
Glycolysis Embden-Meyerhoff pathway

- Introduction to Glycolysis
- Glycolysis
- Entry of glucose into the cell
- Preparatory phase of glycolysis
- Energy production

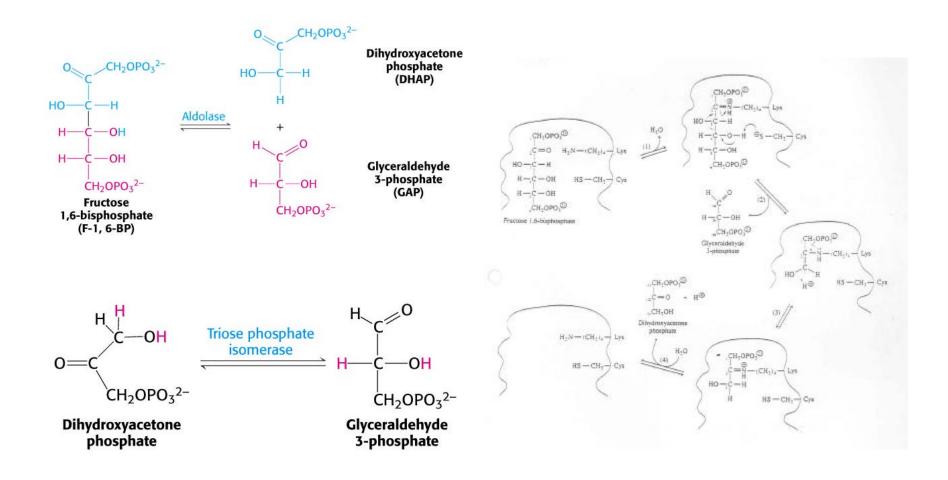
Glycolysis

- Ancient Pathway
- In cytoplasm
- No oxygen required
- Used for energy production
- Production of intermediates for other pathways
- Found in tissues with limited blood supply

Entry of glucose into the cell

- Transport
- hexokinase
- glucokinase in liver
- hexokinase vs glucokinase
- forms anion to keep in cell

Glucose Transporters


TABLE 16.4	Family of glucose transporters
-------------------	--------------------------------

Name	Tissue location K _m Com		Comments
GLUT1	All mammalian tissues	1 mM	Basal glucose uptake
GLUT2	Liver and pancreatic β cells	15–20 mM	In the pancreas, plays a role in regulation of insulin In the liver, removes excess glucose from the blood
GLUT3	All mammalian tissues	1 mM	Basal glucose uptake
GLUT4	Muscle and fat cells	5 mM	Amount in muscle plasma membrane increases with endurance training
GLUT5	Small intestine	_	Primarily a fructose transporter

Preparatory phase of glycolysis

- 2 ATP
- Phosphofructokinase (PFK-1)
- regulated
- allosterically

Mechanism: Aldolase

Energy production

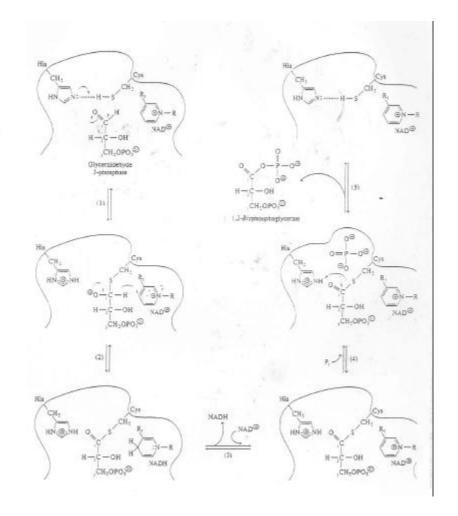
- 1,3 BPGA
- PEP
- 4 ATP & 2 NADH
- Pyruvate end product
- effect of aresenate

O C H

H—C—OH + NAD+ +
$$H_2O$$
 Oxidation

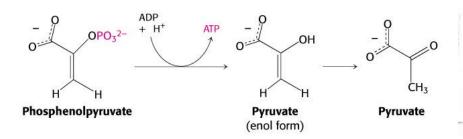
CH₂OPO₃²⁻

O C OH


Acyl-phosphate formation (dehydration)

H—C—OH + H_2O

CH₂OPO₃²⁻
 $H_2OPO_3^{2-}$
 $H_2OPO_3^{2-}$


Mechanism: dehydrogenase

(Figure 12-14). This nonenzymatic hydrolysis produces 3-phosphoglycerate and regenerates inorganic arsenate, which can again react with a thioacyl-enzyme intermediate. Glycolysis can proceed from 3-phosphoglycerate, but the ATP-producing reaction involving 1,3-bisphosphoglycerate is bypassed. As a result, there is no net formation of ATP from glycolysis, with potentially lethal consequences.

