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g What It Means to.

Know alm@ln Do Mathematics

No matter how lucidly and patiently teachers explain to their
students, they cannot understand for their students.
Schifter and Fosnot (1993, p. 9)

'W‘lat does it mean to know a mathematics topic? Take
division of fractions, for example. If you know this
topic well, what do you know? As mentioned in Chapter 1,
the answer is more broad than knowing a procedure you may
have memorized (invert the second fraction and multiply).
Knowing division of fractions means that you can not only
think of examples that fit division of fractions, you can also
use alternative strategies to solve problems, estimate an an-
swer, or draw a diagram to show what happens when a num-
ber is divided by a fraction. Unfortunately, too much
mathematics instruction is limited to simple algorithms with-
out allowing students to deeply learn about different topics.

This chapter is about the learning theory of teaching
developmentally and the knowledge necessary for stu-
dents to learn mathematics with understanding. You might
consider this chapter the what, why, and how of teaching
mathematics. The “how” is addressed first—how should
mathematics be experienced by a learner? Second, “why”
should mathematics look this way? And, finally, “what” does
it mean to understand mathematics?

Before you read about learning theory and knowledge
1 mathematics, however, it is important for you to have a
chance to “do mathematics” in a way that nurtures under-
Standing and builds connections. These experiences will
Serve as exemplars when we tarn to the discussion of learn-
ing theory and knowledge.

at Does It Vlean
1o Do Mathematics?

] Stop for a moment and write a few sentences about
B

ati S R
"t means to do and know mathematics, based on your

own experiences. Then put your paper aside until you have
finished this chapter.

The description of doing mathematics presented here
may not match your personal experiences. That’s okay!
However, it is not okay to be closed off to new ideas that
may clash with your perceptions or to refuse to acknowl-
edge that teaching mathematics could be dramatically dif-
ferent than your previous experience.

Mathematics is more than completing sets of exercises
or mimicking processes the teacher explains. Doing math-
ematics means generating strategies for solving problems,
applying those approaches, seeing if they lead to solutions,
and checking to see if your answers make sense. Doing
mathematics in classrooms should closely model the act of
doing mathematics in the real world.

Mathematics Is the Science
of Pattern and Order

This wonderfully simple description of mathematics, found
in the thought-provoking publication Everybody Counts
(Mathematical Sciences Education Board, 1989), challenges
the popular view of mathematics as a discipline dominated
by computation and rules without reasons. Science is a pro-
cess of figuring out or making sense. Although you may
never have thought of it in quite 2
this way, mathematics is a science myeducaﬁon[ab_‘)
of concepts and processes that | go 1o the Activities and Ap-
have a pattern of regularity and plication section of Chap-
logical order. Finding and explor- | ter 2 of MyEducationLab.
ing this regularity or order, and | Click on Videos and watch
) 5 [ the video entitied “John

then making sense of it, is what | oo vathe-
doing mathematics is all about. matics Is the Science of

Even the youngest schoolchil- Patlern and Order” o see
dren can and should be involved in | him give his description
the science of pattern and order, | of mathematics.




14  Chapter 2 Exploring What |t Means o Know and Do Ma

Have you ever noticed that 6.+ 715 thesameas 5 +8 and 4 +9?
What is the pattern? What are the relationships? When two
odd numbers are multiplied, the result is also 0dd, but if the
same numbers are added or subtracted, the result is even.

In middle school, students graph linear functons (1€
functions that can be represcntcd as y = mX + by. Graph-
ing functions can be narrowly explored by following @ set
of steps of rules, but anderstanding why certain forms of
equations, situations, oF models are growing in a linear man-
ner involves a gearch for patterns. Discovering what types of
real-world relationships are represented by lincar graphs i
more scientific—and infinitely more valuable—than creating
a graph from an equation without connection O the world.

