Polyandry in a marine turtle: Females make the best of a bad job

Patricia L. M. Lee* and Graeme C. Hays

School of Biological Sciences, Institute of Environmental Sustainability, University of Wales Swansea, Swansea SA2 8PP, United Kingdom
Edited by John C. Avise, University of Georgia, Athens, GA, and approved March 16, 2004 (received for review December 3, 2003)

The female perspective on reproductive strategies remains one of the most active areas of debate in biology. Even though a single mating is often sufficient to satisfy the fertilization needs of most females and the act of further mating incurs costs, multiple paternity within broods or clutches is a common observation in nature. Direct or indirect advantage to females is the most popular explanation. However, the ubiquity of this explanation is being challenged by an increasing number of cases for which benefits are not evident. For the first time, we test possible fitness correlates of multiple paternity in a marine turtle, an organism that has long attracted attention in this area of research. Contrary to the widespread assumption that multiple mating by female marine turtles confers fitness benefits, none were apparent. In this study, the environment played a far stronger role in determining the success of clutches than whether paternity had been single or multiple. A more likely explanation for observations of multiply sired clutches in marine turtles is that these are successful outcomes of male coercion, where females have conceded to superfluous matings as a compromise. Thus, multiple matings by female marine turtles may be a form of damage control as females attempt to make the best of a bad job in response to male harassment.

Ma i g ce, a . \quad e i a ci.ica deci i .ha a ha. e_{i} ig ifica . $i \quad a c$ a i di, idr a^{\prime} fi, $e_{i j}$ (1). The ad. a age. ae f a i ga fe a ibei b. it. A

 + .i e.i e.I. a i.e e, ig be , becat e,f, fe ae,

 fe ae e drci.e + cce (2), he ea .he ac. f a $i \mathrm{~g}$ i i adc.. fe ae. Ne.e.he e, fe ae, iati. i + fficie . c i a+te.ha, i, ide $a_{i j}{ }^{+}$ed.ha

 e e ec.i , a d. adi g+ , . i diec. be efi. + ch a i c ea ig, he ge e, ic. a ia, i ff, ig (eeh .he e a d a_{i} cia.ed, efe e ce i ef. 1 a d 3). I deed, be efi fe ae ha. e bee de a ed f a.a ie, f, ecie $(3, \dot{5})$.
The ee a a i aec e ig, bt. ca e a e i c ea i gi hich be efi ${ }_{{ }_{i}}$. fe a e_{i} ca beft d. 1 deed, ae $a_{i} \mathrm{~g}$. a egie ca be a ef forifte ci g a.o f + .i e a.e i. i.hi ct.che (6). A a.e a.i.eh .he i ba ed éta c fic. be.. e add e e cor e ce f a d .ha a e be eficia f, fe a e . Thi h .he i +g ge. .ha, ei, a ce ffe ae +.i e ai gae ilfac.
 fe ae a ibe.Fe ae h+dbe, etca.. a, e .ha etiedf, fe, ii a i . H e.e, becat e aec e ci a i at, c, a he h d f ha a e . a e i. be d hich fe ae + dch e, gi, eil ae e + te
 " a i g , he be, fa bad j b" (7). The ef e, be i i g.ha. fe ae ch e. a e + .i e .i e d e . ece a e_{i} i
 achie, ed b ige a.i g.
 ha, e a.o ac.ed + cha..e .i . The a ea beidea e a e^{\prime}. Mae d .c . ibt.e, e, drci be d.he, ii f
 .he ieih d fe a e + i e a i g. The fi. +d . c fi .he cot,e ce f + .i e a.e i, i,hi ct. che f atie t. e ff, ig (8) i edia, e .ed, ect a i .ha, fe a e gai ed fi. e be efi. fo a d + beha. i (9). E. e i ce, a e t die ha. edate ed .he i cide ce f t .i fa.he ed ct .che f, a. a ie, f a i e.t, e $+\mathrm{a}_{\mathrm{i}} \mathrm{CCaretta}$ caretta (gge head) (10, 11), Lepidochelys olivacea (i. e id e) (12), Lepidochelys kempi (Ke , id e) (13), Dermochelys coriacea (ea he bac) (14, 18), a d Chelonia mydas (g ee) (19, 22). I ca e he e t.i e a.e i. had bee de, ec, ed, be efi. . fe a e ha bee .he i. c
e a $a_{0} i$
 i, a gct.che f ff igf, he gee t_{t}, e e a i f A ce, i I a d. Pe.it, i.h a i i.ed a e, e had e, abi hed.ha. + .i e a e i, cotedi .hi + a i
 eat, ef, e drc.i.e + cce . Becat e fe aeg ee t_{t}. e
 a.e i. ibe he e, he fe ae ha ch, e a e e.ha ce. St ch ch ice + d + gge...ha. fe ae igh. be efi. f a d . The a cia. i be ee +.1 e ae i. a d i dica, f, e, drcie + cce a .he ef, e i. e. iga.ed. Thi + d i a a..e . i a ce, ai i g. he fi. e_{i} c eae f t.i e a i gb fe ae aie.t. e i a id + ai . I. a ci.ica ad. a ce e it, becat e .he .t die ha, ei ed.heh .he i fbe efi . fe ae a_{i}. he, i e e a a i, he $b_{i} e$. ed i cide ce f + i e áe i. i ai e + . e e, bt . e had e i ica e. ide ce . ${ }^{+} \quad$. .hi h.he i.