PEP to Pyruvate

	on and generation of ATP in glycolysis Reaction	ATP change per glucose		
Glucose —	→ glucose 6-phosphate	-1		
fructose 6-p	hosphate fructose 1,6-bisphosphate	-1		
1.3-Bispho	sphoglycerate 2 3-phosphoglycerate	+2		
Phosphoer	nolpyruvate 2 pyruvate :	+2		
No.		Net +2		

ENERGY YIELD IN THE CONVERSION OF GLUCOSE INTO PYRUVATE

The net reaction in the transformation of glucose into pyruvate is Glucose + 2 P_i + 2 ADP + 2 NAD+ \longrightarrow 2 pyruvate + 2 ATP + 2 NADH + 2 H⁺ + 2 H

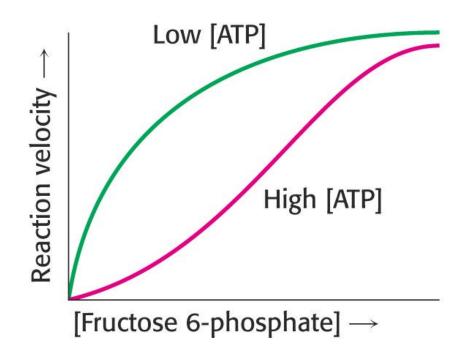
Biological Systems

- Net 2 ATP
- 2 NADH
- Most reactions at equilibrium can be reversed

Table 15-3	
Typical concentrations of glycolytic	
intermediates in erythrocytes	

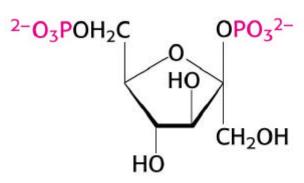
Intermediate		μм	
Glucose		5000	
Glucose 6-phosphate		83	
Fructose 6-phosphate		14	
Fructose 1,6-bisphosphate		31	
Dihydroxyacetone phosphate		138	
Glyceraldehyde 3-phosphate		19	
1,3-Bisphosphoglycerate		1	
2,3-Bisphosphoglycerate 3-Phosphoglycerate		4000	
		118	
2-Phosphoglycerate		30	
Phosphoenolpyruvate		23	
yruvate		51	
actate		2900	
ATP		1850	
ADP		138	
9		1000	

After S. Minakami and H. Yoshikawa, Biochem. Biophys. Res. Comm. 18(1965):345.

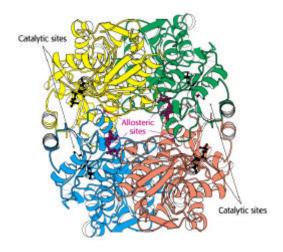

Overall reactions of glycolysis

Step	Reaction	Enzyme	Reaction type	ΔG°' in kcal mol ⁻¹ (kJ mol ⁻¹)	ΔG in kcal mol ^{−1} (kJ mol ^{−1})
1	Glucose + ATP → glucose 6-phosphate + ADP + H ⁺	Hexokinase	Phosphoryl transfer	-4.0 (-16.7)	-8.0 (-33.5)
2	Glucose 6-phosphate ⇒ fructose 6-phosphate	Phosphoglucose isomerase	Isomerization	+0.4 (+1.7)	-0.6 (-2.5)
3	Fructose 6-phosphate + ATP	Phosphofructokinase	Phosphoryl transfer	-3.4 (-14.2)	-5.3 (-22.2)
4	Fructose 1,6-bisphosphate ====================================	Aldolase	Aldol cleavage	+5.7 (+23.8)	-0.3 (-1.3)
5	Dihydroxyacetone phosphate ==== glyceraldehyde 3-phosphate	Triose phosphate isomerase	Isomerization	+1.8(+7.5)	+0.6 (+2.5)
6	Glyceraldehyde 3-phosphate +P _i + NAD ⁺ ⇒ 1,3-bisphosphoglycerate + NADH + H ⁺	Glyceraldehyde 3-phosphate dehydrogenase	Phosphorylation coupled to oxidation	+1.5 (+6.3)	+0.6 (+2.5)
7	1,3-Bisphosphoglycerate + ADP === 3-phosphoglycerate + ATP	Phosphoglycerate kinase	Phosphoryl transfer	-4.5(-18.8)	+0.3 (+1.3)
8	3-Phosphoglycerate ⇒ 2-phosphoglycerate	Phosphoglycerate mutase	Phosphoryl shift	+1.1 (+4.6)	+0.2 (+0.8)
9 10	2-Phosphoglycerate ⇒ phosphoenolpyruvate +H ₂ O Phosphoenolpyruvate + ADP + H ⁺ → pyruvate + ATP	Enolase Pyruvate kinase	Dehydration Phosphoryl transfer	+0.4 (+1.7) -7.5 (-31.4)	-0.8 (-3.3) -4.0 (-16.7

