ray theory may be modiÞed to apply to similar high-frequency

scattering by Þnite cylindrical shells (e.g. Chapter 7).

γ θl≠
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7

Backscattering from a Finite 

Cylindrical Shell in the 

Meridional Plane: Meridional 

Ray Amplitudes 7

7.1 Introduction

The far-Þeld backscattering by submerged Þnite cylindrical shells is known to be

enhanced when the incident acoustic radiation excites a leaky wave on the shell.  For a

tilted cylindrical shell these leaky waves typically follow a helical path on the shell and

radiate into the backscattering direction after reßection from the shell

truncation10,12,13,16,17.  Recently, experiments have revealed a new class of enhancements

which may dominate the monostatic backscattering response at high frequencies for tilted

shells1,2,8.  The enhancements reported are due to a meridional leaky Lamb wave5 which is
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launched along the cylinderÕs meridian when the aspect angle, γ, of the cylinder nears a

leaky wave coupling angle, 

, (7.1)(a)-(c)

where c is the speed of sound in the ßuid and cl is the phase velocity of the leaky wave.

This condition is the familiar trace velocity matching condition for launching a supersonic

surface guided wave.  The process is not limited to a particular leaky wave but may include

compressional and ßexural waves on shells or Rayleigh waves on solids.  Some types of

waves are excluded, however, because of their propagation characteristics.  An example of

this is the meridional and circumferential transversely polarized (with respect to the

incident wavevector) shear wave, labelled T0, which is not coupled to the external ßuid.

Figure 2.1 shows a ray diagram of the meridional ray enhancement process.  The

meridional ray lies on the shell in the plane deÞned by the incident wavevector and the

cylinder axis.  The enhancement arises when this meridional ray reßects off the cylinder

truncation and radiates into the backwards direction, along the angle .  (It is expected

that a strong circumferential discontinuity in shell material or curvature, such as a rib

stiffener, weld or endcap, would also produce a reßected leaky wave in much the same

manner.)  This process gives rise to large backscattering amplitudes for primarily two

reasons.  The Þrst is that it can be shown the Gaussian curvature of the backwards directed

wavefront vanishes (Ref. [5]), which leads to a far-Þeld caustic or focusing82.  The second

reason is that the meridional leaky ray need not propagate very far on the shell, as opposed

to a helical wave which necessarily traverses the back side of the shell.  The result is that

less energy is lost through radiation damping in the forward scattering direction before

reßection.  Of course a limiting factor is the actual elasto-dynamic reßection process at the

truncation, which can be very complicated.  (For simplicity only a ßat perpendicular

truncation is considered here.)  An elementary analysis of the reßection mechanics will be

discussed in Chapter 8.  For the cylinders investigated in Refs. [1], [2], [5], and [8]

mentioned above, the radiation damping of the meridional leaky wave is large enough that

only a small fraction of the length of the cylinder, at itÕs far end, contributes signiÞcantly to

γ θl c cl⁄( )1–sin=≈

θl
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the backscattering enhancement process (see Fig. 3.20 and Section 3.6 starting on page 79).

Any waves launched earlier on the shell are too reduced in amplitude to contribute

signiÞcantly because of the large radiation damping levels.  This enhancement process

highlights the truncation of the cylinder and has been shown to greatly enhance the

visibility of the cylinder end in high-resolution sonar images1.  Applications of this

backscattering enhancement process may include remote non-destructive evaluation

(NDE) of cracks or junctions in elastic structures, where Lamb waves are often of interest,

or detection of cylindrical objects on the sea bottom by high frequency sonar systems.  It

should be pointed out that the meridional leaky wave enhancement just discussed has been

observed for the case of tilted Þnite solid cylinders (Ref. [47]) in addition to empty and

water-Þlled cylindrical shells.  In the Þrst case the leaky wave responsible is a leaky

Rayleigh wave while for the latter cases it is one of often several leaky Lamb-type waves.

The previously mentioned investigations primarily focused on identifying the

mechanism(s) responsible for the enhancement and then exploring the broader conditions

under which it is observable.  For the thick and moderately thick steel shells examined by

the author in Ref. [8] (Chapter 2) the principal enhancement mechanisms, for the frequency

range studied, were found to be due to the generalizations of the antisymmetric a0 and a0-

leaky Lamb waves which included helical wave contributions.  The meridional ray

enhancement of the supersonic a0, however, was found to be the most prominent and was

relatively easy to identify.  Because the contribution to the backscattering from this

mechanism is for the most part isolated from other elastic contributions, and is therefore

most suitable for further study, it will be the main focus of this chapter.

The purpose of this chapter is to quantitatively investigate the a0 meridional ray

enhancement by comparing experimentally obtained meridional ray amplitudes with

amplitudes calculated by approximate methods.  This chapter is organized as follows.

Section 7.2 describes the water tank scattering experiments performed to measure the time

records of the enhancements.  Section 7.4 describes the two theoretical calculations used to

compare with the experimental results.  The Þrst theoretical approach is an extension of a

ray theory developed by Marston5.  One remarkable prediction of this ray theory is that the
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amplitude of the meridional ray contribution to the far-Þeld backscattering can be many

times greater than the specular reßection from a rigid sphere having the same radius as the

cylinder.  The second theoretical approach is an approximate partial wave series (PWS)

solution that was presented in Ref. [8]; it is discussed only brießy here but may be found in

its entirety in Chapter 5.  In Section 7.4 the angle dependence of the meridional ray

enhancement is investigated.  The experimental and theoretical meridional ray amplitudes

are compared as a function of cylinder aspect angle for selected excitation frequencies.

Both air-Þlled and water-Þlled shells are examined.  In addition to angular comparisons the

approximate PWS solution affords a comparison of the enhancements in the time domain,

which is presented in Section 7.5.  It is found that allowing water on the inside of the shell

signiÞcantly alters the enhancements and introduces complications in the ray analysis,

though the enhancements are still easily observed.  Section 7.6 discusses this case further

and shows the effect of internal ßuid loading on the experimental backscattered spectral

magnitude.

7.2 Backscattering Experiment

Narrowband backscattering experiments were carried out in a cylindrical redwood

water tank (8Õ ht. by 12Õ dia.) for the two thick shells, labelled Shell A and B, studied in

previous chapters.  The experimental setup is similar to that used in Ref. [8] (Chapter 2, see

Fig. 2.3 on page 14) except that the source and receiver are the same transducer, operated in

a transmit-receive (TR or pulse-echo) mode.  The sheet source is removed so that only the

cylinder and source/receiver are in the tank.  Two immersion type NDE transducers were

used to cover the range of frequencies of interest, with resonances of 500 kHz and 1 MHz

[Panametrics models V3386 (1.5Ó dia.) and V302 (1Ó dia.), respectively].  (It should be noted

that the latter model had an actual resonance frequency nearer to 750 kHz.)  The selected

transducer was placed a distance of approximately 2.3 meters from the center of the

carefully aligned cylinder and driven with a long duration tone burst (20 to 40 cycles)

through a Ritecª Clamped Diplexer (Model RCDX-2A), which performed the TR signal
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switching.  The aspect angle of the cylinder was set with a motorized stepper rotation stage

(0.025°/step).  At each selected aspect angle, multiple backscattered time records were

recorded and averaged on a digital oscilloscope and subsequently downloaded to a

personal computer.  Reßections from the tank walls were not present in the time windows

of interest.

Figure 7.1 shows an example of a portion of the raw backscattered response from Shell

A (preampliÞer voltage versus time) over a broad range of angles, which is intended to

familiarize the reader with the typical scattering response.  The excitation in this case is a 20

cycle square envelope tone burst centered at 620 kHz.  Broadside incidence would be at γ =

0° in the notation used.  In this Þgure red corresponds to positive voltages and blue

negative.  In this case the shell has air on the interior and ßat Plexiglasª endcaps  held in

place with rubber O-rings (see Appendix A and Fig. A.3 on page 280).  The meridional ray

enhancement of the a0 is found on the left side of the Þgure between 150 µs and 200 µs.  The

identiÞcation of this feature is made with knowledge of the phase velocity of the a0 on the

shell using Eq. (7.1).   The phase velocity of the a0 on an inÞnite cylindrical shell, for axial

propagation only, at this frequency may be found with the aid of Fig. 4.3 on page 101.  It is

found to be , which locates the meridional ray enhancement at about

 by Eq. (7.1).  Note that in Chapters 2 and 4 it was shown that for the high

frequencies of interest here, propagation on the shell is essentially isotropic, i.e. the

propagation characteristics are nearly independent of the direction of propagation on the

shell.  As a result the phase velocity for propagation on a plate of the same material and

thickness could have been used.  Looking now at Fig. 7.1 one Þnds the meridional a0

enhancement peak centered at  just after the timing of the geometric reßection

from the closest rear corner of the cylinder (the latter black line labelled tB).  This feature

primarily corresponds to the a0 meridional ray enhancement although lesser features due

to helical a0 waves will be seen to be present.  The discrepancy between the peak angles

will be discussed in Section 7.4.  At this point the reader may wish to refer to Figs. 7.11 (a) -

7.15 (a) which show individual measured waveforms at locations of peak enhancement.

Long duration tone burst excitation such as this was the method used to obtain

cl c 1.51=⁄

γ 41.4°=

γ 37.6°=
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FIG. 7.1   Example of the measured narrow band backscattering from Shell A with air interior

and endcaps, showing the meridional ray enhancement at .  The overlaid black lines,

labelled tA and tB, correspond to the timings of the direct ray paths through the water to the

closest front and rear ÒcornersÓ of the cylinder (see Section 7.A and the discussion in Section

3.B).  This data was acquired with a T-R setup using the piston-style transducer driven with a

20 cycle square envelope tone burst (center frequency is 620 kHz).  The amplitude scale

represents 60 dB of dynamic range with respect to the maximum measured response (in this

case at γ = 2°).  Broadside incidence would correspond to γ = 0°.

γ 37.6°≈
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scattering amplitudes of the meridional ray peak under the assumption that the response

of this enhancement feature would quickly approach steady state behavior during the Þrst

few cycles of the burst.  The success of this method depends on their being no other

signiÞcant contributions present over the time span required for the signal of interest to

reach steady state behavior.  Preliminary experiments demonstrated that the meridional

ray enhancement is indeed isolated in the time domain and reaches steady state behavior

rather quickly.  In almost all the cases examined, near the angle of the peak of the

meridional ray enhancement the signal response quickly approached and held a constant

value for many cycles.  This region of the signal was isolated, averaged and normalized to

obtain a representative steady state scattering amplitude.  The exact method used is the

subject of Section 7.A.

7.3 Ray Theory and Approximate PWS Solution 

for the Meridional Ray Enhancement

The far-Þeld pressure amplitude in the meridional plane due to the backscattered

meridional ray was determined by Marston5 for the case of a Þnite cylinder.  The Þnite

cylinder case was presented as an extension of the inÞnite cylinder case, which has been

shown to produce results which compare very well with exact PWS calculations for the

inÞnite solid cylinder5 and inÞnite hollow cylindrical shell (Chapter 6).  For the case of

backscattering by a Þnite solid cylinder, Gipson47 has made comparisons with experiments

which also validate the ray theory results.  In Ref. [5], Marston only presented the result of

the meridional ray amplitude for the case of a Þnite cylinder tilted exactly at the leaky

wave coupling angle .  Recently Marston extended this result to include angles

adjacent to this tilt angle.  A discussion of that derivation may be found in Ref. [47] and is

also summarized below.

With prior knowledge of the real and imaginary parts of the contributing meridional

wavenumber on the shell, which may be approximated with the corresponding value for a

γ θl=
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ßat plate, the ray theory approach developed by Marston allows one to determine the peak

amplitude of the backscattered meridional ray enhancement when the Þnite cylinder is

tilted at the leaky wave coupling angle .  The far-Þeld backscattering form function for

the meridional ray feature alone is given by 

, (7.2)(a)-(c)

where the usual deÞnition of the form function, Eq. (1.1), in spherical coordinates has been

used,

(7.3)(a)-(c)

and

. (7.4)(a)-(c)

Recall that

. (7.5)(a)-(c)

In these expressions  and  are the real and imaginary parts of the meridional ray

wavenumber, , a is the cylinder outer radius, , and  is the

reßection coefÞcient of the leaky wave at the cylinder truncation.  The phase term  is

due to an overall background phase present in the convolution formulation used to

develop the ray theory (see Appendices A and B of Ref. [6]).  Equation (7.2) is applicable to

a solid cylinder or a hollow cylindrical shell where the leaky wave radiates energy only

into the surrounding ßuid.  It is possible to modify this result for a ßuid-Þlled cylindrical shell
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in some cases.  If the shell is thin enough that the leaky wave approximately radiates

energy symmetrically into each ßuid, and the interior and exterior ßuids are identical or

nearly so, then it is a good approximation to simply replace  by  to account for

the additional energy loss (see Sect. I of Ref. [4]).  This also assumes that the wavenumbers

for the doubly ßuid-loaded problem have been found and used.  As will be seen later, this

is not always an easy task and sometimes it is necessary to make approximations using a

single-sided ßuid-loaded result.

The extension of the result in Eq. (7.2) to the case of angles  is by no means trivial.

The end result for the solid cylinder or hollow cylindrical shell is

, (7.6)(a)-(c)

where

. (7.7)(a)-(c)

One may see that by setting , then  and Eq. (7.6) reduces to Eq. (7.2) as it

should in that limit.  The integral in Eq. (7.6) is easily evaluated numerically in a high-level

programming language such as Mathematica¨.

Another approach one may take in calculating the meridional ray contribution to the

far-Þeld backscattered pressure is to derive an analytical solution in terms of an

approximate PWS solution.  This was done Þrst in Ref. [8] by Kaduchak and written later in

more detail by the author in Chapter 5.  The idea is to rewrite the PWS solution for the

inÞnite cylindrical shell in terms of eigenfunctions which are periodic over the length of a

ÒÞniteÓ section of the inÞnite cylinder.  The periodic constraint chosen was for a

circumferentially quasi Òsimply supportedÓ cylinder.  The solution for the displacement

amplitude over the Þnite cylinder section by itself is then used as the source in the

Kirchhoff diffraction integral to obtain an approximate far-Þeld scattered pressure due to a
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Þnite cylinder.  This method has been shown in Chapters 2 and 5 to produce good results

for thick and thin walled shells, except at tilt angles nearing end-on incidence.  One

consequence of using this method of solution, which is important for the following

comparisons, is that the choice of periodic constraint assumed (i.e. quasi Òsimply

supportedÓ) automatically demands the leaky wave reßection coefÞcient at the cylinder

end be unimodular, i.e. for our purposes .  This can be shown in the following way.

The quasi Òsimply supportedÓ boundary condition (BC) requires that the radial and

azimuthal component of the displacement vector, as well as the axial stress resultant,

vanish at the cylinder truncation.  In terms of the notation of Chapter 5 one requires that

. (7.8)(a)-(c)

Consider the intensity vector for simple isotropic elastic Þelds83,84

. (7.9)(a)-(c)

Here  is the displacement vector and  is the stress dyadic.  The intensity vector is often

called the structural intensity.  Its rigorous deÞnition is the density of energy ßow in the

elastic Þeld and has units of power per unit area.  It is analogous to the Poynting vector in

electromagnetics77.  The time averaged power ßow through the end of the cylindrical shell

(surface S with area element dA) is then given by

. (7.10)(a)-(c)

Because  must vanish on the end surfaces S, by Eqs. (7.8)(a)-(c), the total

time averaged power ßow through each end vanishes identically.  This then forces any

leaky wave reßection coefÞcient to be unimodular, provided conversion of energy to other

modes is not allowed.  This fact may be a deÞciency in modeling actual Þnite cylinders,
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where energy transmission through the end as well as mode conversion occur, but in the

present case simpliÞes the comparison with the ray theory result, in which the reßection

coefÞcient is an independent parameter.

7.4 Meridional Ray Amplitudes: Empty and 

Water-Filled Shell

The two theoretical results just discussed will now be compared with the experimental

results.  Two cases are examined: 1) air-Þlled shell with endcaps, and 2) water-Þlled shell

with no endcaps.  In both instances the shell examined is Shell A, which the reader will

recall is the thinner of the two shells, having h/a = 0.076.  For a hollow (i.e. air-Þlled) steel

shell the sound transmitted into the interior does not play a major role in the far-Þeld

scattered pressure for the conditions of this experiment.  The measured backscattering in

the region near the a0 meridional ray enhancement is fairly simple in that only one large

peak is observed in both angle and time, as in Fig. 7.1, with smaller multiple peaks at lesser

tilt angles.  These smaller peaks, which incidentally are much larger for the thicker Shell B,

are attributable to contributions from end-reßected helical waves of the a0 (see Figs. 2.7 and

2.8 starting on page 27).  When the shell is ßooded with water (and the endcaps removed)

the sound transmitted into the interior does play a major role in the backscattering.  As was

observed by Kaduchak1 and Dodd2 one Þnds several large enhancement signals delayed in

time with respect to each other.  This effect is manifest as multiple ßashes or images

delayed in time with respect to the initial meridional ray signal in the high-resolution sonar

images of the Þnite cylinder examined in those investigations.  In the present work these

multiple enhancements are easily observed as individual wavepackets [see Figs. 7.16 (a) -

7.20 (a)].  This effect was attributed to multiple internal reßections through the interior

ßuid column in the meridional plane combined with the usual meridional ray reßection

from the truncation and subsequent reradiation into the backscattering direction.  This

process will be discussed later.
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Enhancement as a Function of Cylinder Aspect Angle

Figures 7.2 and 7.3 show experimental and theoretical results of an angle scan through

the meridional ray peak for tone burst backscattering by an air-Þlled shell for six different

frequencies.  Once again, Section 7.A describes the method used to extract and normalize

the scattering amplitudes (solid points) from the measured time series (e.g. from Fig. 7.1).

