Amino Acid Catabolism

- Dietary Proteins
- Turnover of Protein
- Cellular protein
- Deamination
- Urea cycle
- Carbon skeletons of amino acids

Figure 24-8. The degradation of amino acids to seven common metabolic intermediates.

Amino Acid Metabolism

- Metabolism of the 20 common amino acids is considered from the origins and fates of their:
 - (1) Nitrogen atoms
 - (2) Carbon skeletons
- •For mammals:

Essential amino acids must be obtained from diet Nonessential amino acids - can be synthesized

Amino Acid Catabolism

- Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins
- During starvation proteins are degraded to amino acids to support glucose formation
- First step is often removal of the α -amino group
- Carbon chains are altered for entry into central pathways of carbon metabolism

Dietary Proteins

- Digested in intestine
- by peptidases
- transport of amino acids
- active transport coupled with Na+

Protein Turnover

- Proteins are continuously synthesized and degraded (turnover) (half-lives minutes to weeks)
- Lysosomal hydrolysis degrades some proteins
- Some proteins are targeted for degradation by a covalent attachment (through lysine residues) of ubiquitin (C terminus)
- Proteasome hydrolyzes ubiquitinated proteins

Turnover of Protein

- Cellular protein
- Proteasome degrades protein with Ub tags
- T 1/2 determined by amino terminus residue
- stable: ala, pro, gly, met greater than 20h
- unstable: arg, lys, his, phe 2-30 min

```
Dependence of the
TABLE 23.1
   half-lives of cytosolic yeast
   proteins on the nature of
   their amino-terminal residues
   Highly stabilizing residues
   (t_{1/2} > 20 \text{ hours})
      Ala
               Cys
                        Glv
                                  Met
                        Thr
                                  Val
      Pro
               Ser
   Intrinsically destabilizing
   residues
   (t_{1/2} = 2 \text{ to } 30 \text{ minutes})
               His
                                  Leu
      Arg
                        Ile
               Phe
                        Trp
                                  Tyr
      Lys
   Destabilizing residues after
   chemical modification
   (t_{1/2} = 3 \text{ to } 30 \text{ minutes})
                         Gln
                                  Glu
      Asn
               Asp
```

Source: J. W. Tobias, T. E. Schrader, G. Rocap, and A. Varshavsky. Science 254(1991):1374.

Ubibiquitin

- Ubiquitin protein, 8.5 kD
- highly conserved in yeast/humans
- carboxy terminal attaches to ε-lysine amino group
- Chains of 4 or more Ub molecules target protein for destruction

Degradation-- Proteasome

- Proteasome degrades protein with Ub tags
- 26s: two subunits, 20s (catalytic) and 19s (regulatory)
- Releases peptides 7-9 units long

Deamination

- Collect NH₃ from tissues
- · alanine from muscle
- glutamine from other tissues
- glutamate from liver

Transamination Reactions

- Transfer of an amino group from an α-amino acid to an α-keto acid
- In amino acid biosynthesis, the amino group of glutamate is transferred to various α -keto acids generating α -amino acids
- In amino acid catabolism, transamination reactions generate glutamate or aspartate

Transamination

- cytosol of liver
- collect in glutamate
- glutamate transferred to mitochondria

Aminotransferase
$$-00C$$
 R_1 $+$ $-00C$ R_2 R_2 $-00C$ R_1 $+$ $-00C$ R_2

Mechanism

Pyridoxal phosphate co-factor

Schiff base

- Ping pong
- Keto acid

Serine & Threonine deamination

- Dehydratase reaction
- Remove H₂O first
- Serine → pyruvate
- Threonine →αketobutyrate

Oxidative deamination

- glutamate transferred to mitochondria
- Glutamate dehydrogenase

Urea cycle

- In Liver
- Glutamate dehydrogenase
- CPS I
- bicarbonate and ammonia react
- In mitochondria: reactions
- cytosolic reactions
- arginase releases urea
- remove waste products
- tied to TCA cycle

$$\alpha$$
-Amino acid α -Ketoglutarate \leftarrow NADH + NH₄⁺ \rightarrow NH₂ \rightarrow NH₂ \rightarrow Urea α -Ketoacid \leftarrow Glutamate \rightarrow NAD+ + H₂O

Urea cycle

- Mitochondria reactions
- Cytosolic reactions

Mitochondrial Reactions

- CPS I
- Bicarbonate and ammonia react
- Orinithine transcarbamolyse
- Citrulline transported to cytosol

Cytosolic reactions

- Arginase releases urea
- remove waste products: ammonia/bicarbonate
- tied to TCA cycle

Urea cycle and TCA cycle

Glucogenic vs ketogenic amino acids

- Glucogenic amino acids can supply gluconeogenesis pathway via pyruvate or citric acid cycle intermediates
- Ketogenic amino acids can contribute to synthesis of fatty acids or ketone bodies
- Some amino acids are both glucogenic and ketogenic

Carbon skeletons of amino acids

- glucogenic
- ketogenic
- Phenylalanine example
- Autosomal genetic defect

Phenylalanine Metabolic defect

- Genetic defect
- Recessive
- Hydroxylase defect
- Minor pathway produce Phenylpyruvic acid

TABLE 23.3 Inborn errors of amino acid metabolism

Disease	Enzyme deficiency	Symptoms
Citrullinema	Arginosuccinate lyase	Lethergy, siezures, reduced muscle tension
Tyrosinemia	Various enzymes of tyrosine degradation	Weakness, self-mutilation, liver damage, mental retardation
Albinism	Tyrosinase	Absence of pigmentation
Homocystinuria	Cystathionine β-synthase	Scoliosis, muscle weakness, mental retardation, thin blond hair
Hyperlysinemia	α-Aminoadipic semialdehyde dehydrogenase	Seizures, mental retardation lack of muscle tone, ataxia