Note: ΔG , the actual free-energy change, has been calculated from $\Delta G^{\circ\prime}$ and known concentrations of reactants under typical physiologic conditions. Glycolysis can proceed only if the ΔG values of all reactions are negative. The small positive ΔG values of three of the above reactions indicate that the concentrations of metabolites in vivo in cells undergoing glycolysis are not precisely known.

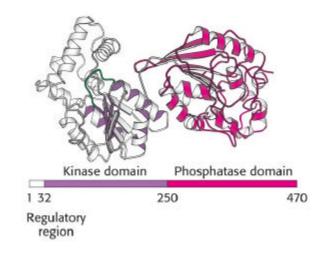

Regulation of glycolysis

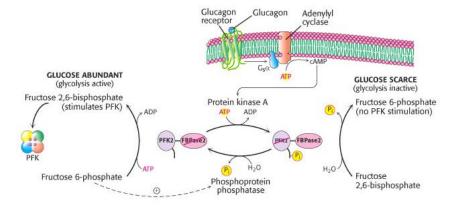
- ATP/ADP ratios are important
- Two roles: energy production and building blocks for biosynthesis

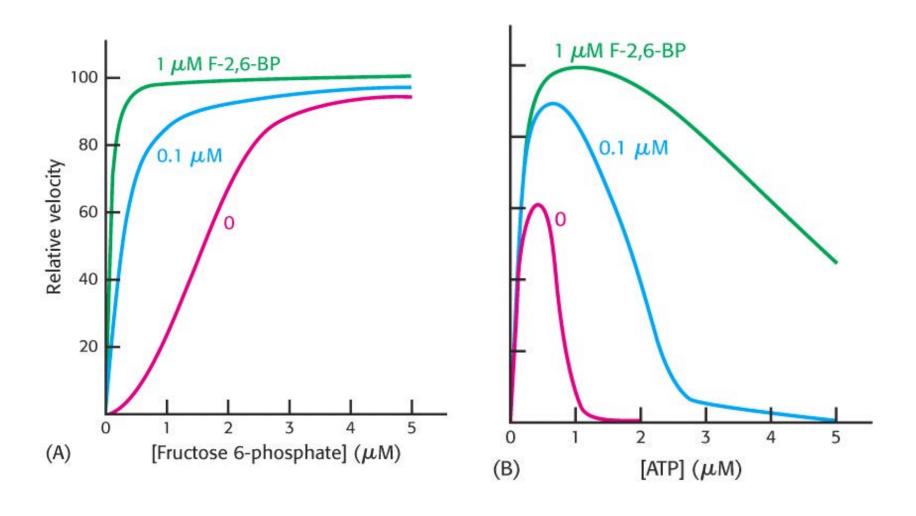


Phosphofructokinase: Highly regulated

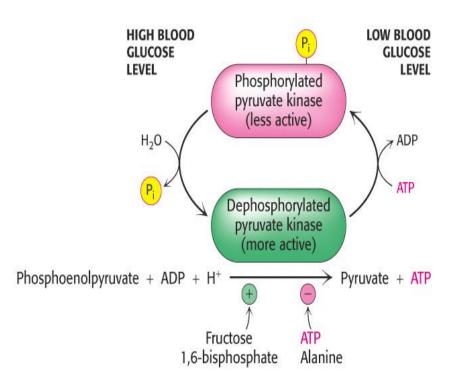
- Allosteric enzyme:
- Activated by ADP and AMP
- Inhibited by ATP and Citrate (from TCA cycle)
- Fructose 2,6 bisphosphate regulation




Fructose 2,6-bisphosphate (F-2,6-BP)


PFK-2

- Tandem enzyme: PFK-2, both kinase and phsophotase together
- Fru 2,6 P potent activator of PFK-1
- prevents inhibition of citrate/ATP for fatty acid biosynthesis
- Relative velocity curves for PFK-1
- Effect of glucagon on PFK-1



Activation of PFK-1 by Fru 2,6 Bis

Other sites of Regulation

- Pyruvate kinase
- allosteric
- stimulated by fructose 1,6P
- inhibited by acetyl-CoA, fatty acids
- protein kinase inhibits pyruvate kinase
- Glyceraldehyde 3-P dehydrogenase
- stimulated by NAD+