Materials and Methods

Gee t. e ig a.e. A ce i I a d (7.57'S, $\left.14.22^{\prime} \mathrm{W}\right)$, a i a ed ea .he id-A a .ic idge, b eed a d a . hei egg. Sa e ee e cec.ed dti g . b eedi g, ea Jata . A, i 1999 a d Dece be 1999. A, i 2000. I addi. . a e i, .he fac, a ifte ce, e, dtc.i.e + cce. We ha. e, h.ha. he, he a e, ie f.he, a d $f+d$.he beach ca $\mathrm{if}+\mathrm{e}$ ce hachig he . e (24). Da e a d ead. a e c di, f, eggi at ba i (25). Adt. fe ae. ${ }^{+}$. e a d.hei ff, itg e e. ht, a ed a .h ee beache : L g Beach (LB), N, h Ea. Ba (NEB), a d $\stackrel{S}{\mathrm{~S}} . \mathrm{h}$ We. Ba (SWB) (26), he e NEB ha da e a d
 e ie ha.eft da, cia_i be, ee ct.chadfe ae ie (27). I f, ai adt.fe a e i e (a, e ca a ace egh)

[^0]Table 1. Sample sizes (total N) for genotyped offspring

Nest code	Beach	Total N	Clutch genotyped, \%	PrDM for 2 loci (N)	PrDM for 5 loci (N)
1999					
TP36	LB	32	29	-	1.000/1.000 (32)
TP39	LB	35	27	0.921/0.878 (8)	1.000/0.999 (27)
TP5	NEB	55	52	-	1.000/1.000 (55)
TP44	NEB	44	27	-	1.000/0.999 (44)
TP51	NEB	31	94	-	1.000/0.999 (31)
TP53	NEB	59	59	-	1.000/0.999 (59)
TP48	SWB	43	44	0.975/0.970 (20)	1.000/0.999 (23)
	Total	299			
2000					
TT1	LB	56	51	-	1.000/1.000 (56)
TT2	LB	31	29	0.966/0.959 (17)	0.999/0.994 (14)
TT4	LB	50	51	0.968/0.969 (38)	0.998/0.989 (12)
TT5	LB	26	26	0.951/0.927 (12)	0.999/0.943 (14)
TT6	LB	28	24	0.911/0.869 (9)	1.000/1.000 (19)
TT8	NEB	33	34	-	0.999/0.999 (33)
TT9	NEB	51	53	-	0.999/0.999 (51)
TT10	NEB	46	49	-	1.000/1.000 (46)
TT11	NEB	29	21	0.944/0.923 (13)	0.999/0.997 (16)
TT13	NEB	27	23	0.947/0.921 (11)	0.999/0.997 (16)
TT14	NEB	25	24	0.941/0.910 (11)	0.999/0.993 (14)
	Total	402			

"Clutch" here refers to the fertilized clutch, excluding unfertilized eggs. The probabilities of detecting multiple paternity (PrDM) for each clutch with respect to the number of offspring (N) and loci that had been sampled are shown. PrDM values were estimated for two fathers that had equal ($0.5: 0.5$)/skewed ($0.667: 0.333$) contributions.
a_{a} ec $\operatorname{ded}($ ee ef. $24 \mathrm{f}, \mathrm{e}$. d), i addi.i. ct .ch i e a dha.chi gadfe.ii $\mathrm{a}_{\mathrm{i}} \mathrm{i}$ + cce $\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}$.

Field Methods. Adr e e a ed b .i. e bi ie. Bi ie ee.a e b + i ga6- , eie, i bi + che (S, eife Lab, a ie, High W c be, U.K.) a g.he ai i g edge f .hef, ef i e. Taggi ge +, ed.ha. dt ica.e a e e e . a e. A adt. fe ae a ed e e.h e.ha, had c et
. beache f, e.ig t, e.B d,i+e hada bee
 ba, igct.che e e a ed, a d.he e ca.i e ee ca. a. ed
 N de, ${ }^{+}$c.i.e b d, a g f hachig a ca ied ${ }^{\text {t. }}$ acc, di g, e , abj hed, c (29). N e , ha 0.1 f b d a a e f .he d, a ce .ica it. . B da e
 + . $\quad(50 \quad$ M EDTA $/ 2 \%$ SDS $/ 10 \quad$ M NaC $/ 50 \quad$ M Ti.HC a. H 8) a, .e e a.t e i .he fied a d ase edf.e. $\mathrm{Ti}_{\mathrm{i}}+\mathrm{e}_{\mathrm{i}}$ a e e ea. a e f. deadhachi g f + di , he e , a df deade b fegg , ha, had fai ed. ha.ch. The e, a e e efiedi ab +.e e, ha i . he fie dadase f.

Microsatellite Genotyping. Mic, a e i.e da a f, fi, e ci e e bai ed f, 18 ct . che f ff, i g a d.hei .he. O. he adt. fe ae ee a ge . ed., ide + a i a e e $\mathrm{f} \mathrm{e}+\mathrm{e}$ cie (ee de ai ${ }_{\mathrm{i}} \mathrm{i}$ Supporting Text, hich $\mathrm{i}+\mathrm{b} \mathrm{i}_{\mathrm{h}}$ hed a_{i} $+\quad$ i gif, aii .he PNAS eb i.e). Ct. che e e a edf a .h ee beache i 1999, bt . f LB a d NEBi .he e. b eedi g_{j} ea (Tabe 1). Gee .t . e ect. che a e a ge (e.g., 42,170 egg i .hi . d d) a d ct d . bee a ed. c e, i . Be, ee 20% a d 94% f ff,igi each ct.ch e e ge . ed (Tabe 1). F, a ct.che, e ff, i g e, ege. edf, a fi, e ci, bt, i, ei a ce e.e a ff, i ghad bee ge. edf, ci(Tabe1). The de f Neff a d Pi che (30) a + ed . $a_{i} e_{i j}$. he , a.i.ica e fde.ec.ig t.i e a.e i. i each ct.ch.

Thi de .a e i . acc + . .he + be fff, igad ci ; a ed, he ge . e f.he a e ., a d, he + a i a eefiete cie f.he ci i +e . .