Note that the amplitude scale is in terms of the form function with respect to a sphere

having the same radius as the cylinder.  This normalization has the signiÞcance that the

form function for scattering from a rigid immovable sphere at high frequencies

asymptotically approaches .  The solid curve in each Þgure is the ray theory result

from Eq. (7.6).  The leaky wave parameters used in the ray theory, , are from the n

= 0 solution of the dispersion relation for an inÞnite hollow cylindrical shell, Eq. (4.11) for

 respectively, which correspond to the axial propagation of the

a0 leaky Lamb-type wave (see Figs. 4.3 and 4.9 and Table 7.1).  Note, as in Chapter 6 wave

Table 7.1: a0 meridional wavenumbers

Air-filled shell: n = 0 infinite cylindrical shell solutions;
 values in parentheses are for a plate with fluid loading on one side

f (kHz) ka kla αa α/kl αL µ

300 24.2542 20.2455
(20.3296)

0.7185
(0.7020)

0.0355 8.6 1.09

400 32.3390 24.4347
(24.4968)

0.5576
(0.5453)

0.0228 6.7 0.64

500 40.4237 28.4322
(28.4797)

0.4890
(0.4784)

0.0172 5.9 0.48

600 48.5085 32.3315
(32.3696)

0.4528
(0.4430)

0.0140 5.4 0.40

700 56.5932 36.1759
(36.2075)

0.4323
(0.4227)

0.0119 5.2 0.36

800 64.6780 39.9902
(40.0171)

0.4206
(0.4111)

0.0105 5.0 0.33

Shell A: c=1.4805, cL=5.675, cS=3.141 (mm/µs); a=19.05mm, h/a=0.076; L/a=12.0

f 1≈

kl  and α

Re kza[ ] a⁄  and Im kza[ ] a⁄
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parameters for a ßat plate of the same material and thickness are a very good

approximation in this frequency range (see Table 7.1 for a comparison).  The dashed curve

in each Þgure corresponds to the approximate PWS solution of Chapter 5.  One change has

been made to the physical system in this case.  The ray theory assumes the Þnite cylinder

can be modeled as semi-inÞnite, i.e. leaky waves on the cylinder are too heavily damped

for multiple lengthwise traversals to contribute to the leaky wave surface amplitude at any

given point on the shell.  This assumption is valid for , where the reader will recall

that  is the spatial damping rate (i.e. the surface wave amplitude falls off generally as

).  In the present case  ranges from about 8.6 at 300 kHz to 5.0 at 800 kHz.  While

large, these levels of damping may allow for some Þnite length effects to persist in the PWS

calculation.  To eliminate these possible perturbations to the scattering response and aid in

the comparison with the ray theory, the length aspect ratio of the cylinder was increased to

L/a = 40, from L/a = 12, in the PWS calculations.  As an aside, the other assumption of the

ray theory, , is satisÞed here where  ranges from 0.036 at 300 kHz to 0.011 at

800 kHz.  See Table 7.1 for the actual wavenumbers used and the values of importance to

the ray theory.

The agreement in amplitude and angular width between the ray theory and the

approximate PWS calculation is excellent for each case, except at the lowest frequency

where the tilt angles are large and the latter calculation begins to break down.  In each case

the ray theory always predicts slightly lower amplitudes than the PWS calculation.  The

cause of the small oscillations in the PWS calculation, which decrease in amplitude as the

frequency increases, is not well understood.  They are however related to klL.  These

oscillations do not appear to be present in the experimentally obtained amplitudes. 

α L 1»

α

e αz– αL

α kl⁄ 1« α kl⁄
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The experimental values (solid points), conÞrm the general amplitude and angular

width of the enhancement peak over the range of frequencies shown and clearly support

the theoretical approaches.  It should be mentioned that because of the relatively simple

automated approach used to extract these amplitudes from the sequence of time series

records, which is discussed in an appendix, Section 7.A, only a small angular region,

approximately 1° centered about the peak amplitude, may be considered to accurately

represent steady state scattering amplitudes.  For the remainder of the points, clearly the

majority, the amplitudes should be regarded as close approximations of the true steady

state values since it is possible that transients were included in the time-window averaging

algorithm used to extract the steady state amplitude.  For the small region around the peak

Table 7.2: a0 meridional wavenumbers

Water-filled shell: n = 0 infinite cylindrical shell solutions*;
values in parentheses are for a plate with fluid loading on both sides

f (kHz) ka kla* αa* α/kl αL µ

400 32.3718 24.4348
(24.4844)

1.1127
(1.0833)

0.0455 13.4 1.28

500 40.4647 28.4322
(28.4769)

0.9760
(0.9534)

0.0343 11.7 0.96

600 48.5577 32.3315 0.9040 0.0280 10.8 0.81

650 52.6042 34.2588
(34.2927)

0.8807
(0.8611)

0.0257 10.6 0.76

712 57.6218 36.6349 0.8555 0.0234 10.3 0.70

752 60.8590 38.1620
(38.1905)

0.8492
(0.8303)

0.0223 10.2 0.68

820 66.3622 40.7509 0.8367 0.0205 10.0 0.65

850 68.7900 41.8910
(41.9154)

0.8328
(0.8139)

0.0199 10.0 0.64

Shell A: c=1.479, cL=5.675, cS=3.141 (mm/µs); a=19.05mm, h/a=0.076; L/a=12.0

*Since the damping cannot be computed directly for the fluid-filled infinite cylindrical shell these values are fo
the hollow case with the damping multiplied by 2 to account for “symmetric” radiation into the interior fluid; the
plate results have two sided fluid loading.
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angle the extent of this window was checked manually to ensure that only the steady state

region was included.  The relative absence of scatter in the data points suggests that the

transients are small compared with the steady state meridional ray amplitude.  Examples

of this steady state behavior during the tone burst may be seen in Section 7.5.

Comments will now be made concerning the apparent overall angular shift of the

measured enhancement curve away from the theoretical curves towards lesser angles.

First of all the angular shift apparent in Figs. 7.2 and 7.3 is actually quite small.  It is only

because a relatively narrow angular region is plotted that the shift is so apparent.  When

viewed on the global scale it is almost indistinguishable [e.g. see Fig. 7.7(c)].  Nonetheless a

few comments are appropriate.  This shift cannot be attributed to a systematic mechanical

error in the angular positioning system.  Nor can it be a result of the small geometric angle

errors which result from the necessary Þnite source/receiver-to-target distance.  It may be

shown that this latter shift can in some cases be relatively large, on the order of γ = 2° for

the separation distances present in these experiments.  However, the presence of this effect,

which is discussed by Gipson in Ref. [47], was greatly reduced by shifting the source/

receiver laterally with respect to the line containing the centers of the source/receiver and

cylinder in order to coincide with the far cylinder end.  The required shift distance may be

calculated through simple geometry with knowledge of the expected peak enhancement

angle, which is predicted by the ray and PWS theories.  It is simply , where

 and  (see Section 3.B).  It is often

sufÞcient to simply replace rc by L/2 and δ+ by 90°-γ whereby .  It is

important to note that this shift is allowable in the present case since the backscattering

mechanism of interest is conÞned to a small region of the cylinder near its far end (see

Chapter 3).  It is possible to account for a fair portion of the observable difference between

the measured and calculated peaks with the uncertainty in which the material parameters

of the shell are known.  Standard off the shelf heat treated stainless steel tube stock (SS304,

seamless) was used for the shell.  Since highly accurate longitudinal and shear wave speeds

could not be found for this material, non-speciÞc published values were used.  No attempt

was made to measure the sound speeds by direct means due to the small wall thickness of

dshift r c δ+sin=

rc L 2⁄( )2 a2+= δ+ 90° γ–( ) a L 2⁄( )⁄( )1–tan+=

dshift L 2⁄( ) γcos≈
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the specimens.  A similar discrepancy between an exact theory and a measured quantity

which may be attributed to insufÞcient knowledge of the material parameters may be seen

in Fig. A.14 on page 299.  It is the authorÕs opinion that the experimental results do not

provide evidence which suggests the ray theory or PWS theory need correction for the

present cases.

Figures 7.5 and 7.6 show results similar to Figs. 7.2 and 7.3 but are for a water-Þlled shell

(also Shell A) with no endcaps.  The analysis in this case is more complex than for the air-

Þlled shell and will be discussed in the following section.  For now it is sufÞcient to note

that the same analysis technique applies to the water-Þlled shell and the results are quite

similar.  There are no PWS results shown for this case since that approach cannot be

applied directly to the water-Þlled shell without endcaps.  In the PWS formulation there is

no way to account for the loss of energy from the interior ßuid through the open ends of

the cylindrical shell.  As a result in the PWS formulation total reßection of compressional

waves within the interior ßuid occurs at the ends and the backscattering response is very

complicated for nearly all tilt angles.      
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FIG. 7.2   Backscattered (monostatic) meridional ray enhancement of the a0 for an air-Þlled

Þnite cylindrical shell (Shell A in this case).  Solid points are experimental values obtained

with tone burst measurements; the continuous line is the result of the ray formulation using

the inÞnite cylinder wavenumbers kla and αa from Table 7.1; and, the dashed line is the result

of the approximate PWS solution described in Chapter 5.  Both the ray and PWS solutions use

.B 1=

b
a
--- 0.924=
208



γ (degrees)

800 kHz

700 kHz

600 kHz | fmeas |

| fls | (ray)

| f | (PWS)

35 40

1
2
3
4
5
6
7
8
9

10
11

35 40

1
2
3
4
5
6
7
8
9

10

40 45

1

2

3

4

5

6

7

8

9

| f |

| f |

| f |

FIG. 7.3   Backscattered (monostatic) meridional ray enhancement of the a0 for an air-Þlled

Þnite cylindrical shell (Shell A in this case).  Solid points are experimental values obtained

with tone burst measurements; the continuous line is the result of the ray formulation using

the inÞnite cylinder wavenumbers kla and αa from Table 7.1; and, the dashed line is the result

of the approximate PWS solution described in Chapter 5.  Both the ray and PWS solutions use
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FIG. 7.4  Three dimensional representation of the backscattered meridional ray enhancements

for an air-Þlled Þnite cylindrical shell.  From Figs. 7.2 and 7.3 for Shell A.
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FIG. 7.5   Backscattered (monostatic) meridional ray enhancement of the a0 for a water-Þlled

Þnite cylindrical shell (Shell A in this case) having no endcaps.  Solid points are experimental

values obtained with tone burst measurements; the continuous line is the result of the ray

formulation (with )  using the inÞnite cylinder wavenumbers kla and αa from Table 7.2.B 1=
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FIG. 7.6   Backscattered (monostatic) meridional ray enhancement of the a0 for a water-Þlled

Þnite cylindrical shell (Shell A in this case) having no endcaps.  Solid points are experimental

values obtained with tone burst measurements; the continuous line is the result of the ray

formulation (with )  using the inÞnite cylinder wavenumbers kla and αa from Table 7.2.B 1=
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Peak Enhancement as a Function of Frequency

The preceding Þgures have shown how the a0 meridional ray enhancement behaves as

a function of tilt angle for a number of Þxed frequencies.  These enhancement curves

compare well with the theoretical approaches in both location, amplitude and angular

width.  One aspect of these Þgures not previously discussed is the dependence of peak

amplitude on frequency.  It is important to study this aspect of the behavior because certain

phenomena are expected to limit the meridional (and helical) ray enhancement as the

frequency is changed, such as mode conversion of the a0 to other Lamb waves upon

reßection from the end or losses at the ends due to the presence of the endcaps and

radiation into the ßuid.

For the case of a meridional Rayleigh wave on a tilted solid cylinder this comparison is

rather straightforward due to the fact that the Rayleigh wave in this case is nearly

dispersionless at mid to high frequencies.  This has the consequence that the meridional

Rayleigh wave enhancement occurs at nearly a Þxed tilt angle [recall Eq. (7.1)].  The

frequency dependence of the enhancement is then fairly direct.  Marston5,7 compared the

exact PWS solution with his ray theory for the case of backscattering in the meridional

plane, , from an inÞnite solid cylinder and found in both cases a smooth monotonic

increase in the form function with increasing frequency (see Figs. 3 and 4 Ref. [5] and Fig. 2

of Ref. [7]).  For the present case of an air-Þlled or water-Þlled cylindrical shell the

particular enhancement mechanism studied is of course due to the a0 leaky Lamb wave,

which is highly dispersive in the frequency range of interest.  As can be seen from Figs. 7.2

- 7.6, or simply Figs. 6.2 and 6.3, the angular location of the enhancement changes

considerably with frequency, making a comparison with theory much more complex.  At

high frequencies it does approach a relatively constant angle, but this is beyond the range

of frequencies presently studied.

An indication of the frequency behavior may Þrst be gathered from the preceding

Þgures, Figs. 7.2 - 7.6.  One may notice a general increase in amplitude as the frequency

increases.  Furthermore, the amplitudes for the water-Þlled shell are considerably less than

those for the air-Þlled shell.  To address these frequency related issues in a more systematic

γ θl=
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way another set of experiments was performed for both air and water-Þlled shells in which

the peak enhancement was localized over a broader range of frequencies and compared

with the predictions of the ray theory.  In this way the frequency dependence of the

enhancements becomes clearer and differences between the two cases are more apparent.

Using the same set-up just described the tilt angle of the cylinder was adjusted

manually, together with the frequency, to localize the peak of the meridional ray

enhancement in frequency-angle space.  With reference to Fig. 2.4 or Fig. 3.3 the preferred

method of localization may be chosen.  At high frequencies, where the angle of peak

enhancement is slowly varying, the tilt angle was adjusted to maximize the meridional ray

signal in the time domain.  At lower frequencies the condition for peak enhancement is best

found by varying the tone burst frequency for a given angle.  Once the peak was found a

time record was averaged over many bursts to increase signal-to-noise and then

downloaded to a computer and analyzed.  The approximately steady state amplitude of the

meridional ray enhancement was extracted from the time record as before and normalized.

Figure 7.7 shows the results of these experiments for the air-Þlled shell while Fig. 7.8

shows the similar results for the water-Þlled shell.  Plotted in (a) in each Þgure are the

measured (solid points) and calculated (open circles) form function with the same

normalization as before (i.e. with respect to a rigid sphere).  The calculated form function is

from the ray theory, again using wave parameters from the n = 0 solutions of the inÞnite

hollow cylindrical shell dispersion relation, examples of which are found in Tables 7.1 and

7.2.  These use .  The continuous solid curve is the same ray theory result only the

wave parameters are taken from the doubly ßuid-loaded ßat plate problem.  The a0 leaky

Lamb wave roots for the doubly ßuid-loaded inÞnite elastic plate problem (Ref. [65]) were

evaluated for a plate having the same material and thickness as the shell.  The damping

rate for the air-Þlled shell case only, Fig. 7.7, was approximated by multiplying the plate

damping rate by 1/2.  For the doubly ßuid-loaded plate, the leaky wave radiates energy

into the ßuid on both sides of the plate.  When the ßuid loading is light, as for the case of

steel in water, it is often a good approximation to reduce the damping by a factor of 2 to

account for the drop in radiation into the ßuid on only one side of a one-sided ßuid-loaded
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FIG. 7.7   Air-Þlled shell results (Shell A, b/a = 0.924, with endcaps) for the a0 meridional ray

from tone burst measurements.  (a) Form function magnitude at the peak enhancement angle

as a function of frequency.  The solid points are the experimental data; open circles are the

results of the ray approximation using wavenumber values from the a0, n = 0 dispersion

curves from Chapter 4 (see Fig. 4.3) for an empty inÞnite cylindrical shell with exterior ßuid

loading (some of which are in Table 7.1).  The dashed line is the same ray approximation with

 using wavenumbers for a plate ßuid loaded on both sides (again see Table 7.1), and

the solid curve is this dashed line using the approximate reßection coefÞcient in (b).  (b)

Inferred and approximate calculated reßection coefÞcient for reßection of the a0 leaky Lamb

wave off the cylinder truncation.  The solid line corresponds to the approximate calculation of

Chapter 8 for a semi-inÞnite free plate of the same thickness as the shell.  (c) Peak enhancement

angle.  The solid line is for a plate ßuid loaded on both sides.
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FIG. 7.8   Water-Þlled shell results (Shell A, b/a = 0.924, without endcaps) for the a0 meridional

ray from tone burst measurements.  (a) Form function magnitude at the peak enhancement

angle as a function of frequency.  The solid points are the experimental data; open circles are

the results of the ray approximation using wavenumber values from the a0, n = 0 dispersion

curves from Chapter 4 (see Fig. 4.3) for an empty inÞnite cylindrical shell with exterior ßuid

loading with twice the damping (see the text for an explanation; some wavenumber values may

be found in Table 7.2).  The dashed line is the same ray approximation with  using

wavenumbers for a plate ßuid loaded on both sides (again see Table 7.2), and the solid curve is

this dashed line using the approximate reßection coefÞcient in (b).  (b) Inferred and

approximate calculated reßection coefÞcient for reßection of the a0 leaky Lamb wave off the

cylinder truncation.  The solid line corresponds to the approximate calculation of Chapter 8

for a semi-inÞnite free plate of the same thickness as the shell.  (c) Peak enhancement angle.

The solid line is for a plate ßuid loaded on both sides.
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plate.  [An alternative would be to evaluate the roots of the asymmetrically ßuid loaded

plate; however, the dispersion relation for the like-ßuid doubly ßuid-loaded plate problem

is far simpler and easier to work with.  The differences between the two cases is not

signiÞcant for the shell thickness and frequency ranges examined here (see Tables 7.1 and

7.2).]  The dashed curve in Figs. 7.7 and 7.8 is the solid curve multiplied by an approximate

leaky wave end-reßection amplitude coefÞcient for the a0, which is shown as the solid

curve in (b).  This amplitude reßection coefÞcient, |B|, is calculated by satisfying the

boundary conditions at the edge of a semi-inÞnite free plate by an approximation discussed

in Chapter 8.  The solid points in (b) are an inferred reßection coefÞcient based on the ray

theory.  Simply put, the measured form function, in which the actual leaky wave reßection

process is unknown, is divided by the corresponding ray theory form function for which

.  This yields an estimate of the actual leaky wave reßection coefÞcient based on

the ray theory.  It is not intended to be a serious estimate of the reßection coefÞcient, which

could be measured by other accurate means, at least for a plate.  Rather it is intended to

give the reader a better feeling for the physical behavior of the system.  In the last panel of

these Þgures is shown a comparison of the location in frequency-angle space of the peak

enhancement.  The solid points are again the experimental data while the open circles are

locations determined by phase matching considerations [Eq. (7.1)] using the calculated

dispersion curve for an inÞnite cylindrical shell.  The latter are nearly indistinguishable on

the scale plotted.  The solid curve is the corresponding calculated position from phase

matching to the a0 leaky Lamb wave on the doubly ßuid-loaded plate.

In general one may identify characteristics of the a0 meridional ray enhancement from

these Þgures.  As the frequency increases the peak meridional ray amplitude increases

smoothly for both the air-Þlled and water-Þlled shells just as in the case for the solid

cylinder.  The amplitudes for the air-Þlled shell are approximately 2 to 3 times those of the

water-Þlled shell.  This can be understood by examining the behavior of the ray theory for

the two cases.  In the present case, as has been discussed, it is a good approximation to

account for the interior ßuid by multiplying the damping rate by 2 and dividing the form

function expression by 2.  An idea of the difference in form function magnitude in the two
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cases may then be made by considering the quantity

(7.11)(a)-(c)

where α and µ are evaluated for the hollow case.  Figure 7.9 shows a plot of  over a

range of values of µ containing the present experiments.  Higher frequencies correspond to

lower values of µ in this case.  The fairly large decrease in form function magnitude in the

water-Þlled case can thus be seen to be mostly due to the additional radiation of the

meridional leaky wave into the ßuid interior, which leads to the factor  in Eq. (7.11).

The solid points are experimentally obtained approximate values for several of the data

points found in Figs. 7.7 and 7.8.  These are plotted with the use of Eq. (7.4) for µ, where for
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FIG. 7.9   Relative form function magnitude of the meridional ray enhancement in the

meridional plane ( ) between a ßuid-Þlled and hollow Þnite cylindrical shell.  The

dashed line is .  The points are experimentally obtained approximate values from

Figs. 7.7 and 7.8.  In general when the ßuid loading is light and the dispersion curves for leaky

waves on the ßuid-Þlled shell can be obtained from the hollow shell dispersion curves, the

meridional ray form function for the hollow shell is 2.8 to 3.6 times as great as for the ßuid-

Þlled shell.  This reduction for the ßuid-Þlled shell is mostly due to the additional radiation

into the ßuid interior, which gives rise to the  factor in Eq. (7.11).
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each frequency the coupling angle θl is the experimentally determined coupling angle [Fig.

