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Investigating relationships with Pearson r correlations

Often, when you get a distribution of scores across two variables, you may be interested in
determining if they are related to one another in any systematic way. For example, say you
have scores on a math test and scores on an English test — are they related? Might it be that the
better you do on the English test the better you'll do on the math test? Investigating
relationships between two variables is a common analytic procedure and can often give us

much good information. Before you get started, review “Measures of relationship” beginning
on pg. 425.

By far, the most common measure of relationship (correlation is a synonym) is the Pearson r —
that’s the one we're going to talk about here. The Pearson r is restricted to investigating
relationships between two continuous variables — meaning, variables that go up or down on a
smooth scale rather than at discrete points or intervals. For example, age is a continuous
variable while gender is not — it’s an “either/or” kind of thing. Likewise, most test scores are
continuous variables while hair color is not (usually brown, black, blonde... and so forth) unless

you phrase hair color as something like “percentage of brown pigmentation” or something that
allows it to smoothly increase.

The other serious caution in correlations is that they do not prove causation. There is, believe it
or not, a weak, positive correlation between the height of corn in Nebraska and the murder rate
in inner-city Chicago. So, as the height of corn increases in Nebraska, the murder rate also
grows. They are related statistically but clearly one does not cause the other - the mediating
variables here is, of course, temperature. Hot weather makes corn grow tall and also
encourages people to be out on the streets in Chicago... where they bump into each other and
then start shooting. Anyway... keep that in mind - correlation says nothing of causation.

So... here we go on our correlation lesson. One useful and simple thing to do to investigate
relationships between two continuous variables is to make a scatterplot and visually investigate
their relationship. To make a scatterplot, put one variable along each axis and simply plot the
scores. Follow my example then do the height and shoe size one on your own.
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When you're done plotting the data points, the idea is to draw a “best fit” line — a line through
the points that leaves about as many above the line as it does below the line. Of course, a
perfect positive correlation (+1.00) would have a best fit line slopping at 45 degrees from the
lower left hand corner to the upper right hand corner. A perfect negative correlation would
have a line sloping at 45 degrees from the upper left hand corner to the lower right — meaning

for every one up on the first variable the other variables goes one down — just the opposite of a
positive correlation.
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Height in inches:

65
65
67
69
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71
71
73
74
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Shoe size:

6

8

10
10
9

12
11
11
10
13

(Remember, when you plot the numbers they have to both be on the same scale... increasing by
2’s or 5's or something)

1. Draw a best fit line and compare it with the scatterplots on the next page. How are your
two variables related (positively/negatively, strongly /weekly)? Estimate the strength of the
relationship by guessing at a correlation coefficient.

Ir'=

2. Calculate the correlation coefficient of the height/shoe size data (see pg. 434 -436). Follow
my example first:
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Finally, what’s cool about correlation coefficients is that we can get significance figures for
them. Significance figures give us a level of confidence we might have in our data. You've
probably seen them before in research as p <.05 — means the probability (p = probability) of
these numbers happening by chance is less than 5 times out of 100. In education, we typically
look at probability values of .05 and less, like maybe .01 or .001 — rarely do we see something
different from this. So significance value of .001 means there’s less than one chance in a
thousand that these numbers occurred by random chance or random error — in other words, we
have great faith that there’s a pretty darn good chance that we should believe the numbers.
Significance says nothing about whether or not the relationship is meaningful. That's
something you have to decide for yourself — it only tells you the chances that it happened by
chance - if you know what I mean! To read more about significance... you're going to have to
skip ahead to unit 8 and download the readings on inferential statistics. Read in part 1... pgs.
449-454... the section starting with “tests of significance.” Yes, I know these files don't have
good markings for page numbers... but start at the first page and number them.

3. When you're ready to continue, download the table of significance for Pearson r (see unit 7
web page) and look your correlation coefficient up on the table. First, find the appropriate
degrees of freedom (the formula for df when using Pearson r is df=n-1, where n is the
number of pairs. So... your df should be 9... then see if your correlation coefficient is higher
than any of the numbers for significance at each of the different probability levels - moving
across toward the right). Is your correlation statistically significant? At what level of
significance? Write out in English what this really means.

4. Finally, move down on the degrees of freedom column representing an increase in sample
size. What happens to the significance figures? Is it easier or harder to get a statistically
significant finding with a larger sample size? Why do you think quantitative researchers
work so hard to get as big of samples as they can possible get? Pretty cool huh!



