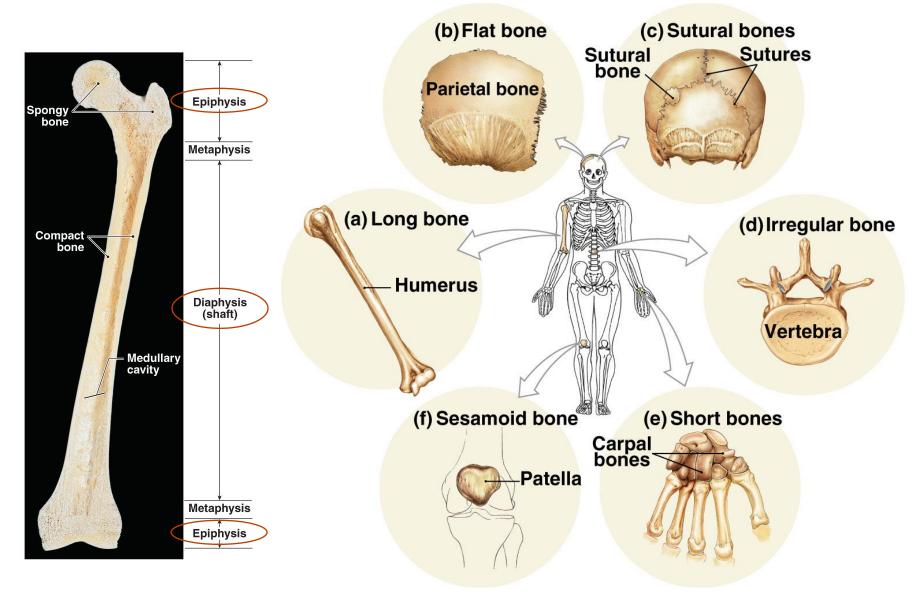


The Skeleton ("Dried-up Body"):

Composed of:

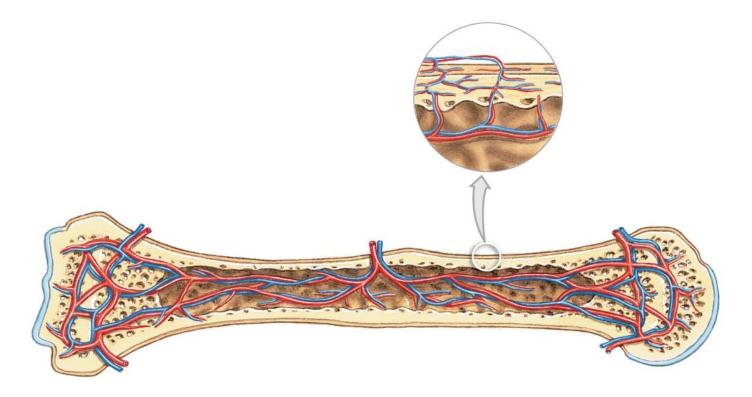
- 1) Bones (206 named bones)
 - Axial (skull, vertebral column, bony thorax)
 - Appendicular (upper / lower appendages)
- 2) Cartilage
 - Hyaline (most abundant)
 - Articular cartilage (joints)
 - Costal cartilage (ribs \rightarrow sternum)
 - Respiratory cartilage (larynx / trachea)
 - Nasal cartilage (nose)
 - Elastic (external ear / epiglottis)
 - Fibrocartilage (intervertebral disks / menisci)
- 3) Ligaments
- 4) Joints



Functions of the Skeleton:

- 1) Support (solid framework):
 - Support body; cradle soft organs
- 2) Protection:
 - Provide snug enclosures for vital organs
- 3) Movement:
 - Work with muscles to move body and / or body parts
- 4) Storage:
 - Serve as reservoirs for minerals (e.g., calcium)
 - Serve as reservoirs for triglycerides (bone cavity)
- 5) Hematopoiesis:
 - Location of blood cell production

Macroanatomy of Bone:

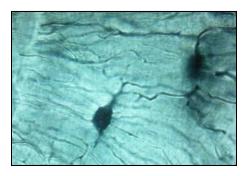


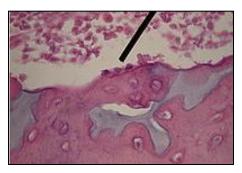
Bones are Organs that are Alive!

