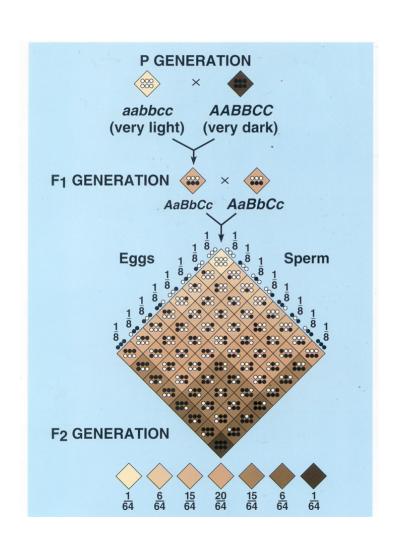
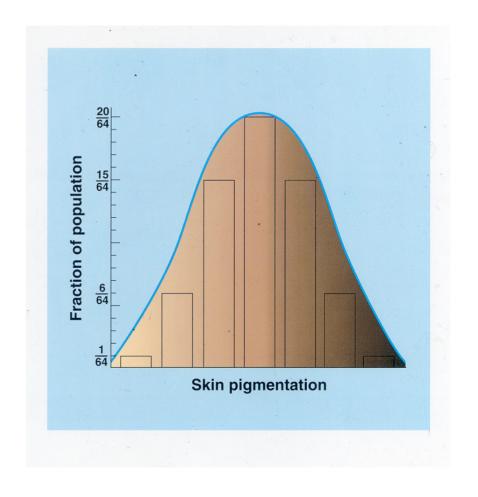

#### **Quantitative Genetics**

- Polygenic inheritance
   Continuous variation
   Additive alleles
   Calculating the number of genes
- Heritability
   Statistical tools: Mean, variance
   Broad sense heritability
   Narrow sense heritability
   Correlation: Twin Studies and concordance





# Polygenic inheritance

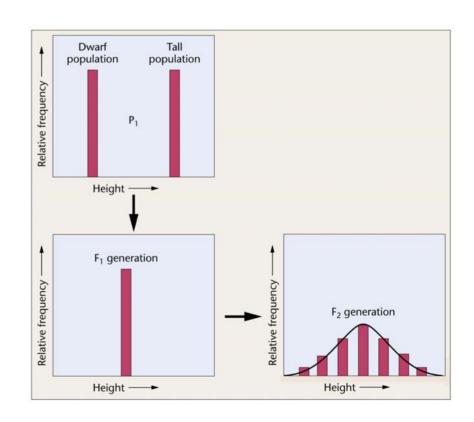
- 2 or more genes
- Show continuous variation vs discontinuous
- Additive component
- Distinct phenotypic classes
- Quantitative traits:
   size, weight, height, IQ