Engaging in the science of pattern and order—doing
umt;hem-atics——takes time and effort. Consider topics that
show up on lists of “basic skills,” cuch as knowing basic
facts for addition and multiplication and having efficient
methods of computing whole numbers, fractions, and deci-
mals. Studying relationships on the multiplication chart or
analyzing patterns in place value (discussed in detail in the
related content chapters) helps students anderstand what
they are doing, therefore increasing their accuracy and re-
tention. To master these topics as facts and procedures by
memorization alone is no more doing mathematics than
playing scales on the piano is making music.

w___-——-—"—PWMJPW

Envision for a moment an elementary or middle school
mathematics class where students are doing mathematics as ‘a
study of pattems." What action yerbs would students use Lo
describe what they are doing? Make a short list before reading

further.

A Classroom Environment
for Doing Mathematics

To create a setting where students arc doing mathemat-
ics means a shift in the tasks given t© students and how
classrooms are organized for mathematics lessons. Doing
mathematics begins with posing worthwhile tasks and then
creating risk-taking environment where students share
and defend mathematical ideas.

The Language of Doing Mathematics. Children in tra-
ditional mathema rics classes often describe mathematics as
wwork” or “getting answ ers.” They talk about “plussing”
and “doing times” (multiplication). In contrast, the follow=
ing collection of yerbs can be found in most of the literature
describing the authentic work of doing mathematics, and al
are used in Principles and Standards (NCTM, 2000):

explore justify construct develop
investigate represent verify describe
conjecture formulate explain use
solve discover predict

thematics

These verbs require highcr—leve'. thinking and encom-
pass “making sense” and “figuring out.” Children engaged
in these actions in mathematics classes will be actively think-
ing about the mathematical ideas that are involved. Contrast
these with the verbs that might reflect the (raditional math-
Ematcs classroom: listen, copy, memorize, drill. These are
{ower-level thinking activities and do not adequately prepare
srudents for the real act of doing mathematics. Mathematics
requires ¢ ffortand itis important that students, parents, and
the community acknowledge and honor the fact that effortis
what leads to learning 1 mathematics (National Mathemat-
ics Advisory Panel, 2008). In classrooms pursuing higher-
level mathematics activities on a daily basis, the students are
getting an empowering message: Youare capable of making
cense of this—you.are capable of doing mathematics!”

Every idea introduced in the mathematics classroom
can and should be anderstood by every child. There are no
exceptions! All children are capable of learning the math-
ematics we want them to learn. Their learning becomes
meaningful when they are taught using the verbs listed here
to perform challenging and engaging mathematics.

The Setting for Doing Mathematics. The teacher’s role
is to create this spirit of inquiry, trust and expectation.
Within that environment, students are invited o do math-
ematics. You pos¢ problems; students wrestle toward solu-
dons. The focus is on students actively figuring things out
by testing ideas, making conjectures, developing reasons,
and offering explanations. In Classroom Discutssions, & teacher

resource describing how to implement offective discourse
in the classroom, Chapin, O’Conner, and Anderson (2003)
write, “When a teacher sncceeds in setting up 2 classrooin
in which students feel obligated to listen to one another; 10
make their own contributions clear and comprchensih'le,
and to provide evidence for their claims, that teacher has set
in place a powerful context for student {earning” (p- 9)-

In the classic book Making Sense (Hiebert et al., 1997),
the authors describe four features of a productive classroom
culture for mathematics in which students can Jearn from
each other.

1. Ideas are the currency of the classroom. 1deas, t:xprcssed by
any participant, have the potential to contribute to €¥”
eryone’s learning and consequently warrant respect 2 nd
response.

Students bave autanomy with respect to the methods used 10

solve problems. Grudents must respect the need for

everyone to anderstand their Own methods and must
recognize that there are often a variety of methods that
will lead to @ solution.