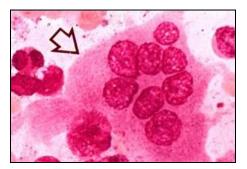
- Composed primarily of osseous connective tissue
- Also contains nervous, muscle, and epithelial tissue

(nerves)

(blood vessels)

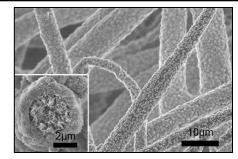



Composition of Bone - Cells:


- A) Osteocytes (most common present):
 - Mature bone cell; can not divide
 - Connect via passageways to neighboring cells
 - Communicate via gap junctions
 - Function: 1) Maintain protein / mineral content of matrix
 - 2) Repair damaged bone (cell conversion)
- B) Osteoblasts:
 - Produce new bone matrix (osteogenesis)
 - Collagen / proteoglycans / glycoproteins (osteoid)
 - Located at surface of bone tissue; mature to osteocytes
- C) Osteoclasts (large, multi-nucleated cells):
 - Remove / recycle bone matrix (osteolysis)
 - Acids (dissolve inorganic crystals) ; Enzymes (digest collagen)

Osteoprogenitor cells:

Stem cells that produce osteoblasts; located in periosteum / endosteum

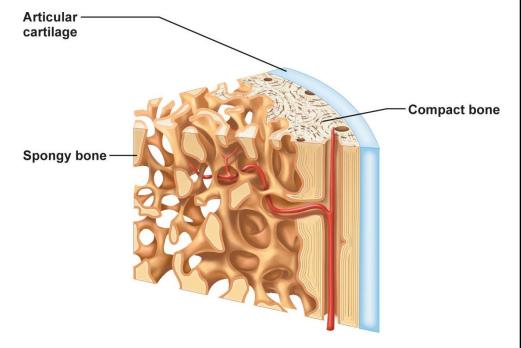


Composition of Bone - Matrix:


- 1) Calcium phosphate $(Ca_3(PO_4)_2) \sim 2/3$ of bone mass
 - Interacts with calcium hydroxide (Ca(OH)₂) to form crystals of hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂)
 - Hydration shell: Layer of water / ions forming around crystals
 - · Facilitates exchange of ions between crystals / body fluid
- 2) Collagen fibers ~ 1 / 3 of bone mass
 - Provide organic framework for hydroxyapatite crystals

Surface Coverings (Membranes) of Bone:

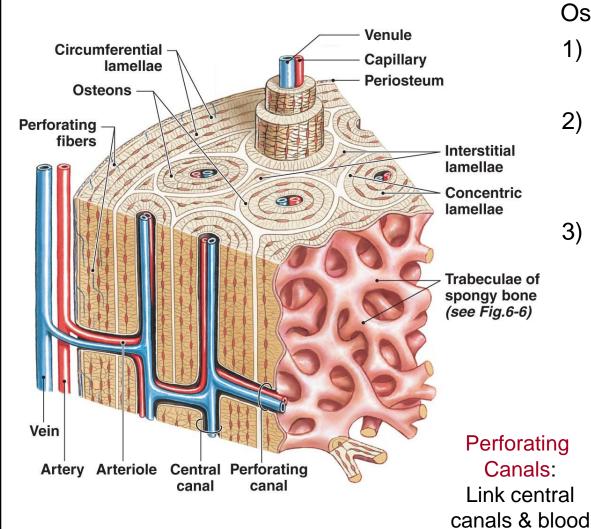
- A) Periosteum: Superficial layer of bone (except joint regions)
 - Fibrous outer layer (collagen fibers; fibroblasts)
 - Sharpey's Fibers = Collagen fibers; penetrate matrix
 - Cellular inner layer (osteoprogenitor cells)
- B) Endosteum: Internal layers lining all cavities within bone
 - Single layer of osteoprogenitor cells; \downarrow connective tissue