7.7 (c)] in the hollow shell case and the damping αa is taken to be the theoretical damping

value for the hollow inÞnite cylindrical shell (some values of which are found in Table 7.1).

Recall that αa is a rather slowly varying function in this frequency range [see the curve for

Im[kza], which in the present notation is αa, for the n = 0 curve of the a0 above ka ≈ 30 in

Fig. 4.3].

Two other interesting features of Figs. 7.7 and 7.8 are apparent.  The Þrst is the general

roll-off of the measured form function at about 500 kHz for the air-Þlled case.  There is a

similar roll-off in the water-Þlled case at about 700 kHz but it is not nearly as pronounced.

The difference in the two cases is more apparent in the inferred reßection coefÞcient plots.

In each case the ray theory prediction of the form function is slightly less than the

measured values at low frequencies, which leads to the un-physical interpretation that

.  Ignoring this behavior for the moment, if the ray theory approach applies equally

well to the water-Þlled case as it does to the air-Þlled case, one would expect the inferred

reßection coefÞcient to remain unchanged between the two cases.  This is not the case as

the air-Þlled shell results drop to lower values more quickly.  The explanation for this

behavior is most likely that the endcaps are inßuencing the leaky wave end-reßection

mechanics.  Recall that there are Plexiglasª endcaps present for the air-Þlled shell and no

endcaps at all for the water-Þlled shell.  Even though the contact between the endcap and

shell is mostly a ÒsoftÓ boundary which uses an O-ring, it must still be degrading the end-

reßection of the a0 meridional wave.  An additional set of experiments for a water-Þlled

shell with endcaps could be performed to deÞnitively resolve this issue.  Since a thorough

understanding of the leaky wave end-reßection process is not a principal purpose of this

dissertation, no further experiments were carried out.  The second interesting feature of

these Þgures is the very sharp drop in the measured form function (and reßection

coefÞcient) at 1 MHz.  This feature is apparently not affected by the interior ßuid loading.

The clue to its origin comes from the dispersion curves of Figs. 4.3 and 4.4 on page 101.  At

about , or MHz, the a1 leaky Lamb wave becomes propagating.  It is

known that when a Lamb wave on a free plate reßects from a truncation it may be partially
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converted to a different mode of the same symmetry85-90.  When all the other modes are

non-propagating it is mostly the same mode which is reßected from the end.  However, if

another mode is propagating then a large portion of the energy can be reßected in this

other mode.  This will be discussed in greater detail in Chapter 8.  This same sharp drop in

the reßection coefÞcient is mirrored, albeit at a slightly higher frequency, in the

approximate calculated reßection coefÞcient (solid curve).  Simply put, this frequency

marks the onset of the a1 mode at which the magnitude of the reßection coefÞcient for the

a0 drops due to mode conversion from the a0 into the a1.  The reßected a1 mode does not

radiate into the direction of the receiver, due to itÕs higher phase velocity [see Fig. 4.3 (a)],

and is not picked up in the measured backscattering.  At the present time a direct

measurement of the mode converted reßected a1 in a bistatic scattering experiment has not

been attempted.

Before leaving the discussion of the frequency dependence of the meridional ray

amplitudes, the author would like to point out the overall large amplitude of the measured

and predicted responses.  Even with the presence of limiting factors, such as the effect of

the endcap and mode conversion, the measured responses are up to 6 times (3 times) the

magnitude of a rigid sphere having the same radius as the air-Þlled (water-Þlled)

cylindrical shell.  Other high frequency enhancement mechanisms such as the coincidence

frequency31,27,28 and backwards wave34,91 enhancements for spherical shells can yield

amplitudes of 3 to 6 times the reßection from a rigid sphere.  But the present meridional ray

enhancement is for reßection from a tilted cylindrical shell where by far the majority of the

reßected energy propagates away in the specular direction away from a receiver in the

backscattering direction.  Even if the cylindrical shell is capped with hemispherical end

pieces the present results suggest the meridional ray enhancement may be as large or larger

than the specular reßection from the leading endcap.

It is possible the apparent shift in frequency between the measured and calculated

locations of the a1 mode threshold effect (i.e. the sharp drop in Figs. 7.7 and 7.8) may be

due to insufÞcient knowledge of the actual thickness of the shell.  The frequency for the a1

mode threshold is sensitive to the shell wall thickness.
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7.5 Meridional Ray Enhancements in the Time 

Domain

Besides investigating the meridional ray enhancement in the angle and frequency

domains it is useful to go back and look at the time domain responses directly.  This should

give the reader a better feel for how the response directly manifests itself in scattering

records and how it might be observed in other real systems. 

The approximate PWS solution has already proven itself to be quite useful in modeling

the scattering in the frequency-angle domain.  It would also be useful to examine its

predictions in the time-angle domain and make comparisons with the measured time

records.  The synthesis of the theoretical time signal from the complex valued form

function is a fairly straightforward procedure27,20.  To obtain the impulse response one

need only evaluate an inverse FFT of the complex form function.  For a speciÞc incident

pulse or burst one must Þrst multiply the complex form function by the spectrum of the

incident signal and then perform the inverse FFT.  Section 7.B brießy discusses some

important matters to consider in implementing the synthesis algorithm.  Figure 7.10 shows

a sample of the synthesized backscattering for a 20 cycle tone burst by Shell A (air-Þlled).

The center frequency of the tone burst is 400 kHz (ka = 32.28) which places it just at the

upper limit of the form function response seen in Fig. 2.4 on page 17.  At this frequency the

principal response is the a0 meridional ray enhancement at about .  Other smaller

contributions will be present from the helical s0 and T0 waves as well.  As can be seen by

comparing this Þgure with the experimental results of Fig. 7.1 the synthesized response

displays the majority of the important scattering features.  The comparison cannot be made

directly in this case as the excitation frequency for the experimental Þgure is 620 kHz as

opposed to 400 kHz for the synthesis.  The synthesis was performed at a lesser frequency

because of time considerations involved in evaluating the partial wave series at high

frequencies.  Even in Fig. 7.10 the form function is undersampled (i.e. the sampling rate in

ka is too coarse).  This undersampling results in the Òwrap-aroundÓ signals which are

clearly evident in the Þgure at the non-causal early times.  In the following computations
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FIG. 7.10   Synthesized tone burst backscattering time series for Shell A (20 cycle square

envelope burst having a center frequency of 400 kHz or ka = 32.28).  Dynamic range shown is

55 dB with respect to the maximum response at broadside incidence.  The corresponding form

function is sampled at ∆ka = 0.05 and has a maximum frequency of ka = 45.  A raised cosine

window was applied over the region of 38 < ka < 45 to smooth the transition to f = 0 at ka = 45.

The unphysical early time arrivals (before the nearest corner reßection tB) which carry on in to

the scattering regions are due to wrap-around effects in the inverse Fourier transform used to

calculate this Þgure.  Sampling the form function at smaller intervals (∆ka < 0.05) would

improve the synthesis in this regard; doing so, however, makes for very lengthy computation

times.
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performed at a single tilt angle the sampling was increased and sufÞcient to avoid this

effect for the most part.

Now that the global aspect of the scattering response has been conÞrmed in the

theoretical synthesis it will be investigated how the theory and experiment compare at

speciÞc tilt angles.  The feature studied here is the same a0 meridional ray enhancement

examined in the preceding sections and in most cases the frequencies and tilt angles are the

same as in the angle scan Þgures, Figs. 7.2 - 7.6.    

Air-Filled Cylindrical Shell

The Þrst case to be considered is the air-Þlled shell with endcaps.  The scattering in this

case is relatively simple: the meridional ray enhancement is manifest as a single large

feature well isolated in time from other effects.  Figures 7.11 through 7.15 show the

experimental and theoretical time records for Þve successive frequencies.  The top Þgure is

the experimental trace while the bottom Þgure is the synthesized trace.  The respective

frequencies and tilt angles are given.  The time reference in these Þgures is the timing of the

specular reßection at broadside incidence.  In the experimental Þgures this time reference

was obtained with a backscattering measurement at broadside incidence.  For the

synthesized time records it is relevant to note that the approximate PWS form function

from Chapter 5 [Eq. (5.42)], from which these time records are synthesized, is time

referenced to the center of the cylinder.  Multiplying the form function by a phase factor

( ) shifts the time reference to the outer radius a in the backscattering direction and

thus references the backscattering time records to the broadside specular reßection.

Typically the phase factor actually used was increased to ( ) so that all reßections off

the tilted cylinder would be present in the synthesized scattering records (i.e. the

reßections off the front corners of the tilted cylinder near times tA and tD).  This explains

why the specular reßection at broadside in Fig. 7.10 is located at

µs.  In Figs. 7.11 - 7.20 this additional time advance was taken

into account.  Panels (a) and (b) in Figs. 7.11 - 7.15 (and Figs. 7.16 - 7.20) each display 200 µs

e i2 ka( )–

e i33 ka( )–

t 33 2–( ) a c⁄( ) 399= =
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FIG. 7.11   (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (air-Þlled with endcaps) at γ = 48.0° (see Fig. 7.2) for a 20 cycle tone burst having a center

frequency of 400 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.1 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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FIG. 7.12   (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (air-Þlled with endcaps) at γ = 44.1° (see Fig. 7.2) for a 20 cycle tone burst having a center

frequency of 500 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.1 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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FIG. 7.13  (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (air-Þlled with endcaps) at γ = 41.45° (see Fig. 7.3) for a 20 cycle tone burst having a

center frequency of 600 kHz, and (b) approximate PWS synthesized time series for the same

shell and incident burst at , where kla is the inÞnite

cylindrical shell wavenumber taken from Table 7.1 for this frequency.  The time scale is

referenced to the specular reßection from the cylinder at broadside incidence.
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FIG. 7.14  (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (air-Þlled with endcaps) at γ = 39.5° (see Fig. 7.3) for a 20 cycle tone burst having a center

frequency of 700 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.1 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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FIG. 7.15   (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (air-Þlled with endcaps) at γ = 38.0° (see Fig. 7.3) for a 20 cycle tone burst having a center

frequency of 800 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.1 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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of the backscattered response.  Recall that the peak enhancement angles do not exactly

coincide.  As a result it was necessary to evaluate the theoretical response at a slightly

larger angle.  This angle corresponds to the leaky wave coupling angle associated with the

calculated axial wavenumber in Table 7.1 (or Table 7.2 for the water-Þlled shell).  The

amplitude scale has been normalized to the specular reßection amplitude for a rigid sphere

as before.  The comparison in each case is quite good.  The initial ramp-up time is

comparable as is the apparent lack of ringing after the pulse ends.  At the lowest frequency,

400 kHz, the amplitudes and pulse shapes are very similar.  At higher frequencies the

experimental records drop in amplitude with respect to the theory, just as was seen earlier.

The theory traces also do not appear to reach a steady state amplitude for the higher

frequencies, for 20 cycle bursts, as the experimental traces do.

Water-Þlled Cylindrical Shell

Now consider the case of a water-Þlled shell without endcaps.  Figures 7.16 through

7.20 show the experimental and theoretical time records for Þve frequencies similar to Figs.

7.11 - 7.15.  The time records in this case display multiple pulses.  This behavior was

observed and explained by Kaduchak1 and Dodd2 in high-frequency high-resolution sonar

images of a freely-ßooded Þnite cylindrical shell.  Several individual pulses were observed

with a similar interval separating each one.  The explanation for this phenomena is as

follows.  The Þrst pulse is the standard meridional ray feature which is present for air-Þlled

shells.  The delayed pulses also belong to the meridional ray class but are described by ray

paths which have traversed the interior of the shell in the meridional plane an even

number of times before radiating in the backscattering direction (of course after reßecting

from the shell truncation).  Figure 7.21 shows several possible ray paths which may

describe these contributions.  By simple ray tracing it is possible to determine the relative

timing of each contribution.  With regard to the timing of the initial meridional ray return,

the subsequent pulses are predicted to arrive at intervals of     
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FIG. 7.16   (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (water-Þlled with no endcaps) at γ = 47.7° (see Fig. 7.5) for a 20 cycle tone burst having a

center frequency of 400 kHz, and (b) approximate PWS synthesized time series for the same

shell and incident burst at , where kla is the inÞnite

cylindrical shell wavenumber taken from Table 7.2 for this frequency.  The time scale is

referenced to the specular reßection from the cylinder at broadside incidence.
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FIG. 7.17  (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (water-Þlled with no endcaps) at γ = 43.8° (see Fig. 7.5) for a 20 cycle tone burst having a

center frequency of 500 kHz, and (b) approximate PWS synthesized time series for the same

shell and incident burst at , where kla is the inÞnite

cylindrical shell wavenumber taken from Table 7.2 for this frequency.  The time scale is

referenced to the specular reßection from the cylinder at broadside incidence.
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FIG. 7.18  (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (water-Þlled with no endcaps) at γ = 40.85° for a 20 cycle tone burst having a center

frequency of 600 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.2 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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FIG. 7.19  (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (water-Þlled with no endcaps) at γ = 39.0° for a 20 cycle tone burst having a center

frequency of 712 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.2 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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FIG. 7.20   (a) Measured backscattering time series at the peak meridional ray amplitude for

Shell A (water-Þlled with no endcaps) at γ = 37.65° for a 20 cycle tone burst having a center

frequency of 820 kHz, and (b) approximate PWS synthesized time series for the same shell and

incident burst at , where kla is the inÞnite cylindrical shell

wavenumber taken from Table 7.2 for this frequency.  The time scale is referenced to the

specular reßection from the cylinder at broadside incidence.
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. (7.12)(a)-(c)

Recall that the cylinder is tilted at .  For the present shell this reduces to

µs.  Expression (7.12) neglects the small corrections associated with the

transmission of a ray through the shell wall.  Also it does not include any timing advances

which may be due to the propagation of the leaky wave on the shell, where the group

velocity often signiÞcantly exceeds the phase velocity.  These corrections are expected to be

small for the shells and frequencies under consideration.  Recall that the leaky waves

studied have rather large levels of radiation damping.  This limits the lengths over which

the meridional ray may propagate on the shell before reßecting from the truncation and

still contribute signiÞcantly to the far-Þeld backscattering.  For the present purposes Eq.

(7.12) is sufÞcient.  It correctly predicts the timing of the additional pulses. 

If attention is focused only on the original meridional ray return (the earliest feature

evident in Figs. 7.16 - 7.20) the analysis follows just as for the air-Þlled shell.  The amplitude

and shape of the pulse match very well between the experiment and the theory.

A few observational comments are in order concerning the later returns in the

measured time series.  In almost all cases the second return is larger than the Þrst

meridional ray return (sometimes observed to be twice in amplitude).  Also the angle at

∆t
1
c
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  4a θlcos=

γ θl≈

∆t 51.4 θlcos( )=

θl
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to to+∆t to+∆t

FIG. 7.21   Several meridional ray paths for the water-Þlled shell which explain the multiple

contributions observed in the time records after the initial meridional ray return (left).
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which it is maximized was always observed to be slightly greater than the angle of the peak

for the Þrst meridional ray return.  It may be possible to model these later meridional ray

returns with the same ray formalism discussed in Section 7.3.  That approach, however, is

not directly applicable to these cases.  Among other factors, the wavefront curvature for the

backwards directed outgoing wave would be different for later returns (which have

traversed the inside diameter of the shell) than for the Þrst reßected meridional ray.

7.6 Scattering Spectrum for a Water-Filled Shell

It is in order at this point to ask what effect these multiple scattering returns have on

the spectrum of the scattering of an impulse from the water-Þlled shell.  For an air-Þlled

shell the spectrum displays a smooth enhancement peak in both angle and frequency for

the meridional ray enhancement.  With tone burst illumination this spectral feature is

manifest as a single time-domain wavepacket.  Figures 7.16 through 7.20 show that for a

water-Þlled shell there are multiple wavepackets.  How are these then manifest in the

spectrum?  To answer this question another experiment was carried out.  Instead of the

previous narrowband backscattering which would allow a determination of the spectrum

essentially at a single frequency, a broadband technique was applied to measure the

spectrum over a broad range of frequencies in a single experiment.  The impulse methods

used in Chapters 2 and 3 are suitable for measurements up to about 500 kHz.  However, to

investigate the response over an even broader range of frequencies a chirped burst

technique was used.  Using the PVDF sheet source a long duration frequency modulated

(FM) signal was generated.  The modulation used in this case was a simple linear function.

Details of this experiment are discussed in Section A.6 of Appendix A.  The usable

frequency range in this experiment was 300 kHz to 1 MHz. 

Figure 7.22 shows the results of these measurements for the shell investigated in the

preceding sections.  It shows the normalized backscattering spectrum for a water-Þlled

shell (Shell A) in the vicinity of the a0 meridional ray enhancement (compare with Figs.

2.4(b) on page 17 and 3.3 on page 47).  The a0 meridional ray enhancement, which was
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FIG. 7.22   Backscattered spectral magnitude normalized to the spectrum of the incident burst,

for a ßuid-Þlled Shell A.  This data was acquired with the sheet source driven with a long

duration linear FM chirp burst.  The amplitude scale is in decibels with respect to the

maximum measured value in the region shown.  Vertical lines are the result of the

normalization factor used in those regions.
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previously smooth for an air-Þlled shell, is now composed of multiple regularly spaced

peaks.  Already possessing knowledge of the time domain scattering response these peaks

may simply be interpreted as the interference pattern resulting from the interference of the

internally reßected signals with the Þrst meridional ray signal.  This however does not

explain the spacing of the interference pattern.  A greater understanding may be gained by

directly analyzing the dispersion curves for the doubly ßuid-loaded cylindrical shell.

Recall that in earlier sections the wavenumber values for the water-Þlled shell were

approximated with those for an empty shell but with twice the damping; or they were

approximated with values calculated for a doubly ßuid-loaded plate.  The reason for this

substitution will now be explained.  The isolation of a single root of the dispersion relation

for the a0 meridional (n = 0) Lamb wave on an inÞnite cylindrical shell with ßuid on the

interior is simply not possible.  By adding a ßuid to the interior of the shell the normal

modes of the elastic shell structure (discussed in Chapter 4 for an empty shell) are coupled

to the modes of the enclosed ßuid column.  The resulting structureÑßuid/shell/ßuidÑ

must be regarded as a whole and the corresponding modes of vibration found accordingly.

These modes differ signiÞcantly from the modes of a hollow shell.  A root Þnding analysis

was carried out in a similar manner to that found in Chapter 4 for Shell A but with water

on the interior (as well as on the exterior) in the region near the a0 meridional ray.  Figure

7.23 shows the results of those calculations for n = 0 which are plotted in terms of the axial

phase velocity and damping.  The dark solid curves in (a) are the roots which were found

for the water-Þlled shell case while the short dashed curve is the result for the empty shell

case.  In both cases there is still a ßuid on the exterior of the shell.  The a0 meridional ray

curve splits into an inÞnite number of curves which cross the a0 curve for the empty shell.