DNA a e. ac.ed b + i g, he PUREGENE DNA i a i i. (Ge . a $\mathrm{S}_{\mathrm{i}}, \mathrm{e}$,) acc di g . .he $\mathrm{a}+\mathrm{fac}+\mathrm{e}, \mathrm{i}, \mathrm{c}-$.i . DNA c ce. $\mathrm{a}_{0} \mathrm{i} \quad \mathrm{a}_{\mathrm{i}} \mathrm{a}_{i} \mathrm{e}_{i j}$ ed $\mathrm{i} h \mathrm{haGe} \mathrm{e}+\mathrm{a}$. ech. ée (Pha acia). Fi, e ic a e íe ci eij+ cha ac, e i ed f, + e i g. ee \dagger. e e e a a . ed: CM58, CM3, CC7, CC117, a d CM84 $(21,31)$. I ge ea at . $3 \mu \mathrm{f}$ e. ac.ed DNA $(20 \mu \mathrm{~g} / \mu) \quad$ a + ed i $10-\mu \mathrm{PCR}$ i e c.ai i g 50 g feach i e, 0.2- Mc ce. $\mathrm{a}_{\mathrm{i}} \mathrm{i}$ feach dNTP (A e ha Pha acia), $0.4+$ i. f Taq e a e (ABge e, E ${ }^{+}$, St e, U.K.), 1μ f $10 \times$ PCR bt ffe (Bt ffe IV, ABge e), a d ei. he 1.5 (a e ce . CM84) , 2.5 (CM84) $\mathrm{M} \mathrm{MgC}_{2}$ (ABge e). The he a c di. e e a i i. ia 95.Cf, 2 if edb 30 c ce f55.C(CC7), 62.C(CM58, CM3, a d CC117), 64.C (CM84) f, 1 i, 72.C f, 1 i, 95.Cf, 45 , ec, a de di g i.hae.e i .e f72.Cf, 7 i.PCR dr ce e e a a ed, i ed, a da a ed b + i g .he CEQ8000 Ge e, ic A a i, e (Bec a C + .e).

Characterization of Microsatellite Loci. The h ge ei. fge . efete cie a a e edb+iga e ac. babi i. .e. a e icfete cie (32) ih. he g. a GENEPOP (33). The da.a e eff, he .e.ed f, de. ia, f Ha d. Wei be g
 d. Wei be getiibir e e $a_{i j} e_{i j}$ ed $e_{i} \quad b+, i g$,he e ac., e. i.h a Ma. chai ag, i.h. e, a e e ac, P . at e (34). He, e g . e deficie c a a . e .edi GENEPOP (35). A ca ot a i ba ed Ma . -chai de ef, ed i.h GENEPOPt ed he defat . de e i a i + be $(1,000)$, 500 bacche, a d 1,000 i.e $a_{0}{ }_{i}$, e bach. T i.e.iga.e i age dije +ibio, he h .he i, ha ge o e a e at e e i de e de.f ge. e a a .he at a . e, ed b + i g Fi he, e ac. .e. c . i ge c . abe f, a ai f ci i.h.he e.h db Wei (36), a i e e.edi GENEPOP. Ob e_{e}. ed a d e ec.ed he, e g i, ie e e.h e

Table 2. The number of paternal alleles at each locus

Nest code	CM58	CM3	CC7	CC117	CM84	Inferred no. of fathers
1999						
TP36	2	2	2	2	1	1
TP39	1	2	1	2	2	1
TP5	5	2	4	3	5	Unresolved
TP44	2	1	2	2	2	1
TP51	4	3	4	4	5	3
TP53	4	2	4	3	5	3
TP48	3	2	3	4	4	2
2000						
TT1	2	2	4	3	5	3
TT2	1	1	2	2	2	1
TT4	4	3	3	3	3	2
TT5	2	1	2	2	2	1
TT6	3	2	4	4	1	2
TT8	2	1	2	2	1	1
TT9	5	3	5	6	3	3
TT10	5	3	5	6	5	5
TT11	3	2	4	3	4	2
TT13	3	3	3	3	4	2
TT14	2	2	2	2	2	1

Instances of multiple paternity is detected where there are more than three paternal alleles at a locus (in bold) for a clutch. In all instances, evidence of three or more loci were found for at least three loci.
e.i a ed b GENEPOP (33). The fete c f t a e e a e_{i} i a.ed i.h CERVUS (37). T $a_{i j} e_{i j}$. he abi i. . ide .if i di. idr $\mathrm{a}_{\mathrm{i}} \mathrm{b}$. he + i ${ }^{a}$, ge e_{i}. ided b .he fi, e ic a e i. e + ed i .hi + d, babi ie fide .i. (PI) e e e e.i a ed (38) (, ee Supporting Text).

Analyses of Parentage. Ma.e a ge e e e de, e i ed diec. f .he, a ed fe ae, a d.he e ct d be be ed i .he ff ig ge . e . Pa, a a e e e eife, ed f
ff, igge e ee ae a a e e e e acc + .ed f. . F i g.he, ai aede cibedi ef. 21, + .i e a.e i. i act.ch a i fe, ed he e.ha . a e a a e e e e be.eda.e.ha e af. Whe . ae are i . . ed i fa.he i g a ct. ch, i. i. aigh.f, a d . a ig ff i g . each fa he . he ba if ha ed a e a a $\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}$. H^{\prime} e.e, he efahe aei..ed, a e i g.he + be
 $e_{i j} i \quad$ e. T e.h d e et, ed. The fi, ${ }^{+}$, ed DADSHARE
 e a.ed e be, ee i di, idt a (39) i, hi act.cha dide .if
 i.h ai.h eic ea ct, ei ig (40). Becat e t.a.i , i. ig a ead. e e, i a i f.he + be $f f$ fib ${ }^{c+},^{e_{i}}, e_{i} \quad \mathrm{f}$ ff,ig e e c fi ed, ha. e diffe e . fa he he e.he e e diffee ce a. e.ha e of (i di, idr a, e, fi di, idtr a e e he i e ef. a ' ${ }^{\prime}$, e.ed"). The ec d e, h d fi fe, i g.he i i + + be f fa.he f a ge a a a ha, i e e .ed i .he g a GERUD (41). E ec, edect i babi ie (42) e e a_{i} ca ot a.ed i.h GERUD. N a a e_{0} ic a a e_{i} (SPSS VERSION 11) e e t.ed. a e a cia i be, ee a, i,
 + cce.F, .he e.e., da af, a ea e e ed becat e , ig ifica, a_{i} cia, i, i.h.he ea $f_{i} \iota^{+}$d e i, ed (da, a

Results

A a e, etiiga, efe e ce $+\mathrm{a}_{\mathrm{i}} \mathrm{e}$ e ba ed e f $n=53 \mathrm{f}$, he 1999 b eedi g ea , a da .he $\mathrm{f} n=41 \mathrm{f}$, 2000 (ee Supporting Text). A a ${ }^{\prime}$ e e_{i} f. he ic, a.e i.e da.a
(ee Supporting Text) c fi ed, ha, each of c + d be, ea. ed a i de e de. The e a, h ed ig ifica . de, ia i Ha d. Wei be ge ec, ai, \quad fete cie a d babi íie fide . i_{i}, a d high babi ịie fect i a d
 ci. (See Tab e 4 a d 5, hich a e $+\mathrm{b}_{\mathrm{i}}$ hed $\mathrm{a}_{\mathrm{i}}{ }^{+} \quad$, $\mathrm{i}^{\mathrm{i}} \mathrm{g}$ if, ab . he PNAS eb, i.e.)