3, The classroom culeure exhibits an appreciation for pistakes
as opportunitics 10 Jearn. Mistakes afford opporrun‘-tilf"
to examine errors in reasoning, and thereby raist
everyone’s level of analysis. Mistakes are not to be cov”
ered up; they are 10 be used constructively.

Lo



4. The authority for reasonability and corvectness lies in the
logic and structure of the subject, vatber than in the social
status of the participants. The persuasiveness of an expla-
nation or the correctness of a solution depends on the
mathematical sense it makes, not on the popularity of
the presenter. (pp. 9-10)

In classrooms that embrace this culture for learning, the
way students think about mathematics changes. Rather than
students asking (or thinking) “What do you want me to
do?” problem ownership shifts the situation to “I think T am
going to . ..” (Baker & Baker, 1990). In the latter example
the student feels empowered to come up with his or her
own approach rather than depend on the teacher to offer an
approach. This is foundational in creating an environment
for doing mathematics. More information on creating a
community of learners is found in Chapter 3.

An Invitation to Do
W Mathematics

: Ifyour goal is to create a classroom environment where
children are truly doing mathematics, it is important that you
have a personal feel for doing mathematics. The purpose of
this section is to provide you with opportunities to engage in
the science of pattern and order—to do some mathematics.
If possible, find one or two peers to work with you so that
you can experience sharing and exchanging ideas.

Don’t read too much at once. Some hints and sugges-
tions follow each task. Do as much as you can until you are
stuck—really stuck—and then read a bit more.

Let’s Do Some Mathematics!

We will explore four different problems. Each is indepen-
dent of the others. None requires any sophisticated math-
ematics, not even algebra. But they do require higher-level
thinking and reasoning. Try out your ideas! Devote time
and effort—persist—these are the keys for being successful
at mathematics. Have fun!

i and Jump Numbers:
‘hing For Patterns

You will need to make a list of numbers that begin with a
“start number” and increase by a fixed amount we will call
the “jump number.” First try 3 as the start number and 5 as
t_he Jjump number. Write the start number at the top of your
list, then 8, 13, and so on, “jumping” by 5 each time until
your list extends to about 130. ;
as OEXamine this list of numbers and find as many patterns
do‘!llvnu <an. Share your ideas with the group, and write
€very pattern you agree really is a pattern.
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Do not read on until you have listed as many patterns
as you can identify.

A Few Ideas. Here are some patterns you might
consider:

Do you see at least one alternating pattern?

® Have you looked at odd and even numbers?

¢ What can you say about the number in the tens
place?

® How did you think about the first two numbers with
no tens-place digits?

® Have you tried doing any adding of numbers? Num-
bers in the list? Digits in the numbers?

If there is an idea in this list you haven't tried, try that
nNow.

Don'’t forget to think about what happens to your pat-
terns after the numbers go over 100. How are you thinking
about 113? One way is as | hundred, 1 ten, and 3 ones. But,
of course, it could also be “eleventy-three,” where the tens
digit has gone from 9 to 10 to 11. How do these different
perspectives affect your patterns? What would happen after
9997

When you added the digits in the numbers, the sums
are 3, 8,4, 9, 5,10, 6, 11,7, 12, 8, . . .. Did you look at
every other number in this string? And what is the sum of
the digits for 113? Is it 5 or is it 14? (There is no “right”
answer here. But it is interesting to consider different
possibilities.)

Next Steps. Sometimes when you have discovered
some patterns in mathematics, it is a good idea to make
some changes and see how the changes affect the patterns.
What changes might you make in this problem?

Your changes may be even more interesting than the
following suggestions. But here are some ideas:

Try some ideas now before going on.

® Change the start number but keep the jump number
equal to 5. What is the same and what is different?

® Keep the same start number and examine different
jump numbers. You will find out that changing jump
numbers really “messes things up” a lot compared to
changing the start numbers.