# Polygenic inheritance



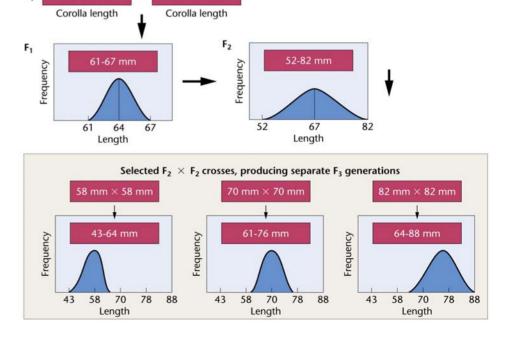



#### Continuous variation

Kolreuter's cross

Dwarf x tall tobacco

F1 intermediate

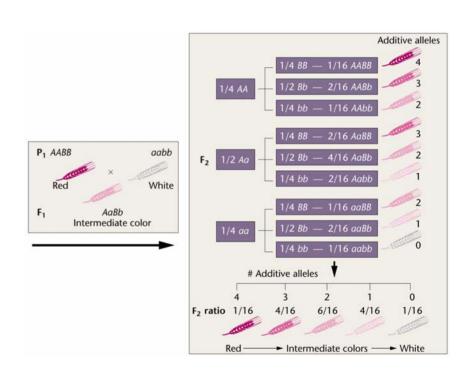

 F2 intermediate, normal distribution



### Multiple gene hypothesis

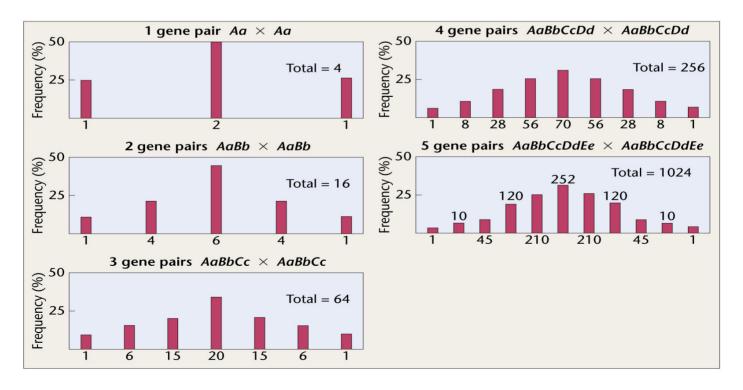
Strain A

- East's cross of Nicotiana with different corolla length
- Indicates Mendelian segregation of different phenotypic classes
- Took subsets of F<sub>2</sub>
   and crossed.

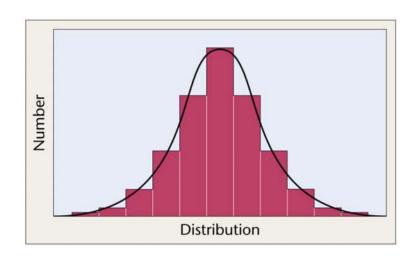


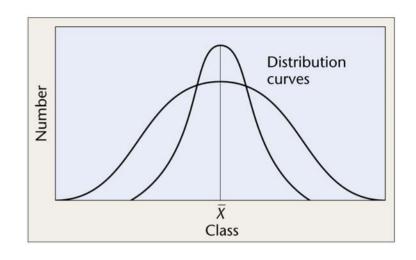

Strain B

91-97 mm


# Multiple factor hypothesis

- Characters quantified
- Two or more genes
- Additive alleles
- Contribute a constant amount
- Non-additive add nothing
- All alleles add equally





# Calculation of number of genes

- (1/4)<sup>n</sup>= ratio of f<sub>2</sub> individuals showing extreme phenotype
- n = (2n +1) phenotypic classes



# Statistical Analysis





- Mean  $(X) = \sum X_i/n$
- Variance  $(s^2) = (\sum X_i X)^2/n-1$
- Standard deviation (s) =  $\sqrt{s^2}$

#### Heritabilty

- Genetic contribution to phenotypic variability
- Broad-sense Heritabilty (H<sup>2</sup>)
- Narrow-sense Heritabilty (h²)
- Quantitative trait loci (QTL)

### Broad-sense Heritabilty

- H<sup>2</sup> = proportion of total variance caused by genetic variance
- $H^2 = 1.0$ , all genetic
- H<sup>2</sup> = 0 all variation due to environment

- Vp= phenotypic var
- Vg= genetic var
- V<sub>E</sub>= environmental var
- Vp= Vg + V<sub>F</sub>
- H<sup>2</sup>= Vg/Vp

# Calculation of H<sup>2</sup>(Broad-Sense)

• 
$$V_E = (3.1 + 3.9)/2$$
  
 $(4.7 + 3.5)/2$ 

$$V_{F} = 4.1$$

• Vp = 47.7

• 
$$Vg = Vp - V_E = 47.7 - 4.1$$

H<sup>2</sup>= Vg/Vp

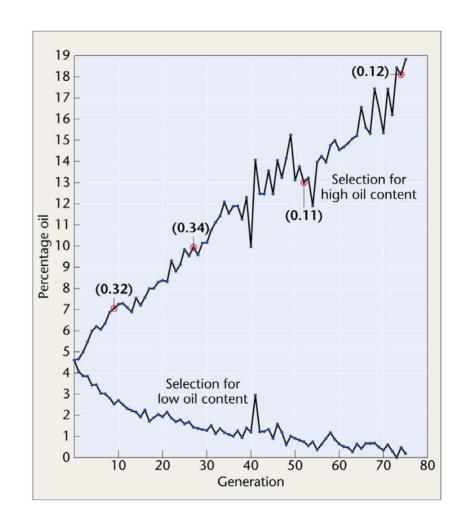
|             | Mean | Var  |
|-------------|------|------|
| P1<br>short | 40.4 | 3.1  |
| P2 tall     | 93.7 | 3.9  |
| F1          | 63.9 | 4.7  |
| F2          | 68.7 | 47.7 |