Offspring Dataset. Of 715 ff,i g ge . ed, 14 e eft d. bet, e a.ed, .he .he i .he ct, che i.h hich. he e e ed. The et, e a ed ff, i g e e ide .ified ba ed .he abe ce f a e a a e a \quad. f.he ci. N e f.he e c + d be a.. ibt .ed. +. a i (e.g., ef. 21) becat eab e ce f a.e a a e cot edi a. ea... diffe e. cii a ca e . C - - a i a i be, ee ct.che i ibe becat e fea é adt. a dig e. i a ea he e a .he t. e had a ead aid egg (G. Ha , e a b e. a i). The 14 + e a.ed a e ee e ct ded ff, he a a e.
Mt.i e a e i. a ft df, 61% fa ct.che, he e .he e a ig ifica . diffe e ce i .he fete c f + , i e a.e i. i .he . diffe e . ea, (Fi he, e ac. .e., $P=$ 1.000). I a ca e, e. ide ce f.h ee e a e a ci a f + di a. ea...h ee f.he fi, e ci (Tabe 2). N i , a ce cot.ed he e a a.e a a e a ac igi a, ige

 A g.he + .i i ed ct.che, a a e i dica.ed be, ee . fi.e iibefa, he, (Tabe 2). E ce .f, TT1 a d TP5, b . h DADSHARE a d GERUD a a e , ided ide .ica et.. TP5 c + d be e edb ei.he e. h d. DADSHARE a a i ide .ified i e haf-ibct, e, f, TP5; h e.e, e et, e e, diffe ed i a a a e e a a ige of, a d t.a.i $c+d . h e$ ef e . be di ct.ed a a .e .ia fac. .TT1 a + cce $_{i j} f$ e . ed i.hDADSHARE. Th eect e_{i}, e_{i} fTT1 ff i gcea diffe edf each .he a. e ci, bt. a i ge i di, idt a ct d . be a ig ed. a ct. .e i. h ce, ai . . Agai, t.a.i i. ig c + d . be díc + .ed f, hi i di, idra. Wi.h.he e, e ce .i , a e a a ee f

Fig. 1. Contribution of different fathers to multiply sired clutches. TT4, TP48, TP53, TT9, TT11, and TT13 are clutches in which the primary father has contributed significantly $>50 \%$ of the clutch (see text).
fi ed. diffe f . he ct $\mathrm{f}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}$ i . he ct. ch a. .
ci.

A g.hect. che i.h + .i efa he, , ab t. hafhad e .ha . Wi.h e e ce .i (TT6, χ^{2}. e. $=0.143, \mathrm{df}=1, P=$ $0.705), a+$. i edct. che $\mathrm{e}_{\mathrm{e}} \mathrm{e}$ ig ifica . e ed f eta a.e a c ibt $\mathrm{i} \quad\left(\chi^{2}\right.$, e., a $\left.P \leq 0.001\right)$. TT6 had fa he , each i i g ab + . e + a + be f ff, i g. I c ide i g.he c .ibt. i f. he fa he . ha had i ed.he c aed i.ha ,he fa he fact.ch (, i a fa he), a had c.ibt.ed ig ifica. $>50 \%$ f. he ct. ch i.h .he e ce .i ff + ct .che (TP51, TT1, TT6, a d TT10; $\chi^{2} \cdot \mathrm{e}_{\cdot} \cdot$, a $P \geq 0.1$). T, ig ifica . diffe e . $\mathrm{g}+\mathrm{f}$, i a fa he,

 (Ma. Whi. e $U, z=-2.558, P=0.011$) (Fig. 1). The ef, e ,
 . a iabe i $+b_{i} e+e . a a_{i} e_{i}$.

Relationships Among Paternity, Female Size, Beach Type, and Estimators of Reproductive Success. Ct. ch i e a g.he 18 ct . che + de, ${ }^{+}$d a ged f 42. 170. I c a i g i g a d + . i ed ct.che (Tabe 3), e f.he diffe e ce i ct.ch.ie, be ffe, ii ed egg, a d, i ha.chi g a d.i.i.ig, ea, e he e, e e ig ifica. (Ma, Whi, e $U: z=-1.132, P=0.258 ; z=-0.997, P=0.319 ; z=-0.725$, $P=0.468 ; z=-0.860, P=0.390$, e ec.i.e). Nei. he e e