® Ifyou have patterns for several different jump numbers,
what can you figure out about how a jump number
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Figure 2.1 Forjumps of 3, this cycle of digits will oceur in
the ones place. The start number determines where the cycle
begins.

affects the patterns? For example, when the jump num-
ber was 5, the ones-digit pattern repeated every two
numbers—it had a “pattern length” of two. But when
the jump number 15 3, the length of the ones-digit pat-
tern is ten! Do other jump numbers create different
pattern lengths?

o For a jump number of 3, how is the ones-digit pattern
related to the circle of numbers in Figure 2.1? Are
there other circles of numbers for other jump
numbers?

o Using the circle of numbers for 3, find the pattern for
jumps of multiples of 3, that is, jumps of 6,9, or 12.

Using Technology. You may want to explore this

problem using calculator, which can make the list

generation accessible for young children who can’t
skip count yet and it opens the door for students to work
with bigger jump numbers, such as 25 or 36. Most simple
calculators have an Jutomatic constant feature that will add
the same number successively. For example, if you press
3+ 5 E and then keep pressing | =], the calculator will
count by s (the first sequence of numbers you wrote). This
also works for the other three operations.

Two Machines, One Job

Ron’s Recycle Shop started when Ron bought a used paper-
shredding machine. Business was good, sO Ron bought a
new shredding machine. The old machine could shred a

truckload of paper in 4 hours. The new machine could shred
the same truckload in only 2 hours. How long will it take to
shred a truckload of paper if Ron runs both shredders at the
same time?

Do not read on until you either get an answer or get

stuck. Can you check that you are correct? Are you sure you
are stuck?

A Few Ideas. Are you overlooking any assumptions
made in the problem? Do the machines run simultaneously?

The problem says “g¢ the same time.” Do they run just as
fast when working together as when they work alone?

If this gives you an idea, pur.

sue it before reading more.

Have you tried to predict approximately how much
time you think it should take the two machines? Just make
an estimate in round pumbers. For example, will it be closer
to 1 hour or closer to 4 hours? What causes you to answer
as you have? Can you rell if your guestmate” makes sense
or is at least in the pallpark? Checking a guess in this way
sometimes leads to a new insight.

Some people draw pictures to solve problems. Others
like to use something they can move or change. For exam-
ple, you might draw a rectangle or a line segment to stand
for the truckload of paper; oryou might get some counters
(chips, plastic cubes, pennies) and make a collection that
stands for the truckload.

@ —

Go back and work on the problem more.

Consider Solutions of Others. Here are solutions
of teachers who worked on this problem (adapted from
Schifter & Fosnot, 1993, pp: 24-27). Here is Betsy’s solu-
tion (she teaches sixth grade):

Betsy holds up a bar of plastic cubes. “Let's say these 16
cubes are the truckload of paper. In 1 hour, the new i~
chine shreds 8 cubes and the old machine 4 cubes.” Betsy
breaks off 8 cubes and then 4 cubes. @T'hat leaves these
cubes. If the new machine did 8 cubes’ worth in | hout,
it can do 2 cubes’ worth in 15 minutes. The old machin®
does half as much, or 1 cube.” As she says this, ghe breaks
off 3 more cubes. “['hat is 1 hour and 15 minutes, and W€
still have 1 cube left.” Long pause. «iVell, the new m”
chine did 2 cubes in 15 minutes, so it will do this cube 1
75 minutes. Add that onto the 1 hour and 15 minutes: /|
total time will be 1 hour 225 minutes.” (See Figure 2.4
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Entire truckload

S L eee— [

New machine Old machine Both do New machine
does this work does this work this in does this in
in 1 hour. in 1 hour. 15 minutes. 73 minutes.

Figure 2.2 Betsy's solution to the paper-shredding problem.