At each of these crossing points the damping displays a peak.  To understand this behavior

consider the normal modes of the ßuid column by itself.  For a shell having a large

impedance with respect to the ßuid the boundary between the shell and the inner ßuid

may be considered to be a ÒhardÓ surface.  What we wish to model, then, is a ßuid column

bounded by a rigid cylindrical boundary at a radius of the inner surface of the shell (at

radius b).  This is a straightforward problem (e.g. see Ref. [92] and Section 11.12 of Ref. [9])
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FIG. 7.23   (a) Phase velocity and (b) damping curves (solid lines) for the water-Þlled

cylindrical shell in the vicinity of the a0 meridional wave.  The short dashed curve is for the a0

meridional wave (n = 0) on an empty shell.  The medium and long dashed curves are for a

ßuid column having a rigid boundary at a radius of b, for n = 0 and n = 1, respectively.  They

also correspond to the case of a soft boundary at b for n = 1 and n = 0, respectively.
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and the dispersion relation is given by 

(7.13)(a)-(c)

where

. (7.14)(a)-(c)

Here the  is the mth root of the relation

, (7.15)(a)-(c)

where n is the azimuthal mode number and the prime denotes the derivative with respect

to the argument.  Equation (7.15) results from the boundary condition at b which requires

that the radial component of the velocity vanish at the rigid surface.  For a soft boundary

the pressure must vanish; in this case  is determined from the condition 

. (7.16)(a)-(c)

The Þrst several dispersion curves for the rigid boundary n = 0, 1 are plotted as the medium

and long dashed curves in Fig. 7.23(a).

The n = 0 modes of the water-Þlled shell can thus be seen to be a ÒcombinationÓ of the n

= 0 mode of the elastic shell and the n = 0 modes of the interior ßuid column.  When not

close to the empty shell modes, the curves tend toward the ßuid column modes.  It is

highly instructive to look at these curves in frequency-angle space together with the

measured spectrum.  To plot this recall that coupling of the incident sound wave with a

mode of the shell occurs when the axial phase matching condition is met
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or

cl

c
---- 

 
z

ka
kza
-------=

kza ka( )2 a
b
--- 

  2

x′nm( )2–=

x′nm

Jn′ ξ( ) 0=

x′nm

Jn ξ( ) 0=

γsin 1
cl c⁄( )z

-----------------=
244



. (7.18)(a)-(c)

Figure 7.24 shows an overlay of these curves (n = 0 and n = 1 for the ßuid column with a

rigid boundary) on Fig. 7.22.  The minima of the measured meridional ray enhancement

peak occur very nearly at the intercepts of the empty shell a0 curve with each of the n = 0

and n = 1 ßuid column curves.  One may recall that in previous experimental results there

has been present an angular shift between the measured enhancements and theoretical

predictions.  It is a valid question to ask whether or not this shift could be present in Figs.

7.22 and 7.24, and as a result render the above conclusion false.  Namely that this shift

could have moved the measured maxima of the meridional ray enhancement off of perhaps

the intercepts of the aforementioned curves to their present locations, thus completely

reversing the above conclusion.  In answering this question three points are noteworthy.

The Þrst is that the small angle errors (see Section 7.4) which are due to the Þnite separation

distance of the target and receiver have been minimized in two ways.  First, the receiver

transducer has been shifted laterally as discussed previously and in Section 7.A.  It is

therefore not expected that signiÞcant small angle errors due to the receiver position are

present over the relatively small angle scan (20°) represented in Figs. 7.22 and 7.24.

Secondly, the sheet source has been used in this experiment to generate the incident plane

wave.  As a result the angle errors associated with the incident wave are expected to be

very small.  The second point is that the angle shifts evident in Figs. 7.2 - 7.6, 7.7 (c) and 7.8

(c) are very likely due to the fact that accurate sound speeds are not known for the elastic

material making up the shell.  The coupling angles for leaky waves on the shell are

dependent on the leaky wave phase velocities, which in turn are sensitive to the material

parameters.  Finally the third point supporting the original conclusion is that the phase

velocity curves for the ßuid column are only dependent on the radius of the boundary, the

frequency, and the material parameters of the ßuid itself.  Since these are all well known

quantities the locations in frequency-angle space of the coupling curves for the ßuid

column (Fig. 7.24) should be accurate on the scale plotted.  And these curves are found to

intersect the a0 meridional ray enhancement in regions of backscattering spectral minima.
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FIG. 7.24   Same as Fig. 7.22  but with overlaid lines corresponding to a matching of the

incident axial wavenumber to the axial wavenumber of propagating modes of a ßuid cavity

having a rigid boundary at ρ = b (dashed white lines, n = 0; dot dashed white lines, n = 1) and

the coupling curve of the a0 meridional ray for an empty shell (in water) of the same material

and parameters (solid white line).
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It is interesting to note also that the modes for a ßuid column with a soft boundary are

nearly identical to those for the rigid boundary but with the integer n displaced by 1.  The n

= 0 curves for the rigid boundary are identical to the n = 1 curves for the soft boundary;

while the n = 1 curves for the rigid boundary are nearly equivalent to the n = 0 curves for

the soft boundary, at high frequencies.  This is a consequence of the recursion relations for

Bessel functions and Eqs. (7.15) and (7.16).

In summary then, it should be apparent that the coincidence of the a0 mode of a hollow

cylindrical shell with the modes of a ßuid column, having either a rigid or soft boundary,

describes the locations of destructive interference between the Þrst meridional signal and

the later meridional signals which have undergone internal reßections.

7.7 Discussion

The experiments described in this Chapter show that the meridional ray enhancement

for a Þnite cylindrical shell, both air and water-Þlled, can be signiÞcant in amplitude.

Measured backscattering levels commonly exceed the magnitude of backscattering by a

rigid sphere by 3 to 6 times.  An extension of a ray theory by Marston correctly predicts the

meridional ray enhancement peak width and amplitude in regions where the leaky wave

reßection coefÞcient from the cylinder end is nearly unimodular.  The ray theory includes

this reßection coefÞcient as a variable parameter so it is possible to use independent

calculations of the reßection coefÞcient to aid in the modeling of the meridional ray

enhancement behavior.  The ray theory predictions also compare very well with a

previously developed approximate PWS solution.

The behavior of the meridional ray enhancement has been examined as a function of

frequency.  It is shown that the general amplitude of the enhancement increases smoothly

with frequency and is limited by the frequency dependence of the leaky wave reßection

coefÞcient.  One observed limitation is the mode conversion of the incident leaky Lamb

wave into another Lamb mode.  This produces a considerable and abrupt drop in the

measured meridional ray amplitude.
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The approximate PWS calculation permitted a comparison of the meridional ray

enhancement feature in the time domain.  Measured and synthesized time records compare

very well at low frequencies where the leaky wave reßection coefÞcient appears to be

nearly unimodular.  Comparisons in the time domain for water-Þlled shells conÞrmed the

multiple enhancement features observed by other authors.  These multiple backscattering

returns may be explained with simple ray tracing.  A measurement of the backscattering

spectrum for the water-Þlled shell suggests that the response may also be explained by a

complicated coupling of a hollow shell with a ßuid column.

7.A Method of Extracting and Normalizing the 

Scattering Amplitude from Measured Tone 

Burst Time Series

This appendix describes the method used in Þnding the meridional ray amplitude from

the experimental time traces for the plots in Figs. 7.2 - 7.6, 7.7 and 7.8.  Take Fig. 7.12 (a) as a

typical example of the meridional ray enhancement feature in the time domain.  We wish to

establish an algorithm to isolate and evaluate the amplitude of the steady state region of

the signal.  To do this a relatively simple algorithm was written in Matlab¨.  Figure 7.25

shows a sample output of this algorithm for the same data found in Fig. 7.12(a).  This Þgure

shows the raw output from the preampliÞer.  The time window deÞned by t1 and t2 is set

manually to contain only the steady-state portion of the signal.  A Hilbert transform is

applied to the time record to extract the analytic signal and envelope.  (Section B.2 on

page 308 of Appendix B describes the Hilbert transform and itÕs use.)  This envelope is then

averaged over the selected window to obtain the amplitude of the signal in volts.

This amplitude is for backscattering from the tilted cylindrical shell at a particular

distance and for a particular driving amplitude of the source.  In order to obtain a useful

quantity, i.e. the form function, this result must be normalized.  The approach taken here is

to perform another nearly identical measurement for backscattering by a solid sphere and
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use that result to normalize the cylinder backscattering results.  A solid stainless steel

(SS440) sphere of nominal radius 34.925 mm was placed at approximately the same

location as the cylinder and a measurement made at the same frequency, driving voltage

and water temperature.  The above procedure for Þnding the steady-state amplitude was

used and an amplitude found.  With knowledge of these amplitudes, as well as the

distances from the source to the cylinder and the sphere, the form function may be found

with the following relation93,59,47
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FIG. 7.25   Example of the method used to extract the steady-state backscattered meridional

ray amplitude from the experimental time series.  This is a close up of Fig. 7.12 which has not

been normalized.  The dashed line is the envelope calculated by applying the Hilbert

transform to the measured time record.  The vertical lines mark the beginning and end of the

time window over which the envelope is averaged to obtain the amplitude.  These points are

set manually and in this case are t1 = 58 µs, ∆t = 10 µs.  The time record is sampled at 0.05 µs

which makes this a 300 point average.  The resulting amplitude is calculated to be 0.1866 volts.
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(7.19)(a)-(c)

where Acyl and Asph are the measured amplitudes, Rcyl and Rsph  are the separation

distances of the source and target, and acyl and asph  are the characteristic radii of the

cylinder and sphere, respectively.  The term fsph is the form function of the solid sphere at

this frequency.  The frequencies of interest here correspond to values of kasph  ranging from

44 to 180.  These are sufÞciently high frequencies that the amplitude of the specular

reßection from the stainless steel sphere is approximately equal to the amplitude for

specular reßection from an ideal rigid sphere, which is unity, the only difference being an

impedance factor.  The relevant specular part of the form function for the stainless steel

sphere is then approximated by

(7.20)(a)-(c)

where  and  are the density and longitudinal sound speed of the steel sphere and  

and  are the density and sound speed of the surrounding ßuid.  The material constants

used for the SS440 sphere are: g/cm3 and mm/µs.  Using these

values in addition to the material constants for water found in Table 2.2 on page 16 one

Þnds .  The values used for the separation distances, Rcyl and Rsph, are taken to

be the closest rear corner of the cylindrical shell and the center of the sphere, respectively.

The former choice was made because it has been shown that the measured meridional ray

feature is primarily due to the reradiation of the leaky wave very near to the closest rear

corner of the shell (see Chapter 3 and Fig. 3.20 on page 81).  That distance may be

calculated by simple geometry (Fig. 7.26) to be

, (7.21)(a)-(c)

where  is the distance from the source to the center of the cylinder, L is the length of

the cylinder and γ is the cylinder tilt angle.  Recall that for Shell A the length aspect ratio is
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 and mm.  Figure 7.26 shows the geometry of the

experimental setup.  Typical separation distances during the experiments were  and

 of about 2.4 meters. 

The method outlined above was used in calculating the values found in Figs. 7.7 and

7.8.  These were all found manually.  For the angle scans of Figs. 7.2 - 7.6, however, this

process would be quite tedious considering there are as many as 100 data points per plot.

The process outlined above was automated to perform the amplitude analysis on multiple

Þles all at once.  The only addition to the method described above has to do with the

selection of the time window over which the envelope of the signal is averaged.  A single

time window is chosen manually for the time record  estimated to be nearest to the peak

signal.  This sets t1 and t2 - t1.  The timing to the closest rear corner, call it tB, is calculated

L acyl⁄( ) 12= acyl 19.05=

R′cyl

Rsph

source/receiver

closest rear
corner

γ

RcylR'cyl

L/2

2a

FIG. 7.26   Geometry of scattering setup (not to scale).  Notice that the source has been shifted

laterally to be in line with the closest rear corner of the cylinder.
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using Eq. (7.21) and tB = 2Rcyl/c..  From this window all the other windows for the other

time records at different tilt angles are determined as follows.  Every window has the same

length.  ItÕs location is then determined by the Þxed delay time t1 - tB.  Recall that tB is a

function of the cylinder tilt angle.  Any angular errors associated with the Þnite source-to-

target distance are ignored.  Since the angles over which the data were taken were small,

about 10° in width, the associated distance corrections would be small.  In a descriptive

manner the above windowing method can be described in the following sense.  The black

arc (delayed one) overlaid on Fig. 7.1 corresponds to the time tB.  The Þxed window used is

then just delayed (either forward or backward) from this arc by the Þxed amount, t1 - tB.

The exact window length and delay were selected through trial and error to give results

which best locate the steady state regions of the signal.  With reference to Fig. 7.1 it can be

seen that where the meridional ray feature is present it essentially follows the curve of tB.

However the helical wave responses found at lesser angles follow a different curve.  As

such the minor peaks visible on the left sides of Figs. 7.2 - 7.6, corresponding to the

response of end reßected a0 helical waves, should not be regarded as accurate

measurements of the steady-state backscattered helical wave amplitudes.  Another

algorithm would need to be written to follow these contributions.

7.B Time Series Synthesis

This appendix describes minor details associated with the synthesis of the time series

records from the complex form function.  As was mentioned earlier the method used to

perform the synthesis is found in Ref. [27].  There is one minor difference, however.  In the

method described in that paper the form function of length N/2 is appended with N/2

zeros to increase the Þle length to N+1.  The resulting inverse discrete Fourier transform

(DFT) results in a time series record of length N.  By appending zeros to the spectrum (form

function) the actual time series, which is necessarily real, must be understood as the real

part of the resulting complex transform.  The approach taken in this chapter is perhaps

more rigorous in that the inverse transform results in a purely real time series.  (In actuality
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the imaginary part is zero to within machine precision.)  This slightly different method of

computing the inverse transform of a complex quantity which results in a real quantity is

found in detail in Ref. [94].  In summary, instead of appending zeros one folds the spectrum

about the midpoint (N/2) to obtain the additional points.  The real part of the spectrum is

folded directly while the imaginary part is folded and ßipped in sign.  This yields a

function whose real part is even and imaginary part is odd.  The inverse transform is then

real.
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8

Effect of the Cylinder Truncation on 

Lamb Wave Propagation: Reßection 

and Mode Conversion 8

8.1 Introduction

The meridional ray enhancement process for backscattering by ßuid-loaded Þnite

cylindrical objects is completely dependent on the existence of a reßection of the

meridional leaky wave from some location on the meridian of the cylinder.  As a

consequence the magnitude of the backscattered enhancement is therefore closely related

to the speciÞc reßection mechanics of the geometry under consideration.  It should be clear,

then, that an understanding of the reßection process itself is crucial in interpreting

experimental and theoretical results of backscattering enhancements.  The purpose of this

chapter is to brießy investigate the leaky wave reßection process, for the case of a

meridional leaky Lamb wave reßecting from the truncation of a Þnite cylindrical shell, only
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insofar as is necessary to understand the experimental and theoretical results of the

previous chapters.  Since a numerical value of the magnitude of the reßection coefÞcient is

required for the ray theory presented in Chapter 7 an approximate calculation is carried

out.  A full investigation (i.e. a rigorous numerical approach), however, is beyond the scope

of the present dissertation and is not attempted here.

With regard to the results of previous chapters it is desired to understand several

aspects of the leaky wave reßection process.  First, what is the nature of the reßection for

the case of no ßuid loading?  Secondly, to what extent does ßuid loading at the end

inßuence the reßection?  Thirdly, what role does mode conversion play?

As was discussed in Chapter 5 the Þnite elastic cylinder geometry does not lend itself to

an exact analytical solution.  This rules out the possibility of evaluating in an exact sense

the scattering of a speciÞed incident leaky wave by the cylinder end.  To some extent the

problem may be simpliÞed by examining the limiting case of a ßat plate.  It has already

been shown that in the present study, at frequencies above 100 - 200 kHz, the leaky waves

of interest on the cylindrical shell are not signiÞcantly inßuenced by the curvature of the

shell and propagate as if they were on a ßat plate.  This simpliÞcation is used in Section 8.3

to calculate an approximate reßection coefÞcient.  Because it is presently only desired to

obtain an estimate of the meridional leaky wave reßection coefÞcient at the ßat

perpendicular end of a Þnite cylinder, the only case considered will be for reßection at

normal (axial) incidence.  An estimate of the reßection coefÞcient for helical leaky waves

for the same situation must necessarily include oblique incidence.  The present method

could be modiÞed directly to include this case.

8.2 Summary of Observed Backscattering 

Features

In Chapter 7 experiments were carried out to determine the amplitude of the

backscattered meridional ray enhancement for the a0 leaky Lamb wave.  In Figs. 7.2 - 7.6
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the amplitude of the enhancement was measured as a function of cylinder tilt angle.  For

low frequencies the agreement in overall amplitude between the experimental results and

the ray theory was very good.  For the water-Þlled shell there was good agreement at

higher frequencies.  In these comparisons the ray theory assumed that the leaky wave

reßection coefÞcient was unimodular.  This already suggests that the reßection of the leaky

wave at these frequencies is fairly efÞcient.  Additionally the general relative drop in the

experimental amplitudes with respect to the ray theory is suggestive of a greater

transmission of energy through the end into the ßuid as the frequency is increased.  Figures

7.7 and 7.8, which use the results of the present chapter, show this effect more succinctly.

Compared to a reßection coefÞcient of unity, the apparent reßection coefÞcient decreases

almost linearly with increasing frequency.  Overall the reßection coefÞcient values are quite

highÑwell above 50% reßection at frequencies below 1 MHz for this shell (stainless steel

with a wall thickness of about 1.5 mm).

An obvious feature of these Þgures is the abrupt drop in measured amplitude at 1

MHz.  This feature was identiÞed as resulting from the mode conversion of the a0 into the

a1 upon reßection from the end.  This frequency is very close to the frequency at which the

a1 mode transitions from a primarily evanescent mode (lower frequencies) to a mostly

propagating mode at higher frequencies (see Fig. 4.3 on page 101).  The frequency which

marks this transition is termed the a1 mode threshold frequency.  The a1 mode propagates

at a higher phase velocity and by the trace velocity matching condition for radiation it does

not radiate energy toward the receiver.  The reasons why it is possible for mode conversion

to occur have not yet been discussed and will be examined in the next section.  This mode

conversion effect was not observed before in the many investigations of the backscattering

spectrum because it occurs at a higher frequency than the experimental arrangement

allowed for.  The frequency range where the phenomena occurs may be decreased by

considering a shell having a thicker wall.  To explore the broad picture of the backscattering

near the mode threshold experiments were carried out for Shell B at frequencies higher

than the previous investigation (e.g. Chapter 2).  This involved making measurements with

the PVDF sheet source driven with a chirped burst, as was the case for Figs. 7.22 and 7.24
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(see also Section A.6 of Appendix A).  Figure 8.1(a) shows the results of that measurement

for Shell B (air-Þlled with endcaps).  The backscattered spectral magnitude is shown over a

broad range of frequencies and cylinder tilt angles.  Broadside incidence corresponds to γ =

0°.  The plot in (b) can be used to identify some of the important features.  It shows the

frequency-angle locations where trace velocity matching may occur for various meridional

waves on an inÞnite hollow cylindrical shell.  These curves are calculated as in Chapter 4

using the full three-dimensional elasticity equations.  The meridional a0 is easily identiÞed

in the spectrum as the lower limiting ridge of high backscatter.  Also visible are what

appear to be portions of the meridional s0 and a1 or s1.  The a0 ridge displays a prominent

drop in amplitude at about 440 kHz.  It nearly disappears before gradually rising in

amplitude from 550 kHz to 1 MHz.  This drop occurs, as in the previous case for Shell A,

right at the mode threshold for the a1 meridional wave.  This mode threshold may be seen

in (b) where the coupling loci for the a1 is cutoff at broadside incidence at ≈ 460 kHz.  To

further investigate this Òspectral holeÓ an approximate PWS calculation was performed for

this same spectral region using the theoretical development of Chapter 5.  Figure 8.2(a)

shows the calculated backscattering spectrum for this case (Shell B, air-Þlled).  Many of the

same features are evident in this Þgure as in the measured response.  The important

difference, however, is that the approximate PWS calculation shows no sign of a drop in the

magnitude of the a0 meridional ray enhancement (or in the s0 for that matter).  This

suggests that the approximate PWS calculation, as it is formulated in Chapter 5, may not

include the effects of mode conversion for leaky waves reßected off the shell truncation.