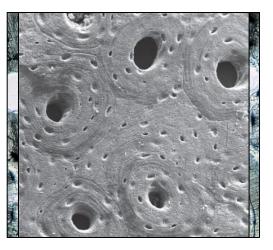
Surface Coverings (Membranes) of Bone:

- A) Periosteum: Superficial layer of bone (except joint regions)
 - Fibrous outer layer (collagen fibers; fibroblasts)
 - Sharpey's Fibers = Collagen fibers; penetrate matrix
 - Cellular inner layer (osteoprogenitor cells)
- B) Endosteum: Internal layers lining all cavities within bone
 - Single layer of osteoprogenitor cells; \downarrow connective tissue

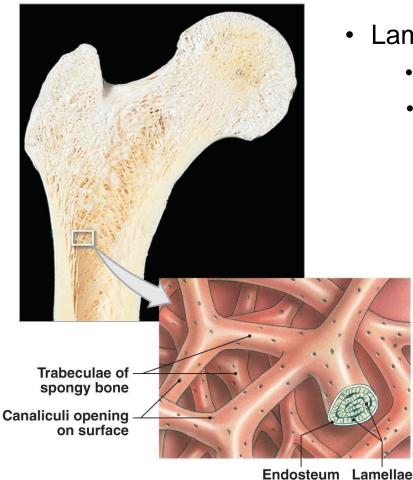
Types of Bone:


- 1) Compact Bone: Dense & solid
- 2) Spongy Bone: Air-filled pockets (Cancellous bone)

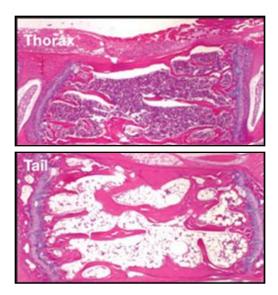
supply


Microanatomy of Compact Bone:

Osteon: Structural unit of bone


Osteon contains:

- 1) Central canal
 - Blood vessels
- 2) Lamellae
 - Calcified matrix sheets
 - Cylindrical arrangement
- 3) Osteocytes
 - Sit in small pockets (lacunae)
 - Connected via canaliculi


Microanatomy of Cancellous (Spongy) Bone:

Benefit: Reduced bone weight

Lamellae not arranged in osteons

- Matrix forms struts / plates called trabeculae
- Marrow located between trabeculae

Red Marrow: Blood cell formation

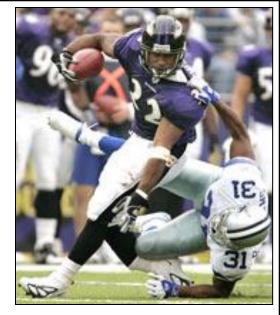
> Yellow Marrow: Lipid storage

Mechanics of Bone:

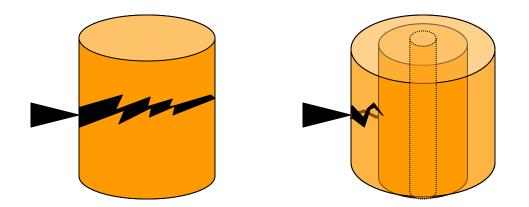
- Bone needs to:
- a) be stiff (but not too stiff)
- b) be lightweight
- c) not break

Mechanical Properties of Bone:

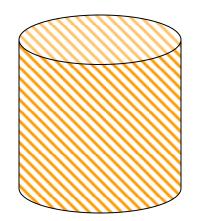
- 1) Bone is a composite:
 - Collagen fibers: strong (tension); flexible
 - Mineral crystals: strong (compression); stiff

