Life History Strategies: r & K selection - Life history trade-offs - Energy allocation - Reproductive strategies - Experiment with dandelions Table 9.1 Life history strategies discussed in chapters 9 and 10. The strategies in italics are those we might expect an imaginary, unbeatable life history to possess, other things being equal (see text) | Life history stage | Trait | Range of alternative strategies | | Section | |--------------------|---------------------|---------------------------------|-------------|---------| | Reproduction | | Asexual | Sexual | 9.3 | | Reproduction | Mating | Selfing | Outcrossing | 9.4 | | | Gender | Cosexual | Dioecious | 9.4 | | | Maturity | Early | Delayed | 10.1 | | Birth | Seed crop frequency | Annual | Masting | 10.2 | | | Seed size | Large | Small | 10.3 | | | Germination | Immediate | Delayed | 10.3 | | Growth | | Clonal | Aclonal | 10.4 | | Death | | Iteroparous | Semelparous | 10.5 | #### R & K traits **Table 5-2** Some traits that correlate with *r*- and *K*-selection. (Modified from E. Pianka, *American Naturalist* 104:592−597. Copyright © 1970 by University of Chicago Press. By permission.) | Trait | r-selection | K-selection | | |---|---|---|--| | Climate | Variable and/or unpredictable; uncertain | Fairly constant and/or predictable; more certain | | | Mortality | Often catastrophic; density independent | Density dependent | | | Survivorship | Usually types I and II (see
Figure 4-9) | Often type III (see Figure 4-9) | | | Population size | Variable in time; not in equilibrium; usually well below carrying capacity of the habitat; recolonization each year | Fairly constant in time; in equilibrium; at or near carrying capacity of the habitat; no recolonization necessary | | | Intraspecific and interspecific competition | Variable; often lax Usually keen | | | | Life-span | Short, usually less than 1 year | Longer, usually more than 1 year | | | Selection favors | Rapid development; early reproduction; small body size; single reproduction period in life-span | Slower development; greater competitive ability; delayed reproduction; larger body size; repeated reproduction periods in life-span | | | Overall result | Productivity | Efficiency | | ## **Energy allocation** Figure 5-7 A model showing selective forces (dashed arrows) and associated plant–plant and plant–habitat characteristics (solid arrows) for an *r*-selected population. Figure 5-9 A model showing selective forces (dashed arrows) and associated plant–plant and plant–habitat characteristics (solid arrows) for a *K*-selected population. ### Trade-offs #### Inflorescences Figure 5-2 Scatter diagrams of number of inflorescences per plant in the first season and (a) number of inflorescences per plant in the second, and (b) plant size in the second season. (From Law, *American Naturalist* 113:3–16. Copyright © 1979 by University of Chicago Press. By permission.) # Fecundity Figure 5-3 The probability of surviving for 15 years as a function of fecundity in tenyear-old plants of Astrocaryum mexicanum in Veracruz, Mexico. (From Pinero et al. Journal of Ecology. 70:473–481.) # **Experimental Test** Fig. 4.19 An experimental test of r- and K-selection in dandelions. (Data from Solbrig and Simpson 1974, 1977) (a) (c) (d) Flower heads per Effect of Distribution of Mortality after Mortality after Long-term competition experiments 80 wks growth 80 weeks growth biotypes in 3 plant grown 50:50 mixture competition populations (%) in standard in standard in standard on growth condition (%) conditions condition (0%) Sown 1970 Sampled 1974 (070) 100-(Replacement series) -Total plant weight 60 1000 20 No 100% disturbance D 100 -B A 100 50 Biotypes Biotypes 60 50 100 A and D A and D 20 High total 1970 1974 in pure in mixed plant density 1007 culture on culture on (80 plants/culture) loam 60loam Disturbed (1) 100% 1971 and 20 1972 D 1007 3500 20070 60-20-1 2 3 1 2 3 A 100 50 High Low 50 Site of origin 0 100 Med Low total plant density Disturbance in (20 plants/culture) population Taraxacum officinale ## **Grimes Model** Table 5-3 Some characteristics of competitive, stress-tolerant and ruderal plants. (Plant Strategies and Vegetation Processes by J. P. Grime. Copyright © 1979 by John Wiley and Sons, Ltd. Reprinted by permission.) | | Competitive | Stress tolerant | Ruderal | |---|--|--|---| | Morphology | | | | | Life forms | Herbs, shrubs, and trees | Lichens, herbs,
shrubs, and trees | Herbs | | Morphology of
shoot | High, dense
canopy of leaves
Extensive lateral
spread above and
below ground | Extremely wide
range of growth
forms | Small stature,
limited lateral
spread | | Leaf form | Robust, often
mesomorphic | Often small or
leathery, or
needlelike | Various, often
mesomorphic | | Life history | | | | | Longevity of
established
phase | Long or relatively short | Long-very long | Very short | | Longevity of
leaves and roots | Relatively short | Long | Short | | Leaf phenology | Well-defined peaks
of leaf production
coinciding with
period(s) of max-
imum potential
productivity | Evergreens, with
various patterns
of leaf production | Short phase of lead
production in
period of high
potential
productivity | | Phenology of
flowering | Flowers produced
after (or, more
rarely, before)
periods of maxi-
mum potential
productivity | No general
relationship
between time of
flowering and
season | Flowers produced
early in the life
history | | Frequency of
flowering | Established plants
usually flower
each year | Intermittent
flowering over a
long life history | High frequency of flowering | | Proportion of
annual
production
devoted to seeds | Small | Small | Large | | Perennation | Dormant buds and
seeds | Stress tolerant
leaves and roots | Dormant seeds | | Regenerative
strategies ¹ | V, S, W, B _s | V, Βτ | S, W, B _s | | | | | | | | Competitive | Stress tolerant | Ruderal | |---|---|--|---| | Physiology
Maximum
potential relative
growth rate | Rapid | Slow | Rapid | | Response to stress | Rapid
morphogenetic
responses
(root-shoot ratio,
leaf area, root
surface area)
maximizing
vegetative growth | Morphogenetic
responses slow
and small in
magnitude | Rapid curtailment
of vegetative
growth, diversion
of resources into
flowering | | Photosynthesis
and uptake of
mineral
nutrients | Strongly seasonal,
coinciding with
long continuous
period of
vegetative growth | Opportunistic,
often uncoupled
from vegetative
growth | Opportunistic,
coinciding with
vegetative growth | | Acclimation of
photosynthesis,
mineral nutrition
and tissue
hardiness to
seasonal change
in temperature,
light, and
moisture supply | Weakly developed | Strongly developed | Weakly developed | | Storage of
photosynthate
mineral nutrients | Most
photosynthate
and mineral
nutrients are
rapidly
incorporated into
vegetative
structure but a
proportion is
stored and forms | Storage systems in
leaves, stems,
and/or roots | Confined to seeds | | | the capital for
expansion of
growth in the
following growing
season | | | | able 5-3 continued | | | | | | Competitive | Stress tolerant | Ruderal | | Aiscellaneous
Litter | Copious, often persistent | Sparse, sometimes persistent | Sparse, not usually persont | | alatability to
unspecialized | Various | Low | Variou, often high |