Body Fluids:

1) **Water**: (universal solvent)

Body water varies based on age, sex, mass, and body composition.

- $H_2O \sim 73\%$ body weight
 - Low body fat;
 - Low bone mass

- $H_2O (♂) \sim 60\%$ body weight
- $H_2O (♀) \sim 50\%$ body weight
 - $♀ = \uparrow$ body fat / $↓$ muscle mass

- $H_2O \sim 45\%$ body weight
Body Fluids:

1) **Water**: (universal solvent)

Total Body Water
- **Volume = 40 L**
 - (60% body weight)

Intracellular Fluid (ICF)
- **Volume = 25 L**
 - (40% body weight)

Extracellular Fluid (ECF)
- **Volume = 15 L**
 - (20% body weight)

Plasma
- **Volume = 3 L**

Body Fluids:

2) **Solute**

A) **Non-electrolytes**
- (do not dissociate in solution – neutral)
 - Mostly organic molecules
 - (e.g., glucose, lipids, urea)

B) **Electrolytes**
- (dissociate into ions in solution – charged)
 - Inorganic salts
 - Inorganic / organic acids
 - Proteins

Units for measuring [solute]:

A) **mole / liter (mol / L)**
- mole = 6.02 x 10^{23} molecules
 - A glucose concentration of 1 mol / L has
 6.02 x 10^{23} glucose molecules in 1 L of solution

B) **osmoles / liter (osmol / L)**
- osmole = # of particles into which a
 solute dissociates in solution
 - 1 mol / L of NaCl is equal to 2 osmol / L
 because NaCl dissociates into two particles

C) **equivalents / liter (Eq / L)**
- equivalent = # of moles x valence
 - 1 mol / L of CaCl_{2} equates to 2 Eq / L of Ca^{2+}
 and 2 Eq / L of Cl^{-} in solution

D) **pH** (used to express H^{+} concentration)
- pH = -\log_{10} [H^{+}]
 - A [H^{+}] of 6.5 x 10^{-8} Eq / L equates to a pH of 7.19
Body Fluids:

2) **Solutions:**

- The solute composition varies greatly between the ECF and ICF

Each body fluid compartment has the same concentration, in mEq/L, of positive ions (cations) and negative ions (anions)

(Principle of Macroscopic Electroneutrality)

The total solute concentration (osmolarity) is the same in ICF and ECF

(water moves freely across cell membranes)

HOWEVER

<table>
<thead>
<tr>
<th>Substance</th>
<th>ECF (mEq/L)</th>
<th>ICF (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>140</td>
<td>14</td>
</tr>
<tr>
<td>K⁺</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2.5</td>
<td>1 x 10⁻⁴</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Osmolarity (mOsm/L)</td>
<td>290</td>
<td>290</td>
</tr>
</tbody>
</table>

The differences in solute concentration across cell membranes are created and maintained by transport mechanisms in cell membranes
Cell Membrane Structure:

Fluid mosaic model

A) **Lipid bilayer**
 - Phospholipids (amphipathic)
 - Functional barrier

B) **Integral proteins**
 - Transport proteins
 - Pore / channel proteins
 - Anchor proteins (CAMs)
 - Receptor proteins

C) **Peripheral proteins**
 - Anchor proteins
 - Enzymes

Transport Mechanisms:

Simple Diffusion:
Substances diffuse directly through membrane or through channel (no interaction with protein)

Factors affecting net diffusion (flux):

1) Concentration gradient ($C_A - C_B$)
 - \uparrow concentration gradient = \uparrow flux

2) Partition coefficient (K)
 - $K = \frac{[\text{solute}] \text{ in oil}}{[\text{solute}] \text{ in water}}$
 - $\uparrow K = \uparrow$ flux

3) Thickness of membrane (Δx)
 - \downarrow thickness = \uparrow flux

4) Size of solute molecule
 - \downarrow size = \uparrow flux

5) Viscosity of medium
 - \downarrow viscosity = \uparrow flux

6) Surface area (A)
 - \uparrow surface area = \uparrow flux

Guyton & Hall (Textbook of Medical Physiology, 12th ed.) – Figure 2.3
Transport Mechanisms:

Simple Diffusion:
Substances diffuse directly through membrane or through channel (no interaction with protein)

- Downhill transport
- Lipid bilayer

Determining rate of net diffusion:

\[
J = PA (C_A - C_B)
\]

- \(J \) = Net rate of diffusion (mmol/sec)
- \(P \) = Permeability (cm/sec)
- \(A \) = Surface area for diffusion (cm^2)
- \(C_A \) = Conc. of solution A (mmol/L)
- \(C_B \) = Conc. of solution B (mmol/L)