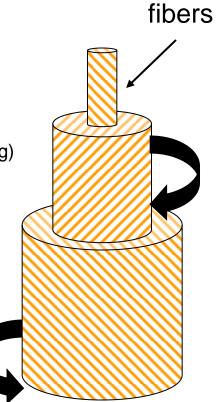


Must maintain balance



Rickets (osteomalacia): Softening of bone (loss of mineralization) Cause: Calcium / Vitamin D₃ deficiency




Mechanical Properties of Bone:

- 2) Bone is arranged in layers (compact bone):
 - Concentric layers (lamellae) inhibit crack propagation

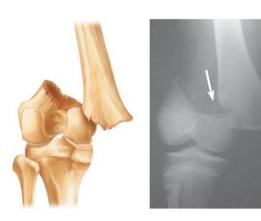
• Alternating orientation of collagen fibers resist torsion (twisting)

Collagen

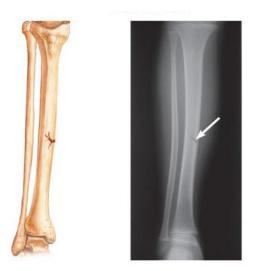
Classification of Fractures:

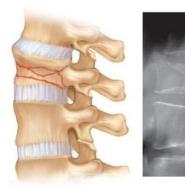
- 1) Position of bone after fracture
 - Nondisplaced fracture: Bone ends retain normal position
 - Displaced fracture: Bone ends out of normal alignment
- 2) Completeness of break
 - Complete fracture: Bone is broken through
 - Incomplete fracture: Bone is not broken through
- 3) Orientation of the break (relative to long axis of bone)
 - Linear fracture: Break parallel to long axis
 - Transverse fracture: Break is perpendicular to long axis
- 4) Penetration of break (relative to skin)
 - Closed fracture: Bone ends do not exit skin
 - Open (Compound) fracture: Bone ends exit skin

Displaced fracture Complete fracture

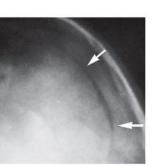

Transverse fracture Open fracture

Classification of Fractures:




Comminuted Fracture Bone is broken into \geq 3 fragments

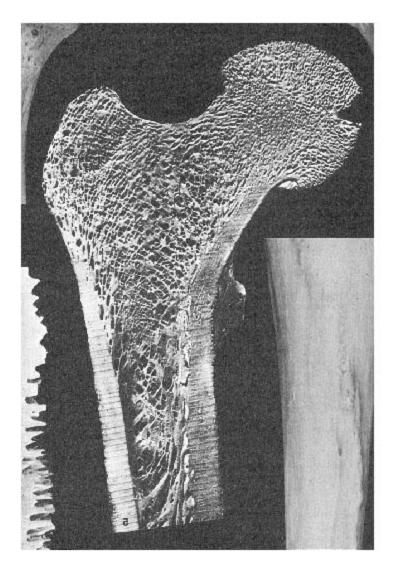
Epiphyseal Fracture Epiphysis / diaphysis separation


Greenstick Fracture Incomplete break; common in children

Crushed vertebra

Compression Fracture Bone is crushed under extreme forces

Depressed Fracture Broken bone portion pressed inward


Spiral Fracture Ragged break due to twisting forces

Martini & Nath - Figure 6.7


Chapter 6: Skeletal System

Mechanical Properties of Bone:

3) Trabeculae arranged along lines of stress (spongy bone):

Spongy bone: Stress from many directions compared to Compact bone: Stress from a single direction

- 4) Long bones are hollow:
 - Reduced weight
 - Increased strength

Hollow cylinders are stronger than solid cylinders (of same mass...)