 ig ifica . diffe e.i c a i g.he + . i i ed ct.che i.h i a fa he, ha fe, ii ed $\approx 50 \%$ i.h.h e i ed ai b i a fa, he, (Tabe 3) (Ma, Whi, e $U: z=$ $-0.853, P=0.394 ; z=0.855, P=0.392 ; z=-0.855, P=0.392$; $z=-0.428, P=0.669 ; z=0.000, P=1.000$, e ec. i. e). A , ig ifica. c e a, cal ed be, ee .he, i f .he i a fa.he, c ibt, a d...a ct. ch i i e (S ea a a c è a i c efficie $\quad=0.201, P=0.44$),
 $0.070, P=0.789$), fe . i i ed ct. ch i e (S ea a, a coea i c efficie $=0.150, P=0.565)$, , i ha ched (S ea a a c e a i c efficie $.=0.130, P=0.620$),
${ }^{\prime}{ }^{\prime}{ }^{i}{ }^{+}{ }^{+}$i. i g ea.e.he e. (S ea a a c e$\mathrm{a}_{\mathrm{i}} \mathrm{i} \quad \dot{c}$ efficie $=0.236, P=0.361$).
Fa.he a be, a ed i .e f.hei c, ibt i i + . i ed ct.che. I c ide i g ge . ed ff, i g.ha. $c+d$ be a ig ed. fa he, he he .he e ha ched + cce f
a i de e de. f.hei di, ibt $i \quad a \quad g$ a ed fá he (iteih d, a i $=5.149, P=0.272$). I .he d, fa he . ha. had c.ibt.ed, e a ct. ch did, a ha. e a highe The i i e f. he ohe (Tabe 3) a . ig ifica . c e-
 h). Nei.he a í ig ifica. diffe é fige a d + .i i ed ct.che (Ma Whi, e $U: z=-1.454, P=$ $0.146)$, a i. a cia ed i.h.he, i f.he, i a fa he , c . ibt ${ }^{1}$ (S ea a a c "e a i c efficie . = $-0.245, P=0.344$).

I c a...he, e fbeach (c e i a ba i gc di.i i LB a d SWB a d da e_{i}, h.. a d i NEB) a a ig ifica fac, i de, e i i g.he, i f ff, i g.ha, ha ched a d ${ }^{+}$. i. ed, ea, e, he e. (Ma Whi. e $U: z=-2.843$, $P=0.004$, a d $z=-3.024, P=0.002$, e ec.i.e ; ea ; i.ed i Tabe3). Fig. 2i + . a e . he ai fi di g: a e i. a ea
 if ea.e .he e_{i}, he ea a age + be $f+{ }^{i}$ cce fif ct. che had bee aid i .he c e igh, a d. E. e he c ide ig.he da.af each. e f beach, e a a e , he
 - $\mathrm{h} \quad$).

Discussion

 ae fa.hergagea.e, \quad fact. ch e e fbe.. e°

Table 3. Mean values (with standard deviations) for estimators of reproductive success and the size of the laying female (curve carapace length), with respect to clutch paternity and the type of beach used

	Clutch size	Proportion unfertilized	Fertilized clutch size	Proportion hatched	Proportion survived	Female size, cm
Total	117.8 (25.29)	0.100 (0.0688)	106.6 (25.63)	0.820 (0.180)	0.800 (0.190)	114.6 (5.03)
Paternity						
Singly sired	128.0 (21.22)	0.095 (0.0623)	116.1 (23.93)	0.874 (0.136)	0.865 (0.138)	113.0 (2.45)
Multiply sired	109.4 (27.00)	0.093 (0.0722)	100.1 (27.22)	0.794 (0.217)	0.772 (0.227)	115.6 (6.04)
Primary father's contribution						
>50\%	117.3 (16.05)	0.074 (0.0727)	108.5 (16.67)	0.766 (0.240)	0.741 (0.262)	118.0 (5.33)
$\approx 50 \%$	97.5 (37.99)	0.121 (0.0712)	87.5 (37.50)	0.836 (0.203)	0.817 (0.188)	112.3 (6.90)
Beach type						
Cool	117.6 (13.52)	0.075 (0.0604)	108.38 (10.45)	0.953 (0.076)	0.943 (0.074)	115.1 (4.79)
Hot	118.0 (32.64)	0.119 (0.0717)	105.20 (33.93)	0.710 (0.176)	0.691 (0.185)	114.2 (5.43)

[^1]

Primary father's contribution

Fig. 2. The proportion of fertilized eggs that had survived plotted against the proportion sired by the father with the highest paternity in the clutch (primary father). No association occurred between these variables. In contrast, more clutches laid in the cooler beaches had higher proportion of the clutch surviving than those in the warmer beach.
a. .ha. e.i g ca.i had a., geffec. ct. ch + cce
 ig ifica . be eficia . .he fe ae g ee . ${ }^{+}$. e f.hi $+\mathrm{a}_{\mathrm{i}} \mathrm{i}$. Rece . e , ed i ia et.
$\mathrm{f}_{\mathrm{i}} \mathrm{e} h$ a $\mathrm{e}^{+} \mathrm{e}_{\mathrm{i}}$ (Chrysemys picta) hich ha chi $\mathrm{g}_{\mathrm{i}}+$ cce $_{i j} \mathrm{i}+$. i d i g i ed ct. che a . ig ifica. diffe e (27).
Be efi. a ha. e bee . + b, e, be de, ec, ed i .hi ${ }_{\mathrm{i}}+\mathrm{d}$ fa id + a i , e ha, a edb .he ge effec. f beach + ai. . Ma fi. $e_{i j}$ a a $e_{0} e_{i} f+d$. be i.i.e
 t die, e. ie ed i ef. 43) a e i ibe a e i . hi $+a_{0} \mathrm{f}$ id aie.t.e; f, éa e, fe a e ife。i e

