Glycolysis

- Introduction: Glucose utilization
- Glycolysis
- Entry of glucose into the cell
- Preparatory phase of glycolysis
- Energy production

Glycolysis Embden-Meyerhoff pathway

- Introduction
- Glycolysis
- Entry of glucose into the cell
- Preparatory phase of glycolysis
- Energy production

Glycolysis

- Ancient Pathway
- In cytoplasm
- No oxygen required
- Used for energy production
- Production of intermediates for other pathways
- Found in tissues with limited blood supply

Entry of glucose into the cell

- Transport
- hexokinase
- glucokinase in liver
- hexokinase vs glucokinase
- forms anion to keep in cell

Glucose Transporters

Name	Tissue location	$K_{ m m}$	Comments
GLUT1	All mammalian tissues	1 mM	Basal glucose uptake
GLUT2	Liver and pancreatic β cells	15–20 mM	In the pancreas, plays a role in regulation of insulin In the liver, removes excess glucose from the blood
GLUT3	All mammalian tissues	1 mM	Basal glucose uptake
GLUT4	Muscle and fat cells	5 mM	Amount in muscle plasma membrane increases with endurance training
GLUT5	Small intestine	—	Primarily a fructose transporter

Kinetic properties of hexokinase

Preparatory phase of glycolysis

- 2 ATP
- Phosphofructokinase (PFK-1)
- regulated
- allosterically

Aldolase

Mechanism: Aldolase

- Nucleophillic (electron rich group attacks electron deficient nucleus attack on #2 carbon.
- Lysine residue forms a Schiff base
- OH (from C) and H from cysteine form H₂O.
- Thiolate gets H⁺ from substrate, release Gly 3-P
- His residue donates H⁺
- Hydrolysis of Schiff base

Energy production

- 1,3 BPGA
- PEP
- 4 ATP & 2 NADH
- Pyruvate end product

Phosphoglycerate Kinase

(Figure 12.14). This nonenzymatic hydrolysis produces 3-phosphoglycerate and regenerates inorganic arsenate, which can again react with a thioacyl-enzyme intermediate. Glycolysis can proceed from 3-phosphoglycerate, but the ATP-producing reaction involving 1,3-bisphosphoglycerate is bypassed. As a result, there is no net formation of ATP from glycolysis, with potentially lethal consequences.

CH₂OPO₃⁽²⁾ 1-Arseno-3-phosphoglycerate CH2OPO

3-Phosphoglycerate

Mechanism: dehydrogenase

- Ionized cysteine attacks C-1, forming thiohemiacetal (aldehyde/thio group)
- Hydride ion (H⁻) reduces NAD⁺, forms thioacyl intermediate
- Phosphate enters
 displaces thioacyl
- 1,3 Bisphsopho disassociates.

PEP to Pyruvate

	Reaction	ATP change pe glucose	
Glucose -	→ glucose 6-phosphate		-1
Fructose 6-p	hosphate \longrightarrow fructose 1,6-bisphosphate		-1
1,3-Bispho	sphoglycerate 2 3-phosphoglycerate		+2
Phosphoenolpyruvate 2 pyruvate			+2
92		Net	+2

Biological Systems

- Net 2 ATP
- 2 NADH
- Most reactions at equilibrium can be reversed

Table 15-3

Typical concentrations of glycolytic intermediates in erythrocytes

Intermediate	μм		
alucose		5000	
Glucose 6-phosphate		83	
Fructose 6-phosphate		14	
Fructose 1,6-bisphosphate		31	
Dihydroxyacetone phosphate		138	
Glyceraldehyde 3-phosphate		19	
1,3-Bisphosphoglycerate		1	
2,3-Bisphosphoglycerate		4000	
3-Phosphoglycerate	1	118	
2-Phosphoglycerate	×	30	
Phosphoenolpyruvate		23	
Pyruvate		51	
Lactate		2900	
ATP .		1850	
ADP		138	
Pi		1000	

After S. Minakami and H. Yoshikawa, Biochem. Biophys. Res. Comm. 18(1965):345.

Overall reactions of glycolysis

TABLE 14–2 Free-Energy Changes of Glycolytic Reactions in Erythrocytes

Glycolytic reaction step	$\Delta { m G'^{\circ}}$ (kJ/mol)	ΔG (kJ/mol)
(1) Glucose + ATP \longrightarrow glucose 6-phosphate + ADP	-16.7	-33.4
(2) Glucose 6-phosphate fructose 6-phosphate	1.7	0 to 25
(3) Fructose 6-phosphate + ATP \longrightarrow fructose 1,6-bisphosphate + ADP	-14.2	-22.2
④ Fructose 1,6-bisphosphate ⇒ dihydroxyacetone phosphate +		
glyceraldehyde 3-phosphate	23.8	0 to -6
(5) Dihydroxyacetone phosphate ⇒ glyceraldehyde 3-phosphate	7.5	0 to 4
(6) Glyceraldehyde 3-phosphate + P_i + NAD ⁺ \implies 1,3-bisphosphoglycerate +		
NADH + H^+	6.3	-2 to 2
(7) 1,3-Bisphosphoglycerate + ADP = 3-phosphoglycerate + ATP	-18.8	0 to 2
(8) 3-Phosphoglycerate 2-phosphoglycerate	4.4	0 to 0.8
(9) 2-Phosphoglycerate \implies phosphoenolpyruvate + H ₂ 0	7.5	0 to 3.3
10 Phosphoenolpyruvate + ADP \longrightarrow pyruvate + ATP	-31.4	-16.7

Note: $\Delta G'^{\circ}$ is the standard free-energy change, as defined in Chapter 13 (p. 491). ΔG is the free-energy change calculated from the actual concentrations of glycolytic intermediates present under physiological conditions in erythrocytes, at pH 7. The glycolytic reactions bypassed in gluconeogenesis are shown in red. Biochemical equations are not necessarily balanced for H or charge (p. 506).

Regulation of Glycolysis

- ATP/AMP ratios are important
- Two roles: energy production and building blocks for biosynthesis

Regulation of Hexokinase

Phosphofructokinase: Highly regulated

- Allosteric enzyme:
- Activated by ADP and AMP
- Inhibited by ATP and Citrate (from TCA cycle)
- Fructose 2,6
 bisphosphate
 regulation

PFK-2

- Tandem enzyme: PFK-2, both kinase and phsophotase together
- Fru 2,6 P potent activator of PFK-1
- prevents inhibition of citrate/ATP for fatty acid biosynthesis
- Relative velocity curves
 for PFK-1
- Effect of glucagon on PFK-1

Activation of PFK-1 by Fru 2,6 Bis

Other sites of Regulation

- Pyruvate kinase
- allosteric
- stimulated by fructose 1,6P
- inhibited by acetyl-CoA, fatty acids
- protein kinase inhibits pyruvate kinase
- Glyceraldehyde 3-P
 dehydrogenase
- stimulated by NAD+

