
Dr. Scot Morse
Department of Computer Science

Western Oregon University

October 5, 2011

PROGRAMMING LAB 2 — Using a Stack to Perform Arithmetic

In this lab you’ll use a Stack ADT implementation to write a calculator program. As
discussed in lecture and the notes a stack is integral to evaluating postfix expressions. So
our calculator will be a postfix calculator. You may ultimately write your program as a GUI
program or a command line program. However, applets will not be allowed, so if you choose
to write a GUI program it must be a stand-alone application.

Let’s get a few requirements out of the way first:

1. We’ll turn this in the same way as Lab 1 so follow the same procedures (username Lab2.zip).

2. No matter what, the top level Java file for your program must be called Calculator.java.
I should be able to compile and run your GUI or command line application by typing
the following on the command line from within your folder: javac Calculator.java
and then java Calculator. The files you must submit are:

• StackADT.java

• LinkedStack.java

• Node.java

• Calculator.java

• Plus anything else needed for your GUI or command line program

3. All filenames and method names and signatures must be exactly as directed below. The
automatic grading code assumes it can find exact methods inside exact files or it will
not work. Just pay attention to the requirements in the Problems sections below.

4. Print out all your code and turn in at the beginning of class on the due date. Please,
please, please make sure your code is nicely formatted. Do not copy and paste into
Word – it looks horrible. I’ll pay a quarter if you print it out in color with proper
syntax highlighting (as all IDE’s do) and no sloppy line wrapping.

CS 260 Programming Lab 2 Fall 20111

Problem 1. StackADT implementation

To use a stack we must first have one. Your first task is to implement a linked stack
and get it working perfectly. Type or copy in the StackADT.java file from the lecture
notes and then complete LinkedStack.java. It is all there in the lecture notes but
make sure you understand what is going on. Feel free to implement it yourself without
relying on the notes, but make sure you implement the StackADT interface as it is found
in the lecture notes. (A reminder: you cannot use code from anyplace other than from
yourself or from me. So if you acquired a textbook, use it only as a guide and do not
copy anything.)

To test your implementation with JUnit, feel free to use the Lab2Test.java file located
on the class website (right next to where you got this file). It is written for both
LinkedStack and the calculator part of this lab.

Problem 2. Postfix calculator

For this part of the lab, you are to implement the functionality of a postfix calculator
that uses your linked stack to perform the calculation. To simplify things, this calculator
simply takes an input expression and returns the answer. String in; string out. The user
submits an input expression, in postfix form, and is handed back the answer. Note, ours
must handle decimal numbers in addition to integers. That is, your calculator should be
able to return an answer of 14.7186875 when given an input of: 2.71 3.95 ∗ 4 / 2.2 3.3 + ∗.
Let’s not bother with accepting literals in other bases such as hexadecimal or octal.

Begin by writing a class called Calculator.java. At the very least, this class must:

(a) use a default constructor to set itself up,

(b) contain a main method (the usual public static method used to run standalone
programs)

(c) and contain the following method:

/∗∗
∗ Evaluate an ar i t hme t i c expre s s i on wr i t t en in p o s t f i x form .
∗
∗@param input Mathematical e xp re s s i on as a S t r ing
∗@return Answer as a S t r ing
∗@exception I l l e ga lArgumentExcep t ion I n v a l i d input s t r i n g
∗/

public St r ing eva luatePostFixInput (S t r ing input)
{
// . . . Your code here
}

The unit testing code will test your stack by itself, and then test this method to see
if you implemented the calculator correctly. Within this method, evaluate the input
expression using your linked stack class and format the output as a string which you
return.

Please see the unit testing file for examples of postfix input and the answer I expect. A
basic problem is the accuracy of the results expected (since we’re doing floating point

CS 260 Programming Lab 2 Fall 20112

math). You will be fine if your code uses double for the arithmetic. Do not try to
handle integers differently.

Problem 3. User Interface

Once you have the calculator implemented please create a GUI or command line
interface so that you can actually use your calculator. There are no requirements for
this part other than that it must somehow be usable by a normal person (who knows
postfix!) and run from the main method inside the Calculator class (i.e. I should be
able to run your code by typing this from the command line: java Calculator.

If your program requires special instructions to use, make sure I get them automatically
when the program is run.

Hint

To extract the numbers and operators from the input string I suggest using the java.util.Scanner
class.

Submitted by Dr. Scot Morse on October 5, 2011.

CS 260 Programming Lab 2 Fall 20113