 eat, e f, edrci.e + cce a e e diffiot.. eat e

 i at ba.i ei d. H e.e, hi eat, e i i i. ef. bab a e de, e i a. fa .he, e dr ci, e + cce a dde.e i e . he tiabi i. fdiffe e . ge g. a hica a ea a . . e e ie (44). Thr , a.h + ghe.e ibe be efi f a d . fe a e g ee . ${ }^{+}$. e ca . be t ed + ., b. it a di edia e be efi e ece. ai \quad e.ide. i .hi ${ }^{+}{ }^{+}$d. E ei e.a a it ai f a i g a, ide e aca, a e eat, effi, $e_{i j}$. St ch a it $\mathrm{a}_{\mathrm{i}} \mathrm{i}$, ate. ea . i e e.f, ai e t. e, a d, tch, ha bee
 aea. e egigf e ei e a da af, .he ga i E a e i ct def g $(45,46)$, e . (47), bee, e $(48,49)$, a d i. e (50). I, ead fbe efi , he e f.e , h ig ifica . c . fe a e (e.g., ef . 45 a d 48). I ge e a, a diffe e.. e fc cot $;$ he ec a i ct dei cea edi f ai. $(45,51)$, di ea e. a i, i (52), eda.i $(53,55)$, edr ced fe.ii a.i $(45,48)$, i , e, .ed f, agi g(56), a d if f.i e a de ef (7). Ma a ecat edb eta ha a e , a a a a.. e .. ifte ce fe ae ch ice $(57,58)$. Fe ae ai e
 h ica da age; fe a e i be bi..e fi e, ec, a d head, a d $+\mathrm{d}_{\mathrm{i}}$ a e ef. a e e .ha, etie ee . hea (44). A., ae ha a, e. ch, fe ae. Fe ae a. ida ce.ac.ic (ee e. a ag a h) a e high e e ge, ic, hich i e e it e becat e.he t. e e e ede e g f, a .hei b eedí ga d ig. a i ac,i.iie. e .he ct, e f.he >100-da $,>4,400-+d j+$ e f. $S+. h A$ ei ica (59). Beachi ga a a. ida ce, ac.ic ha a addi. a i fi j
, .ai., t, e .a edi, c, a .he . . et, . .he , ea a die fhea, $e_{i ;}$ (59).
Fe aeg ee t. e a ei c.f ai g. Fe ae a agg ega.ei $g+$ há e ct de a e (60). Ma e, h e.é, i
 . ${ }^{\text {, fe ae }}$ a f , hei hi dfi $\mathrm{e}_{\text {, . ge, he, }} \mathrm{i}$ a a a id, cilce. face, he ae, a d, e dagg e i. e i.h bie, fi a , he a ad a eff a i, il beach , he e. e (60).I c.a... .he et c.a ce ffe ae, a e a e agg e i, ei hei + + i, a f g a d i bjec. ha, a i a e .he iea d ha e fafe ae, i ct d-
 ce, ai a.e .. a.e a .i e a d fe, iie he ct. che f, e. e a diffe é fe a e (ef. 44, a d efe e ce .he ei). Sa.e i.e.ee e, c fi , ha a e a e high aci.e i .he
 f.e ee ct.edb g + f ae, add $+\mathrm{a}_{\mathrm{i}} \mathrm{i} \mathrm{g} \mathrm{c}+\mathrm{e}_{\mathrm{i}}$ $\mathrm{a}_{\mathrm{a}} \mathrm{e}+{ }_{i}+\mathrm{a}$ ha $\mathrm{a}_{i j}$ ed b a.. e da. a e (e.g., ef. 60). The e $b_{i} e^{\prime}$ a i .ha fe ae d . ac .e .ia a e if .he ee aci.e ee .he. E.e i a fe a e-bia ed
 ai (60).
He ce, if + .i e ai g a i deed be eficia . fe ae, .he h d e i. . cat a highe fete c, gi.e .he ead a. ai abi i. f ae ? T dae, + die f.ait gee .t. e $+\mathrm{a}_{\mathrm{i}}$ e \quad (21). de ae high (.hi $+\mathrm{d}^{\circ}$ a d ef. 20) fete cie $f+$. i i ed ct. che. If + , i e
 . fe ae $h+\mathrm{d}_{i}$ ee. ae i.h a ae a d ea a ct.che $h+d b e+i \quad$ ed \quad a a a e a i i.i g fac. (e.g., ef. 3). A. A ce i I a d, a e-fe a e e c+. ${ }^{e}$, a e ce, ai i e be e high becat, e . he $+\mathrm{a}_{0} \mathrm{i}$ i.e age (a . $\mathrm{h}+\mathrm{ad} \mathrm{dfe}$ ae e_{i}, each ea), a d. e_{i} c gega.ei a a ea fa a, ce e h e (62) .he de i. f. $\mathrm{e}_{\mathrm{i}} \mathrm{i}$ be f.he de fa .htade +ae i e. e.

 e ai he cot e ce f + .i e a.e i. A .he ibi i. i.ha, fe ae etiec $e_{i} \mathrm{~g}$ ae , ig, $+\quad+\quad+\mathrm{i}$ b .$+ i$ e ae a a a e . . igge fe a e ece.i. . . a i g. I deed, hi, etie e . i e et, i t.i e ace i, bt, i. d e . ade + a e acc + . f, he cat e ce fige a i g
 + - $+\mathrm{a}_{\mathrm{i}} \mathrm{i}$ (21). A.e ai.e , i, a be a g ed .ha + .i e a i g i col if he fe ae fi d a ec d be.. e^{-+}ai. a.e. U de .hi " \quad ade $+h$.he i," afe ae i a e i íia . e + e ha, he egg i be fe . ii ed b a ea, e ae. She i he ch, e, a e a, ec d.i e
 e ge eica c a ibe ff i g (63). Thi h.he i

 i.ha. ea ec. f + .i iedct.che i be "be..e". ha
 + .i e a.e i, perse e t. .edi be..e -+ ai, ct. che .
Ah .he i ec i, e i.h.he et of hif t d i .ha fe ae i ge er a ei. aig e.ha ce,t e $e_{i j}$.he c, fie i, a ce e ceed .ha. f a i g. St ch "c .e ie ce a d " (64) ha bee de \quad a ed f, e i ec. $(7,56$, $65,66)$ a $d^{+}{ }^{+}$, ec.ed i a e.ie (67). I. a ea abe e a a i f ca e he et.i e a i g i a c c fe ae i.h i.. e b. it, be efi. (e.g., ef. 45 , 46 , a d 48). He e, fe ae d gai di ec, ge e, ic be efi ${ }_{\text {f }}$
 a.e i .he face f ae ha $a_{i j}$ e aec, fe ae . Fe a e ${ }_{i}$ i a e.he "be , fabad jb" b" ig f, he

 a e + fficie . a .ha a de a e. h eh de i. i i.chig be, ee e i, a ce a d + b $\mathrm{i}_{\mathrm{i}} \mathrm{i}$. ae c e ci , hi $c+d e$ ai .he $b_{i} e_{1} a_{0} i^{\prime}$. i .e edia.e e, e f
 . . e c + d be de.ec, ed, c .a. . c.e.i a e ec-
 ad. a age +d eed . be c , ide abe gi.e .ha. e . i
 ce. A e a ibe a ai f, a d i a i e ${ }^{+}$. e i.ha. + .i e a e i. i a ge a et. f ae