To better understand the nature of the reßection from the end of the cylindrical shell,

the following section describes an approximate method of calculating the reßection

coefÞcient at the end of a semi-inÞnite plate.  The discussion should prove useful in

understanding the reßection process.    
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FIG. 8.1  (a) Measured backscattered spectral magnitude for Shell B (air-Þlled with endcaps) at

high frequencies normalized with the spectrum of the incident burst.  The sheet source was

driven with a 270 µs long duration linear FM chirp burst for this measurement.  The

amplitude scale is set such that 0 dB corresponds to the maximum measured response at γ = 0°

(broadside incidence) over the frequency range shown.  (b) Calculated meridional ray

coupling loci for various wave types (see Chapter 4).  The Òspectral holeÓ evident in the a0

meridional ray enhancement near 500 kHz is due to mode conversion into the a1 mode at

frequencies near and above the mode threshold of the a1 ( kHz or ).

Enhancements due to the s0, a1 and s1 meridional rays are also evident.  There appears to be a

mode threshold effect on the s0 meridional ray also when the s1 becomes largely propagating

near kHz, or .  This color raster image represents the sampling intervals: ∆ka =

0.089 (∆f = 1000 Hz), ∆γ = 0.3°.

f 460≈ ka 41.2≈

f 780≈ ka 70≈
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FIG. 8.2  (a) Calculated backscattered spectral magnitude for Shell B (empty) from the

approximate PWS formulation of Chapter 5.  The amplitude scale is set such that 0 dB

corresponds to the maximum response at γ = 0° (broadside incidence).  (b) Calculated

meridional ray coupling loci for various wave types (see Chapter 4).  Compare (a) with Fig.

8.1(a).  No mode conversion effects appear to be present in this approximate PWS calculation.

This color raster image represents the sampling intervals: ∆ka = 0.05 (∆f = 561 Hz), ∆γ =

0.3125°.
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8.3 Reßection of an Antisymmetric Lamb Wave 

from the End of a Semi-InÞnite Plate

Ideally the problem one wishes to solve in this case is that of the reßection of a mode of

a cylindrical shell from a perpendicular ßat end.  The shell is considered to be ßuid-loaded

on the exterior and on the end and perhaps as well on the interior.  When the mode is

selected carefully, this most closely resembles the process of the meridional ray reßection

from the end of a truncated cylindrical shell.  It is conceivable that a solution to this

problem may be carried out using a numerical scheme such as the Þnite-difference time-

domain method (FDTD)100-102.  Such a solution would allow for the determination of the

reßection coefÞcient as well as the transmission coefÞcient and the radiation pattern into

the ßuid at the end.  Some results for this type of solution for the geometry of a ßat plate

can be found in Refs. [98] and [99].  A treatment of the problem in this fashion is beyond the

scope of the present dissertation.  Instead, a simpler approach is taken.  First the curvature

of the cylindrical shell is neglected and the problem is reduced to Þnding the reßection of a

Lamb wave at the end of a semi-inÞnite plate.  To simplify the problem even further only

the case of a plate in vacuum is considered.  This signiÞcantly reduces the complexity of the

boundary condition at the end.

There have been several investigations of the reßection of a Lamb wave at the end of a

semi-inÞnite free plate85-88,95-97.  In the low frequency regime works by Kane103 and Lu104

are signiÞcant.  In addition there have been some investigations for a semi-inÞnite ßuid-

loaded plate89,90.  These investigations typically employ a variational principle or satisfy the

boundary conditions at the end in a least squares sense.  One approach, Ref. [90], is based

on mode theory.  An unsuccessful attempt was made by the author to implement the

results of that paper to calculate the reßection coefÞcient.  It appears the authors of that

paper failed to deÞne one variable; subsequently, due to the complexity of their derivation

it was not attempted to re-derive their results.  Incidentally there have been investigations

of the reßection of waves from the end of solid cylindrical rods as well105,106.  The

approach taken here in calculating the reßection coefÞcient is found in Refs. [95] and [96]
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and is based on a least squares solution. 

Approximate Solution for a Semi-InÞnite Plate in Vacuum

Consider the end region of a semi-inÞnite isotropic elastic plate.  Figure 8.3 shows a

schematic of the plate and a deÞnition of the coordinate system used.  A single propagating

Lamb mode of the plate is excited at some point at  and travels undisturbed

toward the end at .  Since the plate is not ßuid loaded (and assumed to be composed

of a lossless elastic material) the term propagating strictly implies that the associated

wavenumber is purely real.  It is easy to see then that the Lamb wave experiences no

damping as it propagates towards the end.  In the spirit of solutions employing Saint-

VenantÕs Principle we assume that the incident Lamb wave disturbance may be

represented by the exact solution for a Lamb wave propagating in an inÞnite thick plate
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e
, c
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s
, µ=G,
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FIG. 8.3   Cross section of the end of a semi-inÞnite plate and the associated coordinate system.

A single Lamb mode is incident from the -x direction which reßects off the truncation.  The

amplitude of the reßected wave depends on whether other modes of the same symmetry are

propagating or evanescent.

x ∞–=
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right up to the plate end.  At distances far from the end, relative to the plate thickness, this is

of course a valid assumption.  Severe limitations on this assumption exist, however, even at

large distances when the frequency is near or above the Þrst mode cutoff85.  Near the edge

the stress distribution of the incident wave may vary considerably from its inÞnite plate

counterpart.  However, since no rigorous solutions for the semi-inÞnite or Þnite plate have

been derived, even for stress free boundaries, we proceed with the above assumption.

Considering the incident Lamb wave, with a known stress and displacement distribution,

one simply wishes to satisfy the required boundary conditions at the end (zero stress) with

an as yet unknown set of reßected Lamb waves.  The method which will be used is a

numerical scheme wherein the boundary conditions are satisÞed at discrete locations on

the end.  The problem may be reduced to solving a severely over-determined set of linear

equations.  The method of least squared error will be utilized in solving these equations.

Before proceeding, Þrst examine the properties of Lamb waves in an inÞnite plate.

The solution for Lamb waves in thick plates is not difÞcult to Þnd in the literature (see

Ref. [107] or e.g. [85], [86], or [40]).  The solution for the antisymmetric case is given here

without proof.  The transcendental equation describing the allowed free antisymmetric

vibrations of a plate of half thickness h, which relates the angular frequency  to the in-

plane wavenumber , is

. (8.1)

Here  and .  For traveling waves with the x and t

dependence noted below the stresses within the plate are

(8.2)(a),(b)

and likewise the displacements are

ω

ξ

ν2 ξ2–( )2 ηh( ) νh( )cossin 4ηνξ 2 ηh( ) νh( )sincos+ 0=

ν ω cS⁄( )2 ξ2–= η ω cL⁄( )2 ξ2–=

Txx A
G
νh( )sin

------------------- ξ2 ν2 2η2–+( ) νh( ) ηz( ) ν2 ξ2–( ) νz( ) ηh( )sinsin–sinsin–[ ]=

Tzx A2i
Gηξ

νh( )cos
-------------------- νh( )cos ηz( ) νz( )cos ηh( )cos–cos[ ],=
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(8.3)(a),(b)

where G is the shear modulus and A is an arbitrary amplitude coefÞcient which is set equal

to unity to simplify the notation in the discussion which follows.  It should be understood

that in each case an x and t dependence of  is assumed and is not shown.  A

standard convention40 for the equations of motion and stress-displacement relations

(HookeÕs Law) in terms of potentials has been used to derive these equations.  A discussion

of the frequency spectrum of the solutions of the dispersion relation, Eq. (8.1), may be

found in Ref. [108], for example.  One feature of the solutions of Eq. (8.1) which is at present

important is that for a given frequency there are at least two purely real roots (describing

the nature of the in-plane wavenumber ), a Þnite number of purely imaginary roots and

an inÞnite number of roots described by a complex wavenumber.

From Eqs. (8.2) it is possible to understand one very important fact about the nature of

the reßection at a stress free boundary: the reßected wave cannot be composed entirely of the

same mode as the incident wave.  For the purposes of this discussion, the sign of the real part

of the in-plane wavenumber, , typically determines the direction of propagation of the

Lamb wave.  The incident wavenumber is positive whereas the reßected propagating

waves have negative wavenumbers.  For a given Lamb wave the in-plane component of

stress, Txx, is even in the wavenumber  whereas the tangential component, Tzx, is odd in

.  This means that the tangential component of stress (Tzx) undergoes a change in sign

upon reßection while the in-plane component (Txx) does not.  (Note that Torvik85

apparently stated this just backwards87.)  Due to this fact a simple sum of an incident and

reßected Lamb wave of the same mode cannot satisfy the boundary condition of zero

normal and tangential stress simultaneously at the end.  There must be the possibility, then,

of an inÞnite number of reßected modes, most of which are complex and necessarily decay

exponentially as .  Most of the previous investigations the author has located

assume that all the reßected waves correspond to solutions of the appropriate characteristic

equation for the homogeneous problem, here Eq. (8.1).  Certainly for time-harmonic,

ux A
i

2ξ νh( )sin
-------------------------- 2ξ2 νh( ) ηz( ) ν2 ξ2–( ) νz( ) ηh( )sinsin+sinsin[ ]=

uz A
η

ν2 ξ2–( ) νh( )cos
------------------------------------------ νh( )cos ηz( ) 2ξ2 νz( )cos ηh( )cos+cos[ ],=

ei ξx ωt–( )

ξ

ξ

ξ

ξ

x ∞–→
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continuous wave excitation (which is assumed here) this seems appropriate.  However, for

any form of pulse or transient excitation a rigorous analysis must necessarily account for

bulk wave reßection.  Briers, et al90, in their mode theory formulation of the problem for a

semi-inÞnite ßuid-loaded plate included the possibility of reßected bulk waves.  It may

also be shown, either by simple considerations or by using mode theory formalism90, that

an incident mode of one symmetry may not give rise to reßected modes of the opposite

symmetry.  This means that one only needs consider the modes of a single symmetry.  This

is the case only when there is no ßuid-loading or symmetric ßuid loading.  For the case of

one-sided ßuid-loading the characteristic equation for Lamb waves may not be separated

into symmetric and antisymmetric parts and as a result no solutions exist which have a

distinct symmetry in a rigorous sense.  For this case it would be necessary to consider all

mode solutions. 

Since there is the possibility of exciting an inÞnite number of reßected modes it is

necessary for the subsequent calculation to carry out a search for all relevant roots (i.e.

modes) of Eq. (8.1) for the speciÞc plate considered.  Such a search was carried out for the

two plates (labelled A and B) corresponding in thickness and material parameters to Shells

A and B, respectively (see Tables 2.1 and 2.2).  An example of the lowest antisymmetric

roots found for Plate B (the thicker of the two plates) is shown in Fig. 8.4 (the curves for

Plate A are simply shifted as a whole in frequency and wavenumber as discussed at the

bottom of Table 8.1 and are not shown).  The results are plotted in the familiar form of

dispersion curves, which locate the root in the complex  plane for a given frequency.  For

the case of symmetric Lamb waves a similar plot may be found in the work of Mindlin108,

for example.  Only those complex modes having a negative imaginary part are shown;

these are the only ones which are physical for the reßected waves.  The complementary

modes having a positive imaginary part grow exponentially as  and are excluded.

All the complex modes appear in what have been called ÒconjugateÓ pairs, pairs of

evanescant modes, or pairs of waves having complex conjugate wavenumbers85,87,95,105.

This refers to the fact that the complex solutions of Eq. (8.1) appear in pairs such that 

and  are solutions [or  and ].  (Here the asterisk denotes the complex

ξ

x ∞–→

ξ2

ξ2( )∗ ξ ξ∗( )–
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conjugate.  In fact there are 2 pairs of complex roots: two solutions which have negative

imaginary parts of the wavenumber and two which have positive imaginary parts.)  A

good discussion of this character of the more general Rayleigh-Lamb equation can be

found in the text by Miklowitz79.  Only 2 of the complex pairs are shown in Fig. 8.4;

however, another 8 pairs were located and used in the subsequent calculation.  (A sample

of the actual wavenumbers for several frequencies can be found in Table 8.1.)  These all

have increasingly large negative imaginary parts of the wavenumber  and as will be seen

are less important in satisfying the boundary conditions.  It is these pairs of complex modes

which have been used to explain the phenomena of Òedge resonanceÓ in plates, disks and

rods. 
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FIG. 8.4   Dispersion curves for the Þrst several antisymmetric modes of an inÞnite free plate.

The thickness of this plate (Plate B) corresponds to the wall thickness of Shell B.  Modes

labelled with a minus sign either propagate towards  (where wavenumber is purely

real) or decay as  (when complex).  The asterisk indicates the ÒconjugateÓ mode.  The

gray curve indicates the incident mode.  The mode threshold of the a1 mode is f ≈ 0.460 MHz

while that for the next higher mode, the a2, is f ≈ 1.376 MHz.
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With knowledge of a large number of the possible Lamb waves which may propagate

in the plate upon reßection from the end, in addition to the incident Lamb wave, it is

possible to proceed with the calculation as follows.  The boundary conditions at the end of

the plate must be satisÞed using the one incident mode and a large number of reßected

modes.  At the end the total in-plane and tangential stress must vanish:

(8.4)(a),(b)

The AjÕs are the unknown amplitudes of the reßected modes.  Since the stresses are derived

by means of a scalar and vector potential (having only one component), which only have

one amplitude constant between them, it may be easily shown that the coefÞcients in Eqs.

(8.4)(a) and (b) are the same.  It should be understood that the sums are carried out over the

Table 8.1: Antisymmetric Lamb wave roots for Plate B 

f 
(MHz)

ξa0, -ξa0 ξa1 ξa2, -(ξa2)* ξa3, -(ξa3)*

0.100    0.3909 + i0,
- 0.3909 + i0

0 - i0.3043 -0.8112 - i2.1889,
0.8112 - i2.1889

-0.9817 - i4.0661,
0.9817 - i4.0661

0.440    1.0916 + i0,
- 1.0916 + i0

0 - i0.1438 -0.8208 - i2.0730,
0.8208 - i2.0730

-0.9864 - i4.0063,
0.9864 - i4.0063

0.500   1.2112 + i0,
-1.2112 + i0

-0.2175 + i0 -0.8233 - i2.0361,
0.8233 - i2.0361

-0.9877 - i3.9878,
0.9877 - i3.9878

1.000   2.2262 + i0,
-2.2262 + i0

-1.1440 + i0 -0.8189 - i1.4687,
0.8189 - i1.4687

-0.9962 - i3.7309,
0.9962 - i3.7309

1.500   3.2722 + i0,
-3.2722 + i0

-2.4128 + i0 -1.3119 + i0,
0 - i0.5789

-0.9620 - i3.2527,
0.9620 - i3.2527

†The wavenumbers ξ have units of 1/mm.  To convert these roots to those for Plate A multiply f and ξ 
by the thickness ratio hB/hA = ((h/a)B aB)/((h/a)A aA) = (0.1625*21.02mm)/(0.076*19.05mm) = 2.359

The mode thresholds for the a1 and a2 modes are f ≈ 0.460 MHz and 1.376 MHz, respectively.

Σxx z( ) Txx
inc z( ) AjTxx

j z( )
j 1=

2N 2+

∑+ 0= =

Σzx z( ) Tzx
inc z( ) AjTzx

j z( )
j 1=

2N 2+

∑+ 0= =

x 0 z h h,–[ ]∈,=
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lowest two modes (labelled -a0 and -a1 in Fig. 8.4), thus the +2, plus N pairs  (i.e. 2N) of

complex modes, where N is to be determined by the level of acceptable error in the

calculation.  One now evaluates these two expressions at M+1 evenly spaced points,

 , (8.5)

along the end.  This results in 2(M+1) equations in 2N+2 unknowns (i.e. the AjÕs).  It is

possible to solve this set of over-determined equations (which the reader will note are

complex) approximately in a least squares sense.  The mean squared error to be minimized

is then

. (8.6)

A useful derivation of the least squares method, which includes a discussion on allowing

the ÒvariablesÓ Aj to be complex, may be found in a text by Claerbout109.

The amplitude coefÞcients in Eqs. (8.4) are not simply proportional to the energy in the

wave.  To be of use each mode must be normalized with respect to the time-averaged

power ßow of the incident wave.  From the discussion in Section 7.3 the time averaged

power ßow is

, (8.7)

where  and  are the components of velocity and the bar indicates a time average of the

underlying quantity.  Since all quantities are time-harmonic, ( ) the real part of this

expression, representing real power ßow, may be written84

, (8.8)

where the asterisk denotes complex conjugation.  The relative power ßow for the jth mode
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with respect to the incident mode is then

. (8.9)

Noting that the relative reßection amplitude coefÞcients, Aj, are simply multiplicative in

Eqs. (8.4), the reßection coefÞcient representative of power is found to be

(8.10)

which is real.  A statement of conservation of energy then follows:

. (8.11)

Non-propagating modes may have positive or negative ℜ j.

An algorithm was written in Matlab¨ to perform the least squares minimization of Eq.

(8.6) and Þnd the coefÞcients Aj.  (The least squares solution of a set of overdetermined

linear equations is currently a built-in function in Matlab¨.)  It is listed in Appendix B.  To

compare with the results of earlier chapters the +a0 mode was taken as the incident Lamb

wave and the amplitude coefÞcients were calculated for all the other modes considered.

Figure 8.5 gives the results for Plate B.  It shows the reßection coefÞcients using Eq. (8.10)

for the Þrst several modes.  It was determined that using N = 10 pairs of complex modes at

M+1 = 401 discrete points was sufÞcient to preserve energy conservation to better than 1%

over the entire range of frequencies considered.  Typical error in energy conservation was

on the order of 0.2%, however, near the mode threshold of the a2 wave the error level

increased.  This is possibly due to small errors in calculating the dispersion curves and is

not expected to signiÞcantly inßuence the calculated curves.  Amplitude reßectivity results

for Plate A are shown in Fig. 7.7(b) and 7.8(b) where |B| is given by  for j = a0.  For

that case only the reßected a0 mode is plotted.  It should be noted that one may convert

between Plate B and Plate A for the power reßection coefÞcients, ℜ j, by simply multiplying

the frequency scale for Plate B (in Fig. 8.5) by 2.359, as noted in Table 8.1, to obtain the

Pr
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results for Plate A.