* Includes K, D, and membrane thickness

Facilitated Diffusion:
Substances interact with carrier proteins (conformational/chemical changes)

- Downhill transport
- Lipid bilayer

Characteristics of carrier-mediated transport: Saturation

Stereospecificity:
- Recognize specific molecular isomers

<table>
<thead>
<tr>
<th>D-glucose</th>
<th>L-glucose</th>
</tr>
</thead>
</table>

Competition:
- Recognize chemically-related solutes

<table>
<thead>
<tr>
<th>D-glucose</th>
<th>D-galactose</th>
</tr>
</thead>
</table>

Chemical gradient
Transport Mechanisms:

Saturation:

Rate of Diffusion

\[\text{Rate of Diffusion} = \frac{\text{Concentration of Substance}}{V_{\max}} \]

WHY?

- **Simple diffusion**
 - Increase # of carrier proteins

- **Facilitated diffusion**
 - Process takes time

Transport maximum \((T_{\text{Max}}) \)

Ultimately, all carriers actively involved in shuttling substances

Primary Active Transport:

Energy derived from the breakdown of ATP is directly coupled to the transport process

Other examples:
- \(\text{Ca}^{2+} \) pump
- \(\text{H}^+ / \text{K}^+ \) pump

Na\(^+ / \text{K}^+ \) Pump:

- **Outside**
 - \(\text{Na}^+ \): 142 mEq/L
 - \(\text{K}^+ \): 4 mEq/L

- **Inside**
 - \(\text{Na}^+ \): 10 mEq/L
 - \(\text{K}^+ \): 140 mEq/L

Two sub-units:
- \(\alpha \) subunit
- \(\beta \) subunit

Guyton & Hall (Textbook of Medical Physiology, 12th ed.) – Figure 4.8

Guyton & Hall (Textbook of Medical Physiology, 12th ed.) – Figure 4.11
Transport Mechanisms:

Primary Active Transport:
Energy derived from the breakdown of ATP is directly coupled to the transport process.

How much energy is required for active transport?

It depends on the strength of the concentration gradients being established…

Energy (cal/osmole) = $1400 \log (C_1 / C_2)$

- $10x = 1400 \text{ cal}$
- $100x = 2800 \text{ cal}$

May require 60–90% of cell's energy!

Secondary Active Transport:
Energy derived from concentration gradient established by primary active transport.

A) Cotransport (symport)
Solutes transported in the same direction across membrane.

Both solutes required for transporter to function

Costanzo (Physiology, 4th ed.) – Figure 1.7
Transport Mechanisms:

- **Uphill transport** (metabolic energy required)

Lipid bilayer

Secondary Active Transport:

Energy derived from concentration gradient established by primary active transport

B) Countertransport (antiport)

Solute transported in opposite directions across membrane.

Both solutes required for transporter to function.

Prescription Drug:

Cardiac glycosides are a class of drugs that inhibit Na⁺/K⁺ pumps.

Digitalis

A cornerstone for the treatment of heart failure (↑ cardiac contractility)

Common foxglove

Digitalis purpurea
Osmosis:

Movement of water across a semi-permeable membrane due to differences in solute concentrations.

Osmosis depends on the osmolarity of the two solutions in question:

\[\text{Osmolarity} = g \cdot C \] (mOsm / L)

- \(g \) is the number of particles per mole in solution (Osm / mol)
- Takes into account whether there is complete or partial dissociation
- \(C \) is concentration (mmol / L)

- Isosmotic: Solutions with same osmolarity
- Hyperosmotic: Solution with ↑ osmolarity
- Hyposmotic: Solution with ↓ osmolarity

Osmotic pressure (\(\pi \)) depends on:

1. Concentration of osmotically active particles
2. Ability of solute to cross membrane

\[\pi = g \cdot C \cdot \sigma \cdot R \cdot T \]

- \(\pi \) is Osmotic pressure (atm)
- \(g \) is # of particles per mole in solution (Osm / mol)
- \(C \) is Concentration (mmol / L)
- \(\sigma \) is Reflection coefficient (varies from 0 – 1)
- \(R \) is Gas constant (0.082 L – atm / mol – K)
- \(T \) is Absolute temperature (K)

25.5 L = atm / mol

Guyton & Hall (Textbook of Medical Physiology, 12th ed.) – Figure 4.10
Osmosis:

Reflection coefficient: Ease at which a solute crosses a membrane

\[\pi = g \, C \, \sigma \, R \, T \]

Tonicity: The effective osmotic pressure between two solutions

Isotonic:

Net water movement from a hypotonic solution to a hypertonic solution

Costanzo, Physiology, 4th ed.) – Figure 1.10