### Estimation # of genes

- $n = D^2 / 8Vg$
- n = number of genes
- D = difference of means of two parents
- Vg = genetic variance
- Assumes: alleles equal and additive, assort independently, original parents are homozygous

#### Narrow-sense Heritabilty

- Potential response to selection
- Additive variance
- Dominance variance


• 
$$V_G = V_A + V_D$$

• 
$$h^2 = V_A / V_E + V_A + V_D$$

 High h<sup>2</sup> prediction of impact of selection in altering a population.

#### Selection

- h<sup>2</sup> = M2- M/ M1 M
   response/selection
   differential
- M= mean of parental
- M1= mean of selected segment
- M2= mean of offspring
- Heritability low for traits essential for survival



# Narrow-sense Heritabilty

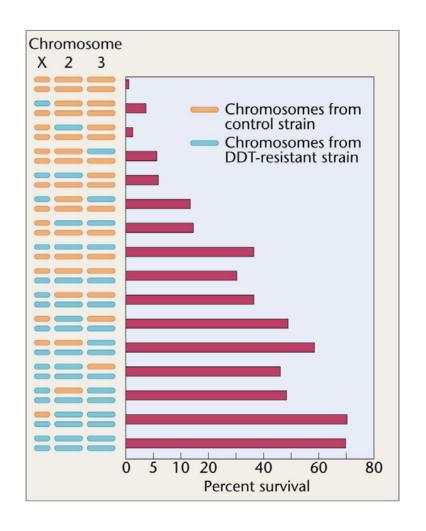
#### **TABLE 5.5** Estimates of Heritability for Traits in Different Organisms

| Trait                    | Heritability (b2)      |
|--------------------------|------------------------|
| Mice                     |                        |
| Tail length              | 60%                    |
| Body weight              | 37                     |
| Litter size              | 15                     |
| Drosophila               | April 10 Million Carlo |
| Abdominal bristle number | 52                     |
| Wing length              | 45                     |
| Egg production           | 18                     |
| Chickens                 |                        |
| Body weight              | 50                     |
| Egg production           | 20                     |
| Egg hatchability         | 15                     |
| Cattle                   | Alterior San Holy      |
| Birth weight             | 51                     |
| Milk yield               | 44                     |
| Conception rate          | 3                      |

#### Twin Studies

TABLE 5.6 A Comparison of Concordance of Varior Traits Between Monozygotic (MZ) and Dizygotic (DZ) Twins

| Concordance |                                       |
|-------------|---------------------------------------|
| MZ          | DZ                                    |
| 100%        | 66%                                   |
| 99          | 28                                    |
| 97          | 37                                    |
| 95          | 87                                    |
| 72          | 15                                    |
| 69          | 10                                    |
| 65          | 18                                    |
| 59          | 5                                     |
| 57          | 23                                    |
| 42          | 5                                     |
| 32          | 3                                     |
| 6           | 3                                     |
|             | MZ 100% 99 97 95 72 69 65 59 57 42 32 |


TABLE 15.4 Heritability Estimates for Obesity in Twins (from several studies)

| CONDITION                                                 | HERITABILITY |
|-----------------------------------------------------------|--------------|
| Obesity in children                                       | 0.77-0.88    |
| Obesity in adults (weight at age 45)                      | 0.64         |
| Obesity in adults (body mass index at age 20)             | 0.80         |
| Obesity in adults (weight at induction into armed forces) | 0.77         |
| Obesity in twins reared together or apart                 | 0.77         |
| Men                                                       | 0.70         |
| Women                                                     | 0.66         |

$$H = (V_{dz} - V_{mz})/V_{dz}$$

### Quantitative trait loci (QTL)

- DDT resistance polygenic
- Each chromosome makes a contribution to survival.