Before discussing the importance of the reßection coefÞcient results, another issue

needs to be addressed.  It was stated earlier that the reßected wave could not be made up

entirely of the same mode as the incident mode.  In this case the reßected mode cannot be

entirely the a0.  This remains true despite the fact that the reßection coefÞcient for the a0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

0.1
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0.5
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frequency (MHz)

| ℜ |

a0
a1

a2

FIG. 8.5   Calculated power reßection coefÞcients for a free plate (Plate B) for an incident a0

mode.  The reßected waves are normalized by the energy ßux of the incident wave and as

such the sum of the reßection coefÞcients should be unity (the plate has a free end).  To obtain

the reßection coefÞcients for Plate A one need only multiply the frequency scale above by

2.359, as noted in Table 8.1.  The only wave not labelled in the Þgure is the -a2*  mode which is

given by the barely visible dotted line.  Below the a2 mode threshold at 1.376 MHz, the signs of

the ℜ j are such that the total power carried by the conjugate pair of a2 modes vanishes.

Therefore the small peaks shown for these sub-threshold modes just above 1.2 MHz just

cancel each other in Eq. (8.11).
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has a value of nearly unity up to the mode threshold of the a1.  The resolution comes from

remembering that the reßection coefÞcient represents real power ßow or real work done on

the plate.  Modes with large imaginary wavenumbers represent mostly reactive work done

on the plate, the real work done being very small in comparison to that of the incident

propagating mode.  In the present case, below the mode threshold of the a1 at f ≈ 460 kHz

lo
g(

| A
j|)

frequency (MHz)
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FIG. 8.6   Amplitudes of the reßected modes as a function of frequency for an incident a0

mode.  This illustrates the fact that even though the power reßection coefÞcient, |ℜ| , for the

a1, for example, is zero below its mode threshold (f ≈ 0.460 MHz) (see Fig. 8.5), representing no

propagation of power towards a distant observer, an a1 mode (as well as the higher modes)

must still be excited in the reßection process to satisfy the boundary conditions at the plate

end.  If the plate was subject to light ßuid loading such that the modal dispersion

characteristics did not change signiÞcantly, the vibration of the plate near its end due to the

sub-threshold a1 mode would be expected to radiate sound into the ßuid medium.
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all the other modes are heavily damped and do not carry signiÞcant energy away from the

end to a distant observer.  The cutoff modes are still excited to the extent that the boundary

condition is approximately satisÞed but they are damped out at any appreciable distance

from the end and therefore do not have signiÞcant power reßection coefÞcients.  To

illustrate this fact the amplitude reßection coefÞcient, Aj=a1, is shown in Fig. 8.6.

8.4 Discussion

The results in Fig. 8.5 are qualitatively similar to a result found in Ref. [95] for the

reßection of the a0 mode in a glass plate.  Most of the other investigations mentioned above

only examine the symmetric case.  As can be seen from Fig. 8.5 or Fig. 7.7(b), the incident a0

wave is almost completely reßected for frequencies below the mode threshold of the a1.

Above that frequency the reßected energy is shared by the two propagating modes.  The

amplitude of the a0 drops to near zero before rising gradually to near unity.  This is

precisely what is observed in Fig. 8.1 for the a0 meridional ray enhancement feature for

Shell B [and Figs. 7.7(b) and 7.8(b) for Shell A].

The experiments were performed with a shell in water, where a majority of the end was

also exposed to water.  As can be seen from Figs. 7.7(b) and 7.8(b) for Shell A there appears

to be a degradation of the reßected amplitude which increases with frequency.  The

degradation in the amplitude reßectivity |B| appears to be almost linear below the a1

mode threshold for both the hollow and water-Þlled shells.  This suggests that a fair

amount of energy is lost into the ßuid upon reßection of the leaky wave from the end.  At

the higher frequencies shown, the loss represents signiÞcantly more than might be

expected from simple impedance considerations.  Considering normal incidence of a

longitudinal wave in a semi-inÞnite stainless steel half-space at an interface with water, one

would Þnd a power reßection coefÞcient of .

This value is meant only to emphasize the relatively large impedance difference between

the two materials.  The actual radiation loss into the ßuid at the end is certainly expected to

be quite complex (for images of radiation patterns see e.g. Refs. [98] and [99]).

ℜ ρ ecL ρc–( ) ρecL ρc+( )⁄[ ] 2≈ 0.88=
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One aspect of the present calculations which may have implications for the

experimental results in Figs. 7.7(b) and 7.8(b) is found in Fig. 8.6.  Below the mode

threshold of the a1 near f ≈ 460 kHz (for Plate B; f ≈ 0.460*2.359 =  1.085 MHz for Plate A) the

amplitude of the reßected (evanescent) a1 mode increases smoothly with frequency, as

opposed to increasing abruptly from a small value to a large value at the mode threshold.

As a consequence there are signiÞcant vibrations of the plate close to its end due to the

reßected a1 wave even when the a1 is non-propagating (i.e. evanescent).  This would not be

expected to inßuence the reßection coefÞcient for the incident a0 wave when the plate is in

a vacuum; however, for a plate with ßuid loading at its end one may expect to Þnd some

radiation of sound into the ßuid at the end of the plate because of the displacements

introduced by the reßected a1 wave.  This loss would be manifest as a reduction in

magnitude of the reßected a0 wave.  In the limit of negligible ßuid loading considered here,

the sub-threshold a1 motion radiates as if the a1 wave is highly supersonic with respect to

the surrounding liquid.  That is because .

8.A Reßection CoefÞcients for an Incident a1 

Mode

The present scheme for calculating the reßection coefÞcients is applied to the case of an

incident a1 mode for Plate B.  For this case only the frequency range where the a1 mode is

propagating is investigated (i.e. above the a1 mode threshold at f ≈ 460 kHz).  Figure 8.7

shows both the power and amplitude reßection coefÞcients.  Below the mode threshold for

the a2 (f ≈ 1.376 MHz) the power reßection coefÞcient calculated for the a1 mode (when the

a1 mode is incident) displays similar features to the power reßection coefÞcient for the a0

mode when the a0 mode is incident (as in Fig. 8.5).  The opposite is found as well: the

power reßection coefÞcient calculated for the a0 mode when the a1 mode is incident

displays similar features to the power reßection coefÞcient for the a1 mode when the a0

mode is incident.  Results appearing in Ref. [88] display this ÒreciprocalÓ behavior as well.

Re ξa1
[ ] 0=
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FIG. 8.7   Calculated (a) power reßection coefÞcients and (b) amplitudes (|Aj|) for Plate B for an

incident a1 mode.  Recall that the a1 mode threshold is at f ≈ 0.460 MHz.
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Appendix A   Experimental Details

A.1 Introduction

This appendix discusses many of the details associated with the experiments that have

not appeared in the main text.  It has already been stated that all the experiments were

performed in a 12 foot diameter by 8 foot tall redwood tank.  This tank is located on the

campus of Washington State University in Pullman, Washington.  It is Þlled with fresh

water which is nearly always at ambient room temperature.  Seasonal variations in this

temperature were on the order of 1.5°C and ranged from 19.0° to 20.2°C.  The actual

temperature was measured during the experiments and the value used for the speed of

sound in water was adjusted using published values110.

The geometries of the Þnite cylindrical shells examined have been given (see Table 2.1

on page 16) but not much has been said about the endcaps used in some of the

experiments.  Since it has been shown (in the latter part of Section 7.4) that the endcaps do

in fact inßuence the meridional ray enhancement amplitude it is important to document

the actual endcaps used.  Section A.2 shows pictures of one of the cylinders with its
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endcaps.

Since all the experiments were performed with relatively small distances separating the

source and the target it is important to discuss the extent to which Òfar-ÞeldÓ conditions

were achieved.  All the theoretical treatments in this dissertation assumed that the receiver

was in the far-Þeld.  Section A.3 discusses these concerns.

Section A.4 discusses the construction of the PVDF sheet source and the spectral

normalization used in many of the Þgures of this dissertation which accounts for the

speciÞc source and receiver characteristics.  Section A.5 shows circuit diagrams for the

experimental setups.  Section A.6 provides information about the extra high-bandwidth

experiments which were performed with the PVDF sheet source.  This refers to the ÒchirpÓ

experiments in relation to the already high-bandwidth impulse experiments.

A.2 Cylindrical Shells Used in Experiments

Figure A.1 shows a picture of one of the shells used in the experiments.  It shows Shell

A with the endcaps in place being suspended by thin diameter Þshing line.  The shell was

precisely cut from a length of stainless steel 304 tube stock (1.5Óo.d. x 0.065Ó).  It has no

visible seams and is smooth.  Shell B is nearly identical but has a greater wall thickness.

The endcaps, which are made of Plexiglasª, are shown in Figs. A.2 and A.3.  A rubber O-

ring ensured a water-tight seal and the endcaps were held in place by a light rubber band

which was stretched between the two endcaps inside the shell.  These endcaps were used

for all experiments except those of Figs. 2.4(b) and 2.5(b).  (That is these were used for Shell

A; nearly identical ones were used for Shell B, which has larger radial dimensions.)  The

experiments leading to Figs. 2.4(b) and 2.5(b) used an earlier generation of endcaps in

which the contact with the cylinder was made through O-rings placed on the end of the

shell (instead of against the inside surface as can be seen in Figs. A.1, A.2 and A.3).  These

endcaps were slightly larger and had more Plexiglasª material extending from the

cylinderÕs ends.   
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FIG. A.1   Picture of Shell A with endcaps and Þshing line supports.

FIG. A.2  Close-up of the end of Shell A.
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A.3 Experimental Setup and the Far-Field 

Assumption

Two questions arise when considering far-Þeld conditions.  First, and perhaps simpler,

is whether or not the target is in the far-Þeld of the source transducer.  Secondly, is the

receiver transducer in the far-Þeld of the target?

Consider the Þrst question.  In all the experiments performed it is desired to have a

plane wave incident on the target.  When the large PVDF sheet source is used an

approximate plane wave is generated directly.  The quality of this plane wave depends Þrst

on the ability to excite the thickness mode of the PVDF Þlm in a uniform manner over the

dimensions of the sheet.  Two steps were taken to ensure the best possible performance in

this area.  First, electrical contacts were made at locations on each of the four sides and

FIG. A.3   Close-up of the endcap used with Shell A.
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corners of the sheet.  Secondly the PVDF Þlm with the best available surface conductivity

was used.  The Þrst sheet source constructed had a Ni-Cu coating (not used).  The

improved sheet source used in the present experiments has an Ag-ink coating.  This

decreased the surface resistivity from 2.0 to 0.1 Ω/square.  Modelling the electrode and

sheet source as a distributed resistance and capacitance network would give a phase shift

between the applied voltage and the voltage across the center of the sheet.  It is assumed

that this phase delay to excite the center of the Þlm is small compared to the period of the

driving signal.  A spatial mapping of the pressure Þeld of this transducer has not been

performed.  The extent to which the plane wave is uniform over the entire target depends

on the size and proximity of the target with respect to the sheet source.  The sheet source

used was square, having a side length of 28 inches.  The longest cylinder examined was 9

inches in length.  In all cases the target was placed as close to the center of the sheet as

timing considerations allowed.  Since the targets were small compared with the

dimensions of the sheet and located very close to the PVDF Þlm it is assumed that the

incident acoustic wave is approximately planar.

For the tone burst measurements of Chapter 7 a simple piston-style immersion transducer

was used to generate the incident acoustic wave.  In this case the intent is to place the

transducer sufÞciently far away from the target that the incident wave is approximately

planar over the dimensions of the target.  Furthermore the amplitude of the incident plane

wave should be approximately uniform over the lateral dimension of the target.  Consider

the transducer for a moment to be an ideal point source which emanates a perfect

spreading spherical wave of wavelength λ.  A target is placed a distance R away, which has

a principle length parameter ro (i.e. radius or half length) and a radius of a (for

nondimensionalization purposes).  Through geometrical consideration of the phase error it

may be said that the spherical wave at the target is approximately planar for 

which gives .  For one of the cylinders used in the present experiments (where

R ≈ 2.3 m, ro = L/2 = 114.3 mm and a = 19.05 mm) this requires .  This is clearly not

satisÞed for most frequencies considered.  One consequence of this is that there will be

small variations in the angle of incidence of the impinging wave at different locations along

R 1 2⁄( )kro
2»

ka 2aR ro2⁄«

ka 7«
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the cylindrical shell.  This effect has been observed in the course of the experiments, e.g. see

Section 7.4 of Chapter 7.  Next, consider the radiation Þeld of the transducer.  In modeling

the response of piston style transducers it is often convenient to Þrst approximate their

behavior with the response of an ideal circular piston.  If the source transducer is

considered to be an ideal circular cylindrical piston of radius ao then one Þnds a second

requirement for the target to be in the far Þeld.  In order to assume that the target is in the

Fraunhofer regime of the source one must have  (e.g. see Sect. 5.2 of Ref. [9]).

For one of the transducers (1Ó dia.) this requires that .  This is satisÞed in the

present experiments and so it is possible to assume that the target is in the far Þeld of the

source transducer.  The far-Þeld radiation pattern of a circular piston can be easily

calculated9.  Its angular pressure amplitude dependence is proportional to

, where J1 is the 1st order Bessel function.  For a typical

experimental setup the -3 dB intensity beamwidth at the target location is expected to be on

the order of 560 mm for ka = 20, 280 mm for ka = 40 and 140 mm for ka = 80.  The incident

pressure amplitude is therefore fairly uniform over the length of the cylinder (L = 228.6

mm) for ka < 40 or f ≈ 500 kHz.  As will be discussed below, when examining the

meridional ray enhancement it is often only a small part of the cylinder, near the far end,

which is responsible for the enhancement.  As a result the uniformity of the incident

pressure amplitude is certainly adequate at frequencies as high as 1 MHz.

Now consider the scattered response.  The worst case scenario is for the cylindrical

shell at broadside incidence.  The backscattering response at the shell is obviously very

complex, both spatially and temporally.  However the backscattered Þeld at the receiver

transducer may be considered to be the result of the radiation from a particular rectangular

aperture of approximate dimensions L by 2a.  As was mentioned above it is desired that the

receiver be in the Fraunhofer regime for the aperture (e.g. see Sect. 8.3.3 of Ref. [45]).  For

the rectangular aperture it is required that , which translates into

.  This means that in the present experiments at broadside incidence

, which as stated above is not satisÞed.  Evidence of near-Þeld scattering (as opposed

to the far-Þeld Fraunhofer scattering) has been observed in the backscattering results of

ka 2aR ao
2⁄«

ka 540«

J1 kao θsin( ) kao θsin( )⁄
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angular scans about broadside incidence.  The results presented in this dissertation for

broadside incidence should be regarded with this in mind.  The focus of this dissertation,

however, is the backscattering response at oblique incidence.  As the cylinder is tilted the

length of the effective aperture decreases.  This relaxes the above far-Þeld condition in a

simple manner: .  Since the meridional ray feature studied is

typically found at angles ranging from γ = 35° to 65° one Þnds that  or .  It is

also known that the enhancement resulting from this meridional ray feature is primarily

due to radiation from a localized region near the end of the cylinder.  The other regions on

the cylinder being far less important to the backscattered Þeld.  This region is

approximately determined by the attenuation length, Le, of the meridional leaky wave

under consideration.  In general the aperture of overall length L may be replaced by Le =

a/Im[kza], which is on the order of 25 mm (see Section 3.6 on page 79, Eq. [3.4] and Fig.

3.20).  With this in mind the far-Þeld condition is relaxed even further to requiring that

.  There is obviously no difÞculty in meeting this requirement.

A.4 PVDF Sheet Source: Construction, Spectrum 

and Normalization

This appendix discusses the construction of the PVDF sheet source and the

normalization used in the experimental spectral data.  A diagram of the sheet source is

shown in Fig. A.4.  It is constructed of a 110 µm thick Kynar¨ polyvinylidene ßuoride

(PVDF) Þlm, metallized on both sides and sandwiched in a copper frame.  This Þlm was

purchased from AMP Inc. of Valley Forge, PA.  Figure A.5 shows more of the particulars of

the sheet construction.  This particular company could only manufacture the PVDF Þlm to

a maximum of 14 inches wide.  As a consequence, to construct a large sheet (here 28Ó x 28Ó)

it was necessary to combine two sheets together.  This was done by taping the two together

as shown, being careful to match the polarities of the individual sheets.  To decrease the

electrical coupling through the water and protect the surface metallization a thin sheet of

ka 2aR γLcos 2⁄( )⁄ 2«

ka 10« ka 38«

ka 840«
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adhesive backed Mylar was laid down over the Þlm as shown.  To further insulate the

transducer, all conducting surfaces connected to the positive side of the sheet were coated

with either Kapton¨ adhesive tape or a low viscosity epoxy.  Some properties of the sheet

which are of importance are: surface resistivity, 0.1 Ω/square; electrical capacitance, ≈ 102

pF/cm2; sound speed in the thickness direction 2200 m/s; sound speed in stretch direction,

1500 m/s; YoungÕs Modulus, 2-4 x 109 N/m2; mass density, 1780 kg/m3; water absorption,

< 0.02%; maximum operating voltage, 750 volts/mil (obtained from Amp Inc.).  The sheet

source represents a relatively large capacitive load (measured static capacitance C ≈ 0.44

µF) and must be driven with a pulse generator or ampliÞer capable of driving such loads.

The pulse generator used, made by Avtech Electrosystems LTD. (model AVO-8C-C) and

designed to drive low impedance laser diodes, was capable of driving such a load with a

rise time on the order of 200 ns.  The pulse width of this unit was selectable from 2 µs - 200

ms.  When tone bursts were desired the sheet was driven with a Hi-Fi audio ampliÞer

71cm

PVDF
(Ag-ink coating)

+

FIG. A.4   Schematic of the PVDF sheet source.  The front view (left) shows the sheet held by a

rectangular copper frame.  Electrical contacts (+ side) are shown Òdaisy-chainedÓ around the

perimeter of the frame.  The side view (right) shows the sandwiched construction.
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+ +

Part A Part B

Mylar

+ +

Part A Part B

Thick (Ag ink) Metallization Thin Piezo Film Sheets.  (2 sheets consisting
of Parts A and B shown below)

14" wide x 28" long
metallized surface
with ≈0.25" non-
metallized border.
Arrow shows axis
of PVDF stretch,
+ indicates piezo
polarity

Parts A and B each have 1 layer of 0.001" mylar on both sides.
NOTE shape and positioning of mylar relative to Piezo Sheets shown below.

Piezo Sheet

Exposed metallized
corner on front and
back (symmetric,
i.e. same edge).

Exposed metallized
border 1.25" wide
on front and back.

Mylar extends all the way
to these edges

FIG. A.5   Details of the PVDF sheet construction.  The sheet transducer is composed of two

individual sheets of PVDF Þlm joined together by Kapton¨ tape.
285



made by Haßer¨.  This particular ampliÞer, Model 9505 (375 wpc @ 4Ω, 150V/µs slew rate),

although rated to 300kHz could produce usable waveforms to 1MHz (see Section A.6).

To characterize the performance of the sheet source a system impulse response was

measured with the hydrophone placed approximately at the target location.  The solid line

in Fig. A.6 shows the Fast Fourier Transform (FFT) of the measured pulse.  The smooth

dashed curve is the expected spectrum from an idealized source-receiver model to be

described subsequently.  The spectrum of the source-receiver impulse response is taken to

be the best Þt of this model to the measured spectrum.  The FFT of each time record in the

scattering experiment was divided by this smooth estimate of the system impulse response

to obtain the measured scattering spectrum.