1. Bi head, T. (2000) Promiscuity: An Evolutionary History of Sperm Competition and Sexual Conflict (Fabe \& Fabe, L d).
2. T i. e., R. L. (1972) i Sexual Selection and the Descent of Man, 1871-1971, ed. Ca be, B. (A di e-A he . , Chicag), .136, 179.
3. Ne c e, S. D., Zeh, J. A. \& Zeh, D. W. (1999) Proc. Natl. Acad. Sci. USA 96, 10236, 10241.
4. E. a , J. P. \& Mag a , A. E. (2000) Proc. Natl. Acad. Sci. USA 97, $10074,10076$.
5. Ca bee , R. \& Si e . , B. (2002) Proc. Natl. Acad. Sci. USA 99, 14897, 14902.
6. Za + di , K. R. \& Si e . , B. (2000) Proc. Natl. Acad. Sci. USA 97, 14427. 14432.
7. Wa. , P. J., A . i ., G. \& S.a a , R. R. (1998) Am. Nat. 151, 46, 58.
8. Ha , J. L. \& B i c e, D. A. (1988) J. Hered. 79, 96, 99.
9. Ga b ai. h, D. A. (1993) Herpetol. J. 3, 117, 123.
10. B e , J. L., I i , M. E., Riede , J. P. \& Pa e , P. G. (1999) Copeia 1999, 475, 478.
11. M e, M. K. \& Ba , R. M. (2002) Mol. Ecol. 11, 281, 288.
12. H e e., W. E. J., Net feg ị e, H., Sch + e , A. D. \& Me e , S. B. J. (2002) Heredity 89, 107, 113.
13. Kich e, K., H de , M. T., Da. i, S. K., Ma + e, R. \& O e , D. W. (1999) Mol. Ecol. 8, 819. 830.
14. Reide , J. P., Pa e, , P. G., S i a, J. R. \& I i , M. E. (1998) i Proceedings of the 16th International Symposium on Sea Turtle Biology and Conservation, ed . B e, R. \& Fe a de, Y. (Na i a Ocea ic a d A. he ic Ad i i, a. H , Wa hi g , DC), . 120, 121.
15. G.i, C. (1998) Ma, e, he i (D e e U i. e i., Phiade hia).
16. G., C., Wi ia , C. \& S i a, J. (1998) Proceedings of the 17th Annual Sea Turtle Symposium, U.S. De a e e . f C e ce Na, ${ }^{i}$ a Ocea ic a d A. he ic Ad i i, a i Tech ica Me, NMFS-SEFSC-415, . 170.
17. D. .. , P., Bi b , E. \& Da. i, S. K. (2000) i Proceedings of the 18th International Symposium on Sea Turtle Biology and Conservation, ed. Ab et -
 a d A. he ic Ad i i. a i , Wa hi g, DC), . 156.
18. Ci , J. L., S .i a, L. D., S .i a, J. R., O'C , M., Rei a, R., Wi ia , C. J. \& Pa adi , F. V. (2002) Mol. Ecol. 11, 2097, 2106.
19. $\mathrm{Pa} \quad e_{\text {e }}, \mathrm{P} . \mathrm{G} .$, Wai. e, T. A. \& Pea e, T. (1996) i Molecular Genetic Approaches in Animal Conservation, ed .S i.h, T. B. \& Wa e, R. K. (O. f, dU i. . P. e e_{i}, Ne Y,), . 413, 423.
20. Pea e, T., Pa e, P. G. \& I i , M. E. (1998) Proceedings of the 16th Annual Symposium of Sea Turtle Biology and Conservation, Na, i a Ocea ic a d A. he ic Ad i i. a i Tech ica Me, NMFS-SEFSC-412, 116.
21. Fi. Si , N. N. (1998) Mol. Ecol. 7, 575, 584.
22. I e a d, J. S., B de ic , A. C., Ge , F., G de , B. J., Ha , G. C., Lee, P. L. M. \& S ibi \quad i, D. O. F. (2003) J. Exp. Mar. Biol. Ecol. 291, 149. 160.
23. Be, , J.'F. \& Shi e, R. (1980) Oecologia 44, 185, 191.
24. Ge , F., B de ic , A. C., G de , B. J. \& Ha ${ }_{i}$, G. C. (2003) J. Mar. Biol. Assoc. U. K. 83, 1183, 1186.
25. Ha , G. C., A h .h, J. S., Ba e, M. J., B de ic, A. C., E e , D. R., G d e , B. J., He d, A. \& J e , E. L. (2001) Oikos 93, 87, 94.
26. G de , B. J., B de ic , A. C. \& Ha , G. C. (2001) Biol. Conserv. 97, 151, 158.
27. Pea e, D. E., Ja - e , F. J. \& A. i e, J. C. (2002) Behav. Ecol. Sociobiol. 51, 164, 171.
28. B de ic , A. C., G d e, B. J. \& Ha , G. C. (2001) Physiol. Biochem. Zool. 74, $161,170$.
29. O e , D. W. \& Rt i , G. W. (1980) Herpetologica 36, 17, 20.
ceci, he efe a e ha. e gi. e i. ha $\mathrm{a}_{\mathrm{i} i}$ e. a a ea f, edt ci g. hei , e a cir.