Cora, a fourth-grade teacher, disagrees with Betsy’s
answer. Here is Cora’s proposal:

“This rectangle [see Figure 2.3] stands for the whole
truckload. In 1 hour, the new machine will do half of this.”
The rectangle is divided in half. “In 1 hour, the old ma-
chine could do § of the paper.” The rectangle is divided
accordingly. “So in 1 hour, the two machines have done %
of the truck, and there is %{ left. What is left is one-third
as much as what they already did, so it should take the two
machines one-third as long to do that part as it took to do
the first part. One-third of an hour is 20 minutes. That
means it takes 1 hour and 20 minutes to do it all.”

Sylvia, a third-grade teacher, reports on her group’s
strategy:

At first, we solved the problem by averaging. We decided
that it would take 3 hours because that’s the average. Then
Deborah asked how we knew to average. We thought we
had a reason, but then Deborah asked how Ron would
teel if his two machines together took longer than just
the new one that could do the job in only 2 hours. So we
can see that 3 hours doesn’t make sense. So we still don’t
know whether it’s 1 hour and 20 minutes or 1 hour and
22 % minutes.

As with the teachers in these examples, it is important to
decide if your solution is correct through justifying why
you did what you did, as this reflects real problem solv-
ing (rather than checking with an answer key). After you
have justified that you have solved the problem in a correct
manner, try to find other ways to reach that solution or

try to understand others’ approaches to the problem—in
considering other ways, you can expand your repertoire of
problem-solving strategies.

One Up, One Down

For Grades 1-3. When you add 7 to itself, you get 14.
When you make the first number 1 more and the second
number 1 less, you get the same answer:

T3

7 +7 = 14 has the same answeras 8 + 6 = 14

It works for 5 + 5 too:

T

5+ 5 =10 has the same answeras 6 + 4 = 10

What can you find out about this?

For Grades 4-8. What happens when you change addition
to multiplication in this exploration?

Td

7 x 7 = 49 has an answer that is one more than 8 x 6 = 48

It works for 5 x 5 too:

Ti

5 x 5 = 25 has an answer that is one more than 6 x 4 = 24

What can you find out about this situation?

Can this pattern be extended to other situations?

New machine in
1 hour

Old machine in Both machines
1 hour together

'@:—

60 minutes

Figure

2.3 Cora’s solution to the paper-shredding problem.

20 minutes
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Work on the multiplication pattern. Explore until you
have developed some ideas. Write down whatever ideas you

discover.

A Few Ideas. Use 2 physical model or picture. You have
probably found some interesting patterns. Can you tell why
these patterns work? In the cas¢ of addition, itis fairly casy
to see that when you rake from one number and give tO the
other, the total stays the same. With multiplication, that is not
the case. Why? One way to explore this is 0 draw rectangles
with a length and height of each of the factors (€8 for the
first problem, a 7-by-7-unit rectangle and 2 6-by-4-unit
rectangle). See how the rectangles compare (Figure 2.4(2)).

You may prefer to think of m ultiplication as equal sets.
For example, using stacks of chips, 7 X 7 is seven stacks
with seven chips in wach stack (set). The expression 8 % 6is
represented by eight stacks of six (though six stacks of eight
is a possible interpretation). See how the stacks for each
expression compare (Figure 2.4(b)).

Work with one of both of these approaches to see if
you get any insights.

(@

This is 7 x 7 shown a8 an array of 7 rows of 7.

==
; =
= 7
i =
e 4

Thisis 7 x7 as 7 setsof 7.

What happens when you change one of these to show 6 x 87

Figure 2.5 Two physical ways to think about multiplica-
tion that might help in the exploration.

Additional Patterns to Explore. There is a lot t© find
out about multiplication patterns. Think of the many
syhat if”s that ar¢ possible. Here are a few. If you have
found other ones—great. There are many ways to explore
this problem.

e Tave you looked at how the first two numbers are
related? For example, 7 % 7 5 % 5, and 9 x 9 are all
products with like factors. What if the product was two
consecutive aumbers (€.g. 8 X 7 or 13 x 12)? What if
the factors differ by 2 or by 3?

e Think about adjusting by numbers other than one.
What if you adjust up tWo and down two (-8 7x7to
9 x 5)?

o What happens if you use big numbers instead of small
ones (e.g-, 30 % 30)?

e If both factors increase, is there a pattern?