To approximate the spectrum of the source a simple lumped electrical parameter circuit

model was introduced.  Figure A.7 shows this circuit model where the source is taken to be

an idealized capacitor in series with a small resistor.  The acoustic pressure generated by

the PVDF is approximately proportional to the current (e.g. see Ref. [20]), which for a step

Frequency (kHz)
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FIG. A.6   Measured spectrum of the pressure impulse generated by the sheet source (solid

line).  A simple lumped parameter model of the source and receiver system yields a good

approximation (dashed line) of the measured spectrum.
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voltage input gives the unipolar pressure pulse

(A.1)

where K is a constant determined by the piezoelectric properties,  is the unit step

function, C denotes the capacitance of the sheet, and R is the sum of the generator and

effective sheet resistances.  The magnitude of the spectrum associated with this pressure is

(A.2)

where .  The spectral amplitude given in Eq. (A.2) has a value of unity at zero

frequency.  In the experiment the low frequency response is limited by the roll-off of the

hydrophone, which is governed largely by the load resistance Rh and hydrophone

capacitance Ch.  The normalized low frequency behavior of the receiver can be

approximated as a high-pass Þlter with frequency response

. (A.3)

Vo

generator

RsRg

i(t)

PVDF
sheet

C

FIG. A.7   Lumped electrical parameter circuit model which is used to model the frequency response

of the PVDF sheet source.
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At frequencies well below the fundamental hydrophone resonance (f ≈ 750 kHz)  the

approximate spectrum of the source-receiver system is the product of  and

.  Figure A.6 shows that this simple model overestimates the high frequency

response of the source above about 230 kHz; as a result, it is necessary to multiply Eq. (A.2)

by a slowly decaying function of  for use in the actual normalization of the experimental

spectra.  This function is  and is thought to be a consequence of the

speciÞc receiver used, which was originally designed as an NDT immersion transducer.

The resulting Þt to the experimental source spectrum is a four parameter Þt: RC, RhCh, the

exponent (0.25) and the overall amplitude factor.  For the Þt shown in Fig. A.6 RC = 6.07 x

10-6 and RhCh = 4.5 x 10-6.  Comparing the Þtted parameter RC with the approximate

measured source capacitance (C ≈ 2.4 µF) yields R ≈ 2.5 Ω = Rs + Rg = Rs + 0.2 Ω.  This value

is compatible with the expected sheet resistance.  The value reported above for the

measured source capacitance was obtained with the sheet source wet, i.e. submerged in the

water tank.  When dry the measured sheet source capacitance (C ≈ 0.44 µF) is much closer

to the expected capacitance (C ≈ 0.52 µF) based on the capacitance per area of 102 pF/cm2

reported by the manufacturer for the sheet [with each side of the sheet measuring 14Ó x 28Ó

= 2529 cm2 and the two sides of the sheet together(see Fig. A.5) treated as two capacitors in

parallel].  It is noteworthy to point out that different values were measured for the

capacitance of the submerged sheet over intervals of months during which the sheet source

was used considerably.  These values ranged from 2.4 µF to 6.0 µF.  The cause of this change

is not well understood.  No appreciable change was observed in the measured capacitance

of the sheet when dry over a 34 month interval (measurements ranged from 0.457 µF to

0.438 µF).  All capacitance measurements were performed with a Hewlett Packard

Universal Bridge (Model 4260A) at 1 kHz.  The normalization function shown above was

used in the normalization of Figs. 2.4(b) and 2.5(b).  The normalization used in Chapter 3 is

different since the sheet source was driven in a different mode, as discussed below.

It is also possible to drive the sheet source with a voltage pulse instead of a voltage step.

This produces a bipolar pressure pulse, which can have several advantages over the

unipolar pulse.  Figure A.8 shows a comparison of the two modes of driving the sheet

S ω( )

Sh ω( )

ω

1 RCω( )+ 2[ ]
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source.  For each mode the driving voltage, either a step or pulse, is 5.7 volts.  (During the

experiments typically this voltage is 18 V for the step mode and 32 V for the pulse mode.

The relatively low voltages used in Fig. A.8 was used for illustration purposes since higher

voltages overdrive the preampliÞer during the acoustic pulse travelling directly from the

sheet to the hydrophone.)  For the step mode the pulse width, ∆tpulse, was on the order of 2

ms while for the pulse mode it was ∆tpulse ≈ 1.6 µs.  The experimental setup is identical

between the two cases and the receiver transducer is placed very close to the sheet (15.7cm

away).  The step mode displays better low frequency response but the pulse mode has

better high frequency performance.  While neither mode displays considerable ringing

after the initial pulse, the pulse mode is substantially quieter in this region.  This often

enables better background subtraction during the experiments and increases the signal-to-

noise ratio.  Since the spectrum of the pulse in this mode is different than for the step mode

one must use a different normalization function in normalizing the experimental

backscattering spectrum.  All the Þgures shown in Chapter 3 which involve the

backscattering spectrum (i.e. Figs. 3.3 - 3.9) have been normalized with the following

function, which has been determined with a Þt to the measured spectrum of the incident

pulse as shown for example in Fig. A.8,

. (A.4)

The constants used in this expression were explicitly: ; s;

; ; ; ; and

Hz.

In both cases, either for the step or pulse voltage excitation, spectral normalization is

difÞcult below about 25 kHz.  Often the normalization functions approach zero amplitude

quicker than the experimental spectrum as the frequency approaches zero.  This results in

large amplitude normalized spectra which are not due to the backscattered signal.  To

minimize this effect the amplitude of the normalization function was held at its value at 25

kHz for all frequency components below 25 kHz.  In Fig. 3.3 the entire region below 35 kHz

was simply zeroed out to eliminate these low frequency errors.

S f( ) As

πt p f( )sin

1 2πRCf( )2+[ ] 3 2⁄ 1 2πRhCh f( ) 2–+[ ] 0.45
---------------------------------------------------------------------------------------------------- Ag g f f o–( )2–[ ]exp+=

As 250= t p 1.40 6–×10=

RC 1.25369 6–×10= RhCh 0.250 6–×10= Ag 6.6= g 5.91716 10–×10=

f o 1.71 5×10=
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FIG. A.8   A comparison of the two types of pressure pulses generated by the sheet source.

Measured pressure pulse (top) and its corresponding spectrum (bottom) for a step (right) or a

pulse (left) voltage input.  The step mode has a better low frequency response while the pulse

mode displays better high frequency response.  For both cases the receiver transducer is

placed 15.7 cm away from the sheet.
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Two Þnal comments are made about the spectra shown.  The null evident at about 700

kHz for the pulse mode is not an artifact.  It can be shown that this frequency is related to

the width of the initial pressure pulse.  Decreasing the pulse width would have the effect of

shifting the null to higher frequencies.  The cause of the large oscillations below 100kHz in

the spectrum of the step mode is not understood.  These may be a result of the Þnite width

(Ls = 71 cm) of the source.  Notice , however, that in the near-Þeld (adjacent to the center of

the source) for the step mode the low frequency response should remain ßat down to a

frequency of cwater/Ls ≈ 2 kHz and the low frequency roll-off is a consequence of pulses

from the source edge.

A.5 Circuit Diagrams and Setup

For the experiments which used a transmit-receive setup the circuit diagram used is

shown in Fig. A.9.  These experiments did not use the sheet source but rather the piston

style transducers.  For the experiments using the sheet source (unipolar or bipolar impulse

response or chirp experiments) Fig. A.10 shows relevant circuit diagrams for driving the

sheet as well as the setup used for the receiving hydrophone.  Since the sheet source is

highly capacitive it was found to be beneÞcial to include a resistance in parallel with the

sheet.  To insure that these load resistors did not introduce any unnecessary inductive load

only carbon or special low inductance wire-wound resistors were used.

In the receiving setup the resistor to ground is used to set the low frequency roll-off

behavior of the system.  Together with the capacitance of the hydrophone this acts as a

high-pass Þlter with a 3 dB point of f3dB ≈ 1/(2πRC).  The series resistance is necessary to

prevent the preampliÞer from feedback oscillations which result from the highly capacitive

load of the hydrophone.
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FIG. A.9   Circuit diagram for the transmit-receive (TR) experiments.  The transducers used for

these experiments were the piston style transducers.
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A.6 Sheet Source Driven with a Linear 

Frequency Modulated  (FM) Input

Yet another way to drive the sheet source is with a tone burst.  Experiments have

shown that it is capable of producing crisp high quality tone bursts as low as 1 kHz and as

high as 1 MHz.  It has been used to excite modes of oscillation of a submerged large hollow

spherical shell below 20 kHz using tone bursts111.  Due to its extremely high bandwidth

capabilities an enticing experiment to perform is that of a chirped burst experiment.  The

idea behind this can be easily seen by considering the following example.  Figure A.11

shows the Fourier transforms of two simple time series.  The Þrst is a simple sine wave tone

burst.  Its transform has the form of the familiar sin(f)/f, or ÒsincÓ function.  If the

frequency is allowed to increase during the burst, e.g as 

(A.5)

then it is possible to increase the width of the spectral peak.  Equation (A.5) is an example

of a linear FM pulse, or ÒchirpÓ signal (for β > 0).  One can see that this increase in

bandwidth is at a cost of spectral amplitude.  Regardless, in this way it is possible to

perform extra-high bandwidth experiments.  Figure A.12 shows the measured pressure

and spectral response for just such a signal driving the sheet source.  A hydrophone placed

45 cm away from the sheet recorded this signal.  The driving parameters were set to: fo = 0.3

MHz, β = 2.59 x 10-3 MHz/µs, and tm = 270 µs (pulse length).  The Fourier transform in (b)

conÞrms that the spectral response is similar to the chirped burst of Fig. A.11. 

The generation of this signal was by no means trivial.  Finding an ampliÞer and

receiver transducer which have ßat signal responses over these frequencies would be

difÞcult to say the least.  This keeping in mind that the sheet source represents a largely

capacitive load to the ampliÞer.  The sheet source was driven with a Haßer¨ Hi-Fi ampliÞer

(see the preceding section).  The frequency response of this ampliÞer is relatively uniform

up to about 300 kHz but then begins to roll off.  The transducer used for this measurement

P t( ) 2π1
2
--- f o βt+( )tsin=
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had a resonance frequency of 1 MHz.  Due to these factors simply driving the sheet with a

square envelope chirped burst as in Fig. A.11 resulted in a waveform which dropped to

near zero signal at high frequency.  To account for this the input voltage waveform was

amplitude modulated and had the following form:

(A.6)

where A is an overall amplitude factor, tm is the pulse length, fo is the starting frequency,

and β is the chirp parameter (increasing linear FM signal).  This envelope was determined

by trial and error and was only used for tm = 270 µs, fo = 0.3 MHz, β = 2.59 x 10-3 MHz/µs,

where A = -3.90 x 10-7.  For other pulse lengths or frequency parameters the amplitude

parameter A and various exponents must be changed to yield a suitable waveform.

Because the shape of the spectrum of the measured acoustic chirp signal changed with the

overall input voltage (i.e. the frequency response depends on input voltage in a nonlinear

way) the author found it difÞcult to apply simple linear mathematical methods to obtain a

measured waveform with a constant amplitude (i.e. a square waveform).  Much trial and

error was required to obtain the output shown.  Figure A.13 shows the actual input signal

used, from Eq. [A.6], and its corresponding spectrum.

Figure A.14 shows the backscattering spectrum for Shell B (air-Þlled with endcaps) at

broadside incidence.  The impulse experiments of Chapter 2 enabled the spectrum in this

case to be measured up to 400 kHz [see Fig. 2.6(b)].  The present technique extends that

range up to 1 MHz.  The normalization procedure is the same as before.  The measured

backscattered time record is Fourier transformed.  Its magnitude is then divided by the

magnitude of the system spectrum [Fig. A.12(b)].  Finally a frequency independent

amplitude factor is applied to enable a comparison with the calculated form function.  In

this case the measured spectrum is compared with the inÞnite PWS result and the

approximate Þnite cylinder PWS result from Chapter 5.  The dip near 800 kHz is the result

of what has been called the thickness quasi-resonance24.  It is also associated with the onset

v t( ) A
1 1 e0.4 t tm–( )–( )+[ ]

1 e0.4 t tm–( )+[ ]
------------------------------------------------ 1– e0.2 t 5–( )+[ ]
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of the s2b Òbackwards waveÓ81.  Figures 7.22 and 8.1 were also obtained using the present

technique.  
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frequency (kHz)

| f |

0

FIG. A.14   Normalized spectral magnitude for backscattering from Shell B (air interior with

endcaps) using a 270 µs long chirp input.  The lines correspond to: solid line, measured

response; short dashed line, adjusted Þnite cylinder solution from Chapter 5 (see main text

and Section 2.3); long dashed line, inÞnite PWS cylinder solution.  The experimental response

was normalized with the spectrum of the incident pulse measured with the system at the

closest source-receiver separation distance possible and then multiplied by an overall constant

(frequency independent) to qualitatively Þt the two theoretical curves shown above.
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Appendix B Computer Algorithms 

and Data Analysis

B.1 Short Time Fourier Transform (STFT)

The following code was used to calculate the time-frequency Þgures of Chapter 3.

sigcore_12.m

%  This Matlab m-file performs a STFT on a single time series data file.
%  This datafile consists of two columns, (t,v (voltage output from
%  preamp)).  This version is intended for use with experimental data.
%  Written by Scot Morse (4/10/97)
%  Version 1.1 makes a movie.
%  Version 1.2 is updated to include normalization for the new sheet.
%  Now writes to tiff files for better quality movies (i.e. download
%  directly to a vcr).
%  Last updated 11/4/97.

%
%.......Load time series data into variable full_data using built in GUI.
%

[file_name,path_name]=uigetfile('*.dat','Load initial time series data 
                      file');
301



full_name=strcat(path_name,file_name);
fid=fopen(full_name,'r');
full_data=fscanf(fid,'%e',[2,Inf]);
full_data=full_data';
fclose(fid);

taxisdata=full_data(:,1)-full_data(1,1); %Shift zero to start of file
valuedata=full_data(:,2);
valuedata=-1*(valuedata-mean(valuedata)); %Flip DC meaned voltage data

tlen=length(full_data);
dt=(taxisdata(2)-taxisdata(1))/1.0E-6; %Time step in microseconds
tmax=dt*tlen; %Maximum time in raw data

df=1000/(dt*tlen); %Frequency step size in kHz.
flen=tlen/2-1;
faxisdata=(0:flen)*df;
fmax=faxisdata(flen);

max_time=input('Enter maximum time to display in microseconds: ');
max_time_int=round(max_time/dt);
max_freq=input('Enter maximum frequency to display in kHz: ');
max_freq_int=round(max_freq/df);
tnum=input('Enter the number of points in time to compute in the STFT: ');
Tp=input('Enter the length of the Blackman window in microseconds: ');
highest_value=input('Enter the amplitude reference with which to normalize 
              the dB scale: ');
min_db=input('Enter the minimum value of signal to plot in -dB: ');
other_info=input('Enter primary descriptive string: ','s');
tilt_angle=input('Enter tilt angle of the cylinder: ');

%
%.....Create time series plot
%

ent_fig=figure(1);
  set(gcf,'Position',[180 180 610 457]);
axh11=subplot('Position',[0.1,0.7,0.50,0.3]);
  f1=plot(dt*[1:max_time_int],valuedata(1:max_time_int),'k-' ,'EraseMode'
     ,'background');
  ha=gca;
  set(ha,'Linewidth',1,'FontSize',9,'PlotBoxAspectRatio',[1.0,0.30,1.0]);
% xlabel('t (microseconds)')
% ylabel('P')
  title('Raw time data')
  time_ymin=min(valuedata)-0.05;
  time_ymax=max(valuedata)+0.05;
  axis([0.0 max_time time_ymin time_ymax])

%
%  Compute full forward FFT to see this data in the frequency domain
%

fzdata=fft(valuedata);
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frdata=abs(fzdata(1:flen+1));

%
%  Divide by spectrum of the impulse response of the system
%

lowfreqcut=25.0; % Transition frequency (kHz)
lowfreqlim=round(lowfreqcut/df)-1;
%scalef=250.0; % Amplitude factor
rc1=1.253690E-6; % Low freq. RC time const.
rc2=0.250E-6; % High freq. RC time const.

