Environmental Health & Toxicology

- Infectious diseases
- Toxicology
- Movement and fate of toxins
- Measuring toxicity
- Risk assessment
- Minimizing effects

Do you want to stop reading those Ingredients while we're trying to eat?

Mercury and Minamata

Lessons

- 1. Individuals vary in their response
- 2. Pollutants may have a threshold
- 3. Some effects are reversible
- 4. Chemical form may be altered by ecological and biological processes

Env Health

- External factors that cause disease
- Many different types of environmental agents

Disease

- Acute
- Chronic
- Change from 1900s to present.
- Future projections

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 8.1

Leading Causes of Global Disease Burden

Rank	1990	Rank	2020
1	Pneumonia	1	Heart disease
2	Diarrhea	2	Depression
3	Perinatal conditions	3	Traffic accidents
4	Depression	4	Stroke
5	Heart disease	5	Chronic lung disease
6	Stroke	6	Pneumonia
7	Tuberculosis	7	Tuberculosis
8	Measles	8	War
9	Traffic accidents	9	Diarrhea
10	Birth defects	10	HIV/AIDS
11	Chronic lung disease	11	Perinatal conditions
12	Malaria	12	Violence
13	Falls	13	Birth defects
14	Iron anemia	14	Self-inflicted injuries
15	Malnutrition	15	Respiratory cancer

Source: World Health Organization, 2002.

Infectious Diseases

- Diseases still a major problem
- Diarrhea, measles, flu, tetanus, malaria
- Kill 11 million children in developing countries

Resistance

- Antibiotic
- Pesticide
- Herbicides

Harmful

microbe

Conjugation

Harmful,

drug-resistant microbe Resistant colony

Emergent Diseases

- SARS
- HIV/Aids
- West Nile virus
- Bird flu

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Toxicology

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction

or display.

• Types of toxins

- Allergens
- Endocrine disrupters
- Neurotoxins
- Mutagens
- Teratogens
- Carcinogens

TABLE 8.2

Top 20 Toxic and Hazardous Substances

- 1. Arsenic
- 2. Lead
- 3. Mercury
- 4. Vinyl Chloride
- 5. Polychlorinated Biphenyls (PCBs)
- 6. Benzene
- 7. Cadmium
- 8. Benzo(a)pyrene
- 9. Polycyclic aromatic hydrocarbons
- 10. Benzo(b)fluoranthene
- 11. Chloroform
- 12. DDT
- 13. Aroclor 1254
- 14. Aroclor 1260
- 15. Trichloroethylene
- 16. Dibenz(a,h)anthracene
- 17. Dieldrin
- 18. Chromium, Hexavalent
- 19. Chlordane
- 20. Hexachlorobutadiene

Examples: Physiological effects

- **Organophosphates** = irreversibly inactivate acetylcholinesterase, which is essential to nerve function in insects, humans, and many other animals (ie; malathion, diazinon)
- **Mercury** =loss of peripheral sensation and restriction of the visual field. Patients in advanced stages of the condition show considerable atrophy of brain
- Lead = Lead is able to bind to and interact with the same proteins and molecules as these metals, but after displacement, those molecules function differently and fail to carry out the same reactions
- **PCBs** = affect the immune system
- **Arsenic** = kills by allosteric inhibition of essential metabolic enzymes. The LD50 for pure arsenic is 763 mg/kg (by ingestion)
- Herbicides = cause a variety of health effects ranging from skin rashes to death

Factors

- Chemical composition
- Solubility
- Chemical interactions
- Chemical changes
- Metabolic degradation
- Excretion
- Repair mechanisms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 8.4

Factors in Environmental Toxicity

Factors Related to the Toxic Agent

- 1. Chemical composition and reactivity
- 2. Physical characteristics (such as solubility, state)
- 3. Presence of impurities or contaminants
- 4. Stability and storage characteristics of toxic agent
- 5. Availability of vehicle (such as solvent) to carry agent
- 6. Movement of agent through environment and into cells

Factors Related to Exposure

- 1. Dose (concentration and volume of exposure)
- 2. Route, rate, and site of exposure
- 3. Duration and frequency of exposure
- 4. Time of exposure (time of day, season, year)

Factors Related to Organism

- 1. Resistance to uptake, storage, or cell permeability of agent
- 2. Ability to metabolize, inactivate, sequester, or eliminate agent
- 3. Tendency to activate or alter nontoxic substances so they become toxic
- 4. Concurrent infections or physical or chemical stress
- 5. Species and genetic characteristics of organism
- 6. Nutritional status of subject
- 7. Age, sex, body weight, immunological status, and maturity

Movement and exposure

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Air Source Photolysis Industry Oxidation Agriculture Precipitation Domestic, etc. Biota Metabolism Storage Excretion Soil and sediment Photolysis and metabolism Water Evaporation Hydrolysis Oxidation Microbial degradation

> Evaporation Sedimentation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Bioaccumulation/magnification

- Absorption from environment
- Increase in tissues
- Movement to higher trophic level

Factors affecting toxicity

- Genetic basis
- Dose
- Rate
- Route of entry
- Acute vs Chronic effects

Measuring toxicity

- LD50: dose which kills 50%
- ED50: effective dose that causes an effect
- TD50: toxic dose to 50% of population

Dose-Response curves

Risk

- Perception
- Acceptance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 8.5

Lifetime Chances of Dying in the U.S.

Source	0dds (1 in <i>x</i>)	
Heart disease	2	
Cancer	3	
Smoking	4	
Lung disease	15	
Pneumonia	30	
Automobile accident	100	
Suicide	100	
Falls	200	
Firearms	200	
Fires	1,000	
Airplane accident	5,000	
Jumping from high places	6,000	
Drowning	10,000	
Lightning	56,000	
Hornets, wasps, bees	76,000	
Dog bite	230,000	
Poisonous snakes, spiders	700,000	
Botulism	1 million	
Falling space debris	5 million	
Drinking water with EPA limit of trichloroethylene	10 million	

Source: U.S. National Safety Council, 2003.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 8.6

Relative Risks to Human Welfare

Relatively High-Risk Problems

Habitat alteration and destruction Species extinction and loss of biological diversity Stratospheric ozone depletion Global climate change

Relatively Medium-Risk Problems

Herbicides/pesticides Toxics and pollutants in surface waters Acid deposition Airborne toxics

Relatively Low-Risk Problems

Oil spills Groundwater pollution Radionuclides Thermal pollution

Source: Environmental Protection Agency.