We hope you have made your own conjectures and ex-
plored them ot At least added to the eyhat if” list. Scientists
(including mathematicians) explore new ideas that strike
them as interesting and promising cather than blindly fol-
Jowing procedures.

The Best Chance of Purple

Three students are spinning to “get purple” with two spin-
ners, either by spinning first red and then blue or first blue
and then red (se€ Figure 2.5). They may choose to spin
each spinner once or one of the spinners twice. Mary
chooses to spin twice on spinner A; John chooses to spin
twice on spinner B; and Susan chooses to spin first on
spinner A and then on spinner B. Who has the best chance
of getting a red and a blue? (Lappan & Even, 1989, p- 17)

Spinner A Spinner B

Figure 2. 5 You may spin A twice, B twice, or A then B.
\Which option gives you the best chance of spinning 2 red
and a blue?

____.--""-'-"

Think about the problem and what you know

Experiment.
____—-—'"’/




A Few Ideas. Sometimes it is tough to get a feel for
problems that are abstract or complex. In situations involv-
ing chance, find a way to experiment and see what happens.
For this problem, you can make spinners using a freehand
drawing on paper, a paper clip, and a pencil. Put your pen-
cil point through the loop of the clip and on the center of
your spinner. Now you can spin the paper clip “pointer.”
"Try at least 20 pairs of spins for each choice and keep track
of what happens.

Consider these issues as you explore:

® For Susan’s choice (A then B), would it matter if she
spun B first and then A? Why or why not?

® Explain why you think purple is more or less likely in
one of the three cases compared to the other two. It
sometimes helps to talk through what you have ob-
served to come up with a way to apply some more pre-
cise reasoning.

Try these suggestions before reading on.

Strategy 1: Tree Diagrams. On spinner A, the four
colors each have the same chance of coming up. You could
make a tree diagram for A with four branches, and all the
branches would have the same chance (see Figure 2.6).
Spinner B has different-sized sections, leading to the fol-
lowing questions:

® What is the relationship between the blue region and
each of the others?

¢ How could you make a tree diagram for B with each
branch having the same chance?

¢ How can you add to the diagram for spinner A so that
it represents spinning A twice in succession?

® Which branches on your diagram represent getting
purple?

® How could you make tree diagrams for John’s and
Susan’s choices? Why do they make sense?

Test your ideas by actually spinning the spinner or
spinners,

Tree diagrams are only one way to approach this. You
may have a different way. As long as your way seems to be

F~
'Bure 2.6 A tree diagram for spinner A in Figure 2.5.
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Spinner A

Spinner B

Figure 2.7 A square shows the chance of obtaining each
color for the spinners in Figure 2.5.

getting you somewhere, stick with it. There is one more
suggestion to follow, but don’t read further if you are ready
to solve the problem.

Strategy 2: Grids. Suppose that you had a square that
represented all the possible outcomes for spinner A and a
similar square for spinner B. Although there are many ways
to divide a square in four equal parts, if you use lines go-
ing all in the same direction, you can make comparisons of
all the outcomes of one event (one whole square) with the
outcomes of another event (drawn on a different square).
When the second event (here the second spin) follows the
first event, make the lines on the second square go the op-
posite way from the lines on the first. Make a tracing of one
square in Iigure 2.7 and place it on the other. You end up
with 24 little sections.

Why are there six subdivisions for the spinner
B square? What does each of the 24 little rectangles
stand for? What sections would represent purple? In
any other method you have been trying, did 24 come
into play when you were looking at spinner A followed
by B?

Where Are the Answers?

No answers or solutions are given in this text. How do you
feel about that? What about the “right” answers? Are your
answers correct? What makes the solution to any investiga-
tion “correct”?