%frnorm_old=zeros(flen+1,1);
frnorm=([0:df:flen]')*1000; % Fill in freq vector (in Hz)

frnorm(1:lowfreqlim)=ones(lowfreqlim,1)*frnorm(lowfreqlim);
scalef=230.0;
frnorm=abs(scalef*sin(pi*1.40E-6*frnorm)./
       ((sqrt((1.0+(2.0*pi*rc1*frnorm).̂ 2)).̂ 3).*(1+(2*pi*rc2*frnorm).̂ -
       2).̂ 0.4)+6.6*exp(-((frnorm-1.71E+5).̂ 2)*5.91716E-10));

frnorm(1)=1000.0;
frnorm(2)=1000.0;
frnorm(3)=1000.0;
frdata=frdata./frnorm;
frnorm_mat=(ones(tnum,1)*(frnorm'))';

%
%.....Create full transform plot of the time series data
%

axh22=subplot('Position',[0.71,0.1,0.315,0.6]);
 f2=plot(frdata(1:max_freq_int),faxisdata(1:max_freq_int),'k-',
    'EraseMode','background');
  ha=gca;
  set(ha,'Linewidth',1,'FontSize',9,'PlotBoxAspectRatio',[0.5,1.0,1.0]);
% xlabel('f (kHz)')
% ylabel('|f|')
  title('Full spectrum')
  freq_ymax=max(frdata(1:500))+0.05;
  axis([0 freq_ymax 0.0 max_freq])  

%
%.....Put in legend data and cylinder cartoon
%

axh12=axes('Position',[0.65,0.85,0.1,0.1],'Visible','off','NextPlot',
      'replace');
fig_info=char('STFT',strcat('Tp = ',num2str(Tp),' \mus'),other_info,
         file_name,strcat('\gamma',' = ',num2str(tilt_angle),'\circ'));
fig_text=text('String',fig_info,'Position',[0.0,0.05],'FontSize',14);

axh12p=axes('Position',[0.81,0.80,0.18,0.18],'Visible','off','NextPlot',
       'replace');
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set(gca,'DataAspectRatio',[1,1,1]);
line([0 1],[-.6 -.6]);
line([0 1],[-.7 -.7]);
line([0 1],[-.8 -.8]);
line([.5 .5],[-0.9 -0.45]);
line([.44 .5],[-.51 -.45]);
line([.56 .5],[-.51 -.45]);
cyl_pic=patch([.1 .9 .9 .1],[-.0665 -.0665 .0665 .0665],'k');
rotate(cyl_pic,[0 0 1],tilt_angle,[.5 0 0]);

%
%.....Compute a 2-D Short Time Fourier Transform (STFT)
%

work_mat=(ones(tnum,1)*(valuedata'))'; % Fill time matrix with 
identical columns

window_mat=zeros(tlen,tnum); % Start constructing complete 
window matrix

num=tlen;
num2=round(num/2);
twindfn=zeros(tlen,1);
taumin=0.0;
dtau=max_time/tnum;
for j=1:tnum
   tau=taumin+(j-1)*dtau;
   tauaxisdata(j)=tau;
   for i=1:tlen
     time=(i-1)*dt;
      t=time-tau+Tp/2;
     if (t > 0)&(t < Tp)
        twindfn(i)=(7938+9240*cos(2*pi*(t/Tp-0.5))+1430*
                   cos(4*pi*(t/Tp-0.5)))/18608;
     else
        twindfn(i)=0.0;
     end
   end
  window_mat(:,j)=twindfn;
end

allspec_mat=abs(fft(work_mat.*window_mat));

% Normalize with system impulse response

stftmat=allspec_mat(1:num2,:)./frnorm_mat;
%
%.......Normalize amplitude with user selected value
%.......(normally from peak at broadside)
%

stftmat=20*log10(stftmat/highest_value+eps);
shortmat=stftmat(1:max_freq_int,:);
min_reas_freq=round((1000/Tp)/df);
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shortmat(1:min_reas_freq,:)=zeros(min_reas_freq,tnum)-90.0;

%
%.......Set a single coordinate to zero so imagesc can be used later
%.......instead of having to map values directly to the colormap using 
%.......image.
%

shortmat(1,1)=0.0;

%
%.....Draw spectrogram
%

axh21=subplot('Position',[0.1,0.1,0.58,0.6]);
img=imagesc(shortmat,'XData',[0 max_time],'YData',[0 max_freq],
    'EraseMode','background');
axis xy;
caxis([min_db,0]);
  colormap(jet);
  ha=gca;
  set(ha,'FontSize',12);
  xlabel('t (microseconds)');
  ylabel('f (kHz)');
  barobj=colorbar('vert');

%
%.....Add in arrow pointing to position of back corner
%

  la=input('Enter L/a: ');
  cyl_radius=input('Enter cylinder radius: ');
  sound_speed=1.483;
  cent_dist=input('Enter Rs (distance in mm from source to center of
            cylinder): ');
  broad_offset=input('Enter relative time of front of specular in
               microseconds: ');
  delta12=pi/2-tilt_angle*pi/180+atan(2/la);
  sqrla=cyl_radius*sqrt(0.25*la*la+1);
%  c12_point=broad_offset+2*(sqrt((sqrla*sin(delta12)).̂ 2+
             (cent_dist+sqrla*cos(delta12)).̂ 2)-
             (cent_dist-cyl_radius))/sound_speed;
  c12_point=broad_offset+(cyl_radius+sqrla*cos(delta12)+
            sqrt((sqrla*sin(delta12)).̂ 2+
            (cent_dist+sqrla*cos(delta12)).̂ 2)-
            (cent_dist-cyl_radius))/sound_speed;
  
%
%.....Add line to density plot
%

  hold on
  plot([c12_point c12_point],[0 1000],'w-');
  hold off
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%______________________________Movie_____________________________________
%
%.....Start iteration on subsequent data files taking advantage of 
%.....previously calculated window_mat and frnorm_mat.  These later files 
%.....need to be identical in form to the first file.
%
%________________________________________________________________________

file_basename=input('Enter file base name: ','s');
fileint_start=input('Enter starting integer of first file to load: ');
fileint_end=input('Enter starting integer of last file to load: ');
fileint_inc=input('Enter integer number to in(de)crement: ');
angle_start=input('Enter starting angle: ');
angle_inc=input('Enter the angle in(de)crement per selected file: ');
%
%.....Initialize movie matrix at start (much faster than dynamically
%.....adjusting matrix).
%
no_of_frames=(fileint_end-fileint_start)/fileint_inc;
%M=moviein(no_of_frames,ent_fig);
frame_no=1;
tilt_angle=angle_start-angle_inc;
fileint=fileint_start-fileint_inc;
for kk=fileint_start:fileint_inc:fileint_end
  tilt_angle=tilt_angle+angle_inc;
  fileint=fileint+fileint_inc;
  full_name=strcat(path_name,file_basename,num2str(fileint),'c.dat');
  fid=fopen(full_name,'r');
  full_data=fscanf(fid,'%e',[2,Inf]);
  full_data=full_data';
  fclose(fid);
  taxisdata=full_data(:,1)-full_data(1,1);
  valuedata=full_data(:,2);
  valuedata=-1*(valuedata-mean(valuedata));
  ent_fig=figure(1);
  set(gcf,'Position',[180 180 610 457]);
  subplot('Position',[0.1,0.7,0.50,0.3]);
    f1=plot(dt*[1:max_time_int],valuedata(1:max_time_int),'k-');
    ha=gca;
  set(ha,'Linewidth',1,'FontSize',9,'PlotBoxAspectRatio',[1.0,0.30,1.0]);
    title('Raw time data');
    time_ymin=min(valuedata)-0.05;
    time_ymax=max(valuedata)+0.05;
    axis([0.0 max_time time_ymin time_ymax]);
  fzdata=fft(valuedata);
  frdata=abs(fzdata(1:flen+1));
  frdata=frdata./frnorm;
  subplot('Position',[0.71,0.1,0.315,0.6]);
   f2=plot(frdata(1:max_freq_int),faxisdata(1:max_freq_int),'k-');
    ha=gca;
  set(ha,'Linewidth',1,'FontSize',9,'PlotBoxAspectRatio',[0.5,1.0,1.0]);
    title('Full spectrum');
    axis([0 freq_ymax 0.0 max_freq]);
  delete(fig_text); 
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axh12=axes('Position',[0.65,0.85,0.1,0.1],'Visible','off','NextPlot',
      'replace');
  fig_info=char('STFT',strcat('Tp = ',num2str(Tp),' \mus'),
           other_info,file_name,strcat('\gamma',' = ',num2str(tilt_angle),
           '\circ'));
  fig_text=text('String',fig_info,'Position',[0.0,0.05],'FontSize',14);
  delete(axh12p); 
axh12p=axes('Position',[0.81,0.80,0.18,0.18],'Visible','off','NextPlot',
       'replace');
  set(gca,'DataAspectRatio',[1,1,1]);
  line([0 1],[-.6 -.6]);
  line([0 1],[-.7 -.7]);
  line([0 1],[-.8 -.8]);
  line([.5 .5],[-0.9 -0.45]);
  line([.44 .5],[-.51 -.45]);
  line([.56 .5],[-.51 -.45]);
  cyl_pic=patch([.1 .9 .9 .1],[-.0665 -.0665 .0665 .0665],'k');
  rotate(cyl_pic,[0 0 1],tilt_angle,[.5 0 0]);
  work_mat=(ones(tnum,1)*(valuedata'))';
  allspec_mat=abs(fft(work_mat.*window_mat));
  stftmat=allspec_mat(1:num2,:)./frnorm_mat;
  stftmat=20*log10(stftmat/highest_value+eps);
  shortmat=stftmat(1:max_freq_int,:);
  shortmat(1:min_reas_freq,:)=zeros(min_reas_freq,tnum)-90.0;
  shortmat(1,1)=0.0;
 subplot('Position',[0.1,0.1,0.58,0.6]);
  img=imagesc(shortmat,'XData',[0 max_time],'YData',[0 
max_freq],'EraseMode','background');
  axis xy;
  caxis([min_db,0]);
    ha=gca;
    set(ha,'FontSize',12);
    xlabel('t (microseconds)');
    ylabel('f (kHz)');
    barobj=colorbar('vert');
    delta12=pi/2-tilt_angle*pi/180+atan(2/la);
  sqrla=cyl_radius*sqrt(0.25*la*la+1); 
c12_point=broad_offset+2*(sqrt((sqrla*sin(delta12)).̂ 2+
          (cent_dist+sqrla*cos(delta12)).̂ 2)-(cent_dist-cyl_radius))/
          sound_speed;
  hold on
  plot([c12_point c12_point],[0 1000],'w-');
  hold off
%  M(:,frame_no)=getframe(ent_fig);
  frame_no=frame_no+1;
  if (kk<10)
    inst_filename=strcat('00',num2str(kk))
  else
    if (kk<100)
      inst_filename=strcat('0',num2str(kk))
    else
      inst_filename=num2str(kk);
    end
  end
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  [x,map]=getframe(ent_fig);
  imwrite(x,map,inst_filename,'tiff');
end

%figure(2);
%set(gcf,'Position',[180 180 610 457]);
%axes('Position',[0.0,0.0,1.0,1.0],'Visible','off');
%kwait=waitforbuttonpress;
%movie(M,3,5);

B.2 Quadrature and Envelope of the Time Series: 

Analytic Signal

This section is intended to demonstrate the concept of the analytic signal as it is applied

in the analysis of experimental data in this dissertation.  In-depth discussions of the

analytic signal and itÕs applicability may be found elsewhere (see e.g. Ref. [112]).  In

Chapter 3 it was desired to obtain quadrature (phase) information for multiple

backscattered time records so that a synthetic aperture algorithm could be implemented.

In Chapter 7 the envelope of a time record was needed.  Both the quadrature and

magnitude (envelope) may be obtained with what is often called the analytic signal.  For

the present purposes a graphical description of the analytic signal is sufÞcient.  Figure B.1

shows the analytic signal for an experimental time record (an example of the a0 meridional

ray enhancement from Chapter 7).  The original voltage signal is the black curve while the

dashed helical curve is the analytic signal.  In this case it is obtained by the built in function

ÒhilbertÓ in Matlab¨.  Typically the Hilbert transform is deÞned as a real quantity (see

below) which represents the quadrature or out of phase component of the original real-

valued signal.  When combined in complex form with the original signal one obtains the

complex analytic signal.  It is this complex analytic signal which was used in the synthetic

aperture algorithm of Chapter 3.  To obtain the envelope one may simply take the

magnitude of the complex analytic signal.  The quality of this envelope may be gauged by

examining the example in Fig. 7.25 on page 250.  For signals with an appreciable DC offset

or unwanted low frequency components the envelope obtained in this way is not accurate.
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A simple solution is to apply a high-pass digital Þlter to the time record before computing

the envelope.

The deÞnition of the Hilbert transform may be found, for example, in Ref. [112] and is

given by,

(B.1)

where  is a real valued function.  One can see that the Hilbert transform is a real

quantity as well.  The analytic signal is then deÞned to be the complex function,

. (B.2)

It is apparent that both the Hilbert transform and the analytic signal at a given time t

depend on all past and future values of the function .  The actual evaluation of the

Hilbert transform is not as difÞcult as it may appear from Eq. (B.1).  The Hilbert transform
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FIG. B.1  Solid line: experimental time record of a meridional ray backscattered return from a

Þnite cylindrical shell; dashed line: analytic signal of the experimental record used to calculate

the envelope of the time series.
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may be thought of as a 90° phase shift ÞlterÑall sine components of a waveform transform

into cosines and all cosine components transform into negative sines.  This may be

implemented with the Fourier transform113.  One takes the Fourier transform of ,

replaces all the negative frequency components of the transform with zero, multiplies all

the positive frequency components by two and performs an inverse Fourier transform.

The imaginary part of the result is the Hilbert transform and the real part is the original

time series.

B.3 Lamb Wave Reßection From the End of a 

Semi-InÞnite Plate in Vacuum

The following code was used to calculate the reßection coefÞcients shown in Figs.

7.7(b), 7.8(b), and 8.5.  This code requires input of the roots of all Lamb modes of

importance.

Reflallvac.m

%.....Matlab program to calculate the reflection 
%     coefficient for a single ANTISYMMETRIC Lamb
%     wave incident on a plate FREE edge using
%     eigenfunctions for an infinite plate in vacuum.
%     Input of the appropriate roots as a function
%.....of frequency is required.

%.....Written by Scot Morse, 3/5/98.
%.....Updated 5/29/98 for Plate B case.

%__________________BEGIN_____________________________
%.....SS304 Material parameters
  ct=3.141;
  cl=5.6750;
  rhoe=7.57;
  mu2=rhoe*ct*ct;
  lambda2=rhoe*(cl*cl-2*ct*ct);
%.....Plate B (Shell B) half thickness in mm
  h=0.50*0.1625*21.02;
      
%.....Load previously calculated roots:

file1='a0.dat'; % Incident wave -->
file2='a0r.dat'; % Reflected waves <--

f t( )
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file3='a1r.dat'; %       ““
file4='num0r.dat';
file5='num0rc.dat';
file6='num1r.dat';
file7='num1rc.dat';
file8='num2r.dat';
file9='num2rc.dat';
file10='num3r.dat';
file11='num3rc.dat';
file12='num4r.dat';
file13='num4rc.dat';
file14='num5r.dat';
file15='num5rc.dat';
file16='num6r.dat';
file17='num6rc.dat';
file18='num7r.dat';
file19='num7rc.dat';
file20='num8r.dat';
file21='num8rc.dat';
file22='num9r.dat';
file23='num9rc.dat';

numfiles=23;

%.....Initilize full data matrix.  The column format
%.....assumed for the above files is
%  "frequency    real(kx)   imag(kx)   anything else"
%     1.5 MHz      xxxx      xxxx
%     1.498 MHz    xxxx      xxxx
%     . . .        . . .     . . . 
%     0.002 MHz    xxxx      xxxx
% --> 750 rows

fulldata=zeros(750,3,numfiles);

for ii=1:numfiles
  filename=eval(strcat('file',num2str(ii)));
  fid=fopen(filename,'r');
  data=fscanf(fid,'%e',[5,Inf]);
  fclose(fid);
  fulldata(:,:,ii)=(data(1:3,:)).';
  clear('data');
end

%_______________________Begin main loop_______________________ 

%.....Initialize matrix that will hold all the reflection
%.....coefficients as well as frequency and error.

rcoeff=zeros(750,2*(numfiles-1)+2);

%.....Initialize matrix that will hold the power flow values
%.....for each mode.
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powermat=zeros(750,numfiles);

jj=0;

for j=1:1:750

  jj=jj+1;
  clear('Rvec','Amat','Cvec');

  freqpos=750-(j-1);
  f=fulldata(freqpos,1,4);
  rkx=reshape(fulldata(freqpos,2,1:numfiles),numfiles,1);
  ikx=reshape(fulldata(freqpos,3,1:numfiles),numfiles,1);

%     Incident wave --> +a0 (the first component in kx)
  
  kx=rkx+i*ikx;
  w=2*pi*f;
  ks=w/ct;
  kl=w/cl;
  eta2=sqrt(kl*kl-kx.*kx);
  nu=sqrt(ks*ks-kx.*kx);
  
  lenkx=length(kx);
      
  zpos=[-1:.005:1]*h; % Discretization of end face
  znum=length(zpos);
  mat1=ones(1,znum);
  
%.....Stress equations (x=0) First column is incident
%     wave at each z position (-h,  0,  h).'.  Remaining
%.....columns are reflected waves at each z position.

  T31A=(2*i*mu2*(eta2.*kx)*mat1.*(cos(eta2*zpos)-((cos(eta2*h)./
       cos(nu*h))*mat1).*cos(nu*zpos))).';
  T11A=(mu2*(((2*eta2.*eta2-ks.*ks)*mat1).*sin(eta2*zpos)-(((nu.*nu-
       kx.*kx).*sin(eta2*h)./sin(nu*h))*mat1).*sin(nu*zpos))).';

%.....Displacement equations (x=0).  Used for normalization.

  uxA=(i*(kx*mat1).*sin(eta2*zpos)+((i*(nu.*nu-kx.*kx).*sin(eta2*h)./
      (2*kx.*sin(nu*h)))*mat1).*sin(nu*zpos)).';
  uzA=((eta2*mat1).*cos(eta2*zpos)+((2*eta2.*kx.*kx.*cos(eta2*h)./
      ((nu.*nu-kx.*kx).*cos(nu*h)))*mat1).*cos(nu*zpos)).';
  
%.....Normalize with the appropriate component of the energy flux vector 
%.....of the incident mode: (vector velocity) dot (vector stress).
%.....Presently only calculates real part of P.

  power_rvec2=0.25*i*w*(2*h/znum)*sum(conj(uxA).*T11A+conj(uzA).*T31A-
              uxA.*conj(T11A)-uzA.*conj(T31A));
  
  
%.....Calculate the power flow ratio for each mode.  Use for checking 
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%.....the direction of energy flow of each mode.
  powermat(jj,:)=real(power_rvec2(1,:))/abs(power_rvec2(1));
  
  power_rvec=power_rvec2;
  
%.....Now assemble overdetermined set of equations A.r=C
%     where the r's are the unknown reflection coefficients
%     A is the matrix of stress values of the reflected
%     waves and C is the vector of stress values of the 
%.....incident wave.

  Amat=ones(2*znum,lenkx-1);
  Amat(1:znum,:)=T31A(:,2:lenkx);
  Amat(znum+1:2*znum,:)=T11A(:,2:lenkx);
  Cvec=ones(2*znum,1);
  Cvec(1:znum,1)=-T31A(:,1);
  Cvec(znum+1:2*znum,:)=-T11A(:,1);
  
%.....Compute reflection coefficients using built in Matlab 
%.....least square capability.
  
  Dvec=Amat\Cvec;
  power_ratio=(real(power_rvec(2:numfiles))/(real(power_rvec(1)))).';
  power_ratioimag=(imag(power_rvec(2:numfiles))/(real(power_rvec(1)))).';
  Rvec=(conj(Dvec).*Dvec).*power_ratio;
  Rvecimag=(conj(Dvec).*Dvec).*power_ratioimag;
  
%.....Mean square error

  Error_vec=(Amat*Dvec-Cvec);
%  err=Cvec'*Cvec-Cvec'*Amat*Rvec;
  mserror=(Error_vec'*Error_vec)*2*h/znum;
  
  rcoeff(jj,1)=f;
  rcoeff(jj,2*numfiles)=mserror;
  rcoeff(jj,2:2:2*(numfiles-1)+1)=real(Rvec.');
  rcoeff(jj,3:2:2*(numfiles-1)+1)=real(Rvecimag.');
  
end

%.....Plot the reflection coefficients

  figure(1)
%  plot(rcoeff(1:jj,1),rcoeff(1:jj,2),'b-');
  plot(rcoeff(1:jj,1),abs(rcoeff(1:jj,2)),'k-');    % a0
  hold on
  plot(rcoeff(1:jj,1),abs(rcoeff(1:jj,4)),'k--');   % a1
  plot(rcoeff(1:jj,1),abs(rcoeff(1:jj,6)),'k-.');   % a2
  plot(rcoeff(1:jj,1),abs(rcoeff(1:jj,8)),'k:');    % a2*
  hold off
  xlabel('frequency (MHz)');
  ylabel('|d|̂ 2 Pr');
  
%.....Plot the mean squared error
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  figure(2)
  plot(rcoeff(1:jj,1),rcoeff(1:jj,2*numfiles),'k-');
  xlabel('frequency (MHz)');
  ylabel('error');
  
%.....Calculate and plot the total energy

  propdir=sign(powermat(1:jj,2:numfiles)+eps);

  tot_energy=sum((abs(rcoeff(1:jj,2:2:2*(numfiles-1)+1)).*propdir).');
  figure(3)
  plot(rcoeff(1:jj,1),tot_energy.','k-');
  max(tot_energy)
  min(tot_energy)
  axis([0 1.5 0.99 1.01]);
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