Bone Development:

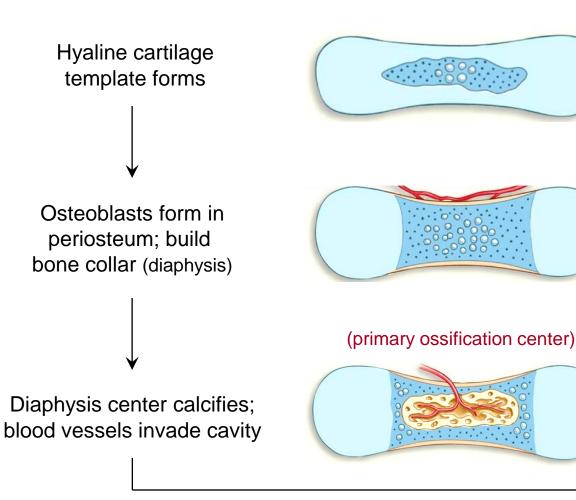
- 1) Intramembranous Ossification (dermal ossification):
 - Bone develops from fibrous connective tissue
 - Relatively uncommon (e.g., skull / clavicles)

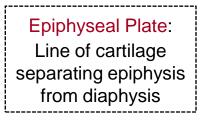
(compact bone) Bone collar forms; periosteum forms

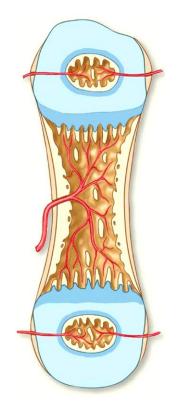
Trabeculae form

Spicules form; trap blood vessels

Osteoblasts develop in dermal layer


Osteoblasts cluster and secrete osteoid (ossification center)


Osteoblasts trapped; convert to osteocytes


Bone Development:

- 2) Endochondral Ossification:
 - Bone develops from hyaline cartilage
 - Most common (e.g., all bones from skull down (sans clavicles))

(secondary ossification centers)

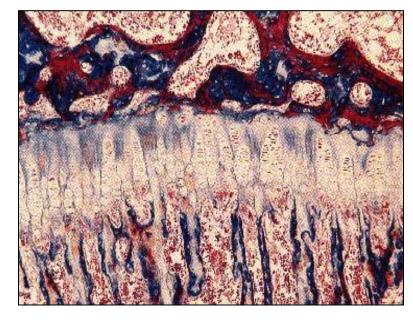
Diaphysis elongates; epiphyses ossify

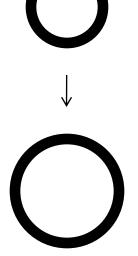
Bone Growth:

- 1) Appositional Growth: Increases bone width
 - Osteoblasts (periosteum) form bone
 - Osteoclasts (endosteum) resorb bone
- 2) Interstitial Growth: Increases bone length
 - · Growth occurs at epiphyseal plates

Epiphyseal side

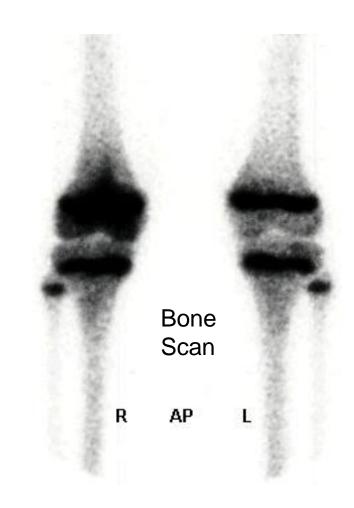
Epiphyseal side: Cartilage cells rapidly divide


Diaphyseal side: Osteoblasts convert cartilage to bone


Epiphyseal plate eventually ossifies:

- Female = ~ 18 years
- Male = ~ 21 years

Cortical size / shape maintained


Diaphyseal side

9 year old child:

(a) Epiphyseal cartilages

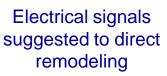
(b) Epiphyseal lines

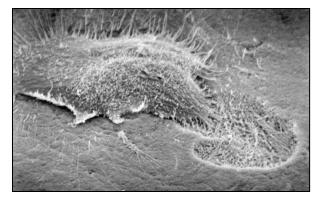
When Things Go Very Wrong:

Fibrodysplasia Ossificans Progressiva (Uncontrolled bone growth)

Fibrous tissue (e.g., muscle / tendon / ligament) ossifies when damaged

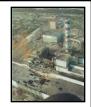
Genetic Disorder: Extremely Rare: 1 / 2,000,000 births

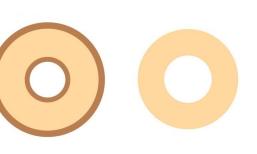

Bone Remodeling:


- 5 7% of bone mass recycled each year
- A) Bone Deposition (Osteoblasts)
 - Secretion of osteoid and collagen fibers
- B) Bone Resorption (Osteoclasts)
 - Acid secretion = Inorganic matrix digestion
 - Enzyme secretion = Organic matrix digestion

Functions of Bone Remodeling:

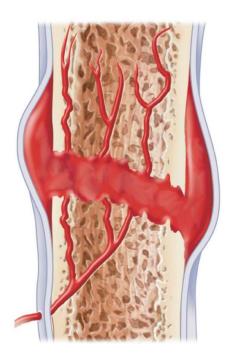
- 1) Maintenance (normal growth)
- 2) Reshape Bones
 - Wolff's Law: Bones remodel in response to forces placed on them





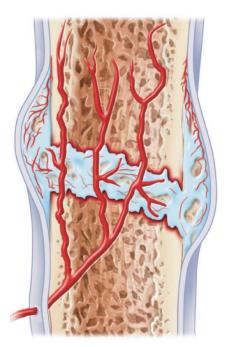
Heavy-metal ions can be incorporated

into bone matrix

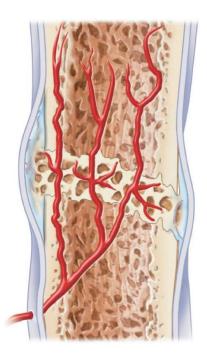


Functions of Bone Remodeling:

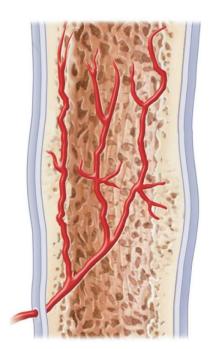
3) Repair Bones:


Hematoma Formation:

Clotting seals injured blood vessels


Cartilaginous Callus Formation:

Cartilage fills in damaged area


Bony Callus Formation:

Spongy bone replaces cartilage

Bone Remodel:

Compact bone Lines shaft wall

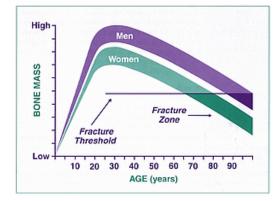
Functions of Bone Remodeling:

- 4) Maintain Blood Calcium Levels:
 - Regulation via negative feedback loops (endocrine system):
 - A) Calcitonin (Thyroid gland):
 - Decrease blood Ca⁺⁺ levels (increase bone deposition)
 - B) Parathyroid Hormone (Parathyroid gland):
 - Increase blood Ca⁺⁺ levels (increase bone resorption)
 - Hormones inhibit / stimulate osteoclast activity

Osteoblast Osteoclast		bone deposition equals bone resorption
Osteoblast	Calcitonin	
Osteoclast		↑ bone deposition
Osteoblast	Parathyroid Hormone	↑ bone resorption
Osteoclast		

Typical human body ~ 2 kg of Ca⁺⁺ (99% deposited in bone)

Aging of the Skeletal System:


Osteopenia: Inadequate ossification

- Normal aging process (decreased osteoblast activity)
 - Peak bone mass ~ 35 40 years of age
 - Males ~ 3% loss / decade; Females ~ 8% loss / decade

Osteoporosis: Porous & fragile bone (spongy bone)

· Frequent in elderly; especially post-menopausal women

Influencing Factors:

- 1) \downarrow sex hormones
- 2) Calcium deficiency
- 3) Vitamin D deficiency
- 4) Inactivity