We, ha A e..e B de ic, R be. Fiat , ei, Fi aGe, Be da G de, Jt ia He ha, a, +.ee, a d Da i I i.ai.e Tt, e Wa de, f, i. at abe he i.hfied, Ta a Ge, ge a. he A ce -
 H. e a d Ge ffe Fai hr,f, e i, i, c dtc. fied, a d f , gi, ica he $\mathrm{dt}, \mathrm{i} \mathrm{g}$, fie $\mathrm{d}_{\mathrm{i}} \mathrm{i}$; Na c $\mathrm{Fi}_{\mathrm{i}} \mathrm{i}$ f, ad, ice adif, asi aiet, e ic as ie ; a dPa.o Pa e a d Bi A f, ad, ice adif, ai da.a'a a . Thi a .edb a Ea Ca ee P jec, Ga.f .he B i.ihEc gica S cie. (efe e ce.01/17) (. P.L.M.L.) a dig a . f . he Dea.e. f.he E.i e ., Ta, a d .he Regi (Da i I íia.i.e), a dNat a E.i e . $\operatorname{Re} \dot{e}$ a ch $\dot{C}+$ ci (. G.C.H.).
30. Neff, B. D. \& Pi. che , T. E. (2002) J. Fish Biol. 61, 739750.
31. Fi. Si , N. N., M i., C. \& M e, S. S. (1995) Mol. Biol. Evol. 12, 432.440.
32. Ra d, M. \& R + . e, F. (1995) Evolution (Lawrence, Kans.) 49, 1280, 1283.
33. Ra d, M. \& R $\dagger_{i i}$ e, F. (1995) J. Hered. 86, $248,249$.
34. Gt , S. W. \& Th , E. A. (1992) Biometrics 48, 361, 372.
35. R + e, F. \& Ra d, M. (1995) Genetics 140, 1280, 1283.
36. Wei , B. S. (1990) Genetic Data Analysis: Methods for Discrete Population Genetic Data (Si at e, St de a d, MA).
37. Ma ha , T. C., S a.e, J., K + + , L. E. B. \& Pe be . , J. M. (1998) Mol. Ecol. 7, $639,655$.
38. Pae. ar, D., Ca.e., W., S.i i g, I. \& S. bec , C. (1995) Mol. Ecol. 4, 347, 354.
39. Qte e, D. C. \& G d igh., K. F. (1989) Evolution (Lawrence, Kans.) 43, 258, 275.
40. B + i , M. S., Pa ${ }_{i} \quad$, M., Lacai e, V. \& L .., S. (1996) Mol. Ecol. 5, 393, 401.
41. J e, A. G. (2001) Mol. Ecol. Notes 1, $215,218$.
42. D dd, K. G., Ta.e, M. L., McE a, J. C. \& C a f. d, A. M. (1996) Theor. Appl. Genet. 92, 966 975.
43. A . . , G. \& Ni \quad, T. (2000) Anim. Behav. 60, 145, 164.
44. Mi e , J. D. (2003) it The Biology of Sea Tturtles, ed . L. ., P. L., Mr ic , J. A. \& W e e , J. (CRC, B ca Ra., FL), . 51.81.
45. B e, P. G. \& R be •, J. D. (1999) Proc. R. Soc. London Ser. B 266, $717,721$.
46. B e, P. G. \& R be , J. D. (2000) Evolution (Lawrence, Kans.) 54, 968, 973.
47. Ga e, T. W. J. \& Sch id., B. R. (2003) Proc. R. Soc. London Ser. B 270, 619. 624.
48. O. e.i, D. M. \& Rt . i, R. L. (2003) Anim. Behav. 66, $477,484$.
49. Pai, A. \& Ya , G. Y. (2003) Can. J. Zool.-Rev. Can. Zool. 81, $888,896$.
50. K d iejc , M. \& Rad a , J. (2003) Behav. Ecol. Sociobiol. 53, 110, 115.
51. B a c e h, , W. U., H e, D. J., Ma .i , O. Y., Rei , C., Tet ch, Y. \& Wa d, P. I. (2002) Behav. Ecol. 13, 353, 358.
52. L eh e, C. (1997) Ecol. Modell. 103, $231,250$.
53. Ke , C. D., G di , J. G. J. \& W. igh., J. M. (1999) Proc. R. Soc. London Ser. B 266, 2403, 2408.
54. Mag hage , C. (1991) Trends Ecol. Evol. 6, 183, 185.
55. Li a, S. L. \& Di , L. M. (1990) Can. J. Zool.-Rev. Can. Zool. 68, $619,640$.
56. R e, L. (1992) Anim. Behav. 44, 189. 202.
57. Ct.. -B c , T. H. \& Pa e, G. A. (1995) Anim. Behav. 49, 1345, 1365.
58. Mag̈ a , A. E. \& Seghe , B. H. (1994) Proc. R. Soc. London Ser. B. 255, 31. 36.
59. Ha , G. C., B de ic , A. C., Ge , F. \& G d e , B. J. (2002) Can. J. Zool. 80, 1299. 1302.
60. B .h, J. \& Pe, e., J. A. (1972) Anim. Behav. 20, 808, 812.
61. Ha , G. C., B de ic , A. C., Ge , F., G de, B. J. \& Nich ; W. J. (2001) Mar. Biol. 139, 395, 399.
62. M,i e, J. A. \& P ie, K. M. (1989) Copeia 1989, 962, 977.
63. Pi.che, T. E., Neff, B. D., R dd, F. H. \& R e, L. (2003) Proc. R. Soc. London Ser. B 270, 1623, 1629.
64. Th hi, R. \& Ac c , J. (1983) The Evolution of Insect Mating Systems (Ha . a d U i. . P e. Ca bidge, MA).
65. Weige be g, I. \& Fai bai , D. J. (1994) Anim. Behav. 48, 893, 901.
66. C. de ${ }^{\text {, A. \& A d e , J. A. (2002) J. Insect Sci. 2, 14. A ai ab e i e: }}$ i ec. cie ce. $\mathrm{g} / 2.14$.
67. Ga e, T. W. J., G eg , , P. T., McC ac e , G. F., Bt gha d., G. M., K B. F., McLai , S. E. \& Ne, , R. J. (2002) Copeia 2002, 15, 23.

[^0]: This paper was submitted directly (Track II) to the PNAS office.
 Abbreviations: LB, Long Beach; NEB, North East Bay; SWB, South West Bay.
 *To whom correspondence should be addressed. E-mail: P.L.M.Lee@swansea.ac.uk.
 © 2004 by The National Academy of Sciences of the USA

[^1]: The proportions that hatched and survived to leave the nest are with respect to the fertilized clutch. The proportion unfertilized, however, is the proportion of the total clutch.