In the classroom, the ready availability of the answer
book or the teacher’s providing the solution or verifying
that an answer is correct sends a clear message to students
about doing mathematics: “Your job is to find the answers
that the teacher already has.” In the real world of problem
solving outside the classroom, there are no teachers with
answers and no answer books. Doing mathematics includes
using justification as a means of determining if an answer
is correct.
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What Does It Mean
%to Learn Mathematics?

S Now that you have had the chance t© experience do-
ng mathematics, you may have 2 series of questions: Can
students solve cuch challenging rasks? Why take the time
to solve these problem‘s—~isn’t it better to doa lot of shorter
prnhlcmﬁ? Why should students be doing problems like
this, especially if they are reluctant to do o7 Collectively,
these questions could be summarized as wow does ‘doing
mathematics’ relate to student learning?” The answer 1ies
in current theory and research on how people learn, 25 dis-
cussed in the following sections g
vide in classrooms should be designed to maximize learning
nppm‘tunitics for students.

o

he experiences We pro-

Constructivist Theory

Constriuctivism s rooted inthe cognitive school of psychology
and in the work of Jean Piaget, who introduced the potion
of mental schema and developed 2 theory of cognitive de-
velopmentin the 19308 (translated tO English in the 1950s).
At the heart of constructivism is the notion that children (or
any learners) are not blank slates but rather creators of their
own learning. [ntt:_grated networks, or cognitive schenus, arc
both the product of constructing knowledge and the tools
with which additional new knowledge can be constructed.
As learning 0CCurS, the networks are rearranged, added to,
or otherwise modified. Piaget suggested that schemas can
be changed in tWo W‘.‘.Yﬁfﬁxsfmﬂrjﬂﬂil and accommodation.
Assimilation occurs when a new concept «figg” with prior
Lnowledge and the new information expands an existing
network. Accommodation rakes place when the new con-
cept does not «fiy” with the existing network, so the brain
revamps of yeplaces the existing schema. Through reflective
thought. people modify their existing schemas 0 incorpo-
rate new ideas (Fosnot, 1996). Reflective thought means
sifting through existing deas (also called prior Kknowledge)
to find those that seem to be related to the current thought,
idea, or task.

Existing schemas are often referred to s prior knowl-
edge. One basic tenet of constructivism 1s that people con-
struct their own knowledge based on their prior knowledge.
All people, all of the tme, construct or give meaning to
things they pereeive oF chink about. As you read these
words, you are giving meaning to them. Whether listening
passively 1o 2 lecture OF actively engaging in symhesizi.ng
findings ina project, your brain is applying ptior knowledge
to make sense of the new information

Construction of Ideas. 10 construct oF build some-
thing in the physical world requires tools, materials, and
effort. How we construct ideas can be viewed in an analo-
gous manner. The tools we use to build understanding are

our existing ideas and knowledge- The materials we Us¢ ey
build understa ading may be things we se¢ hear, or touch—
clements of our physica\'l surroundings. gometimes the ma-
rerials are our own thoughts and ideas. The effort required
is active and reflective thought.

In Figure 2.8 blue and red dots are ased as symbols
for ideas. Consi der the picture 1O be a small section of our
cognitive makeup. The blue dots represent existing ideas.
The lines joining the ideas represent our logical connec
tions or relationships that have developed between and
among ideas. The red dot is an emerging idea, one that is
being constructed. Whatever existing ideas (blue dots) are
used in the construction will necessarily be connected to the
new idea (red dot) hecause those were the ideas that gave
meaning o 1t 1f a potentially relevant idea (blue dot) is not
accessed by the learner when learning a new concept (red
dot), then that potcntia'l connection will not be made.

Constructing knowledge is an active endeavor on the
part of the learner (Bamndy, 1987, Cobb, 1988; Fosnot,
19906; von Glasersfeld, 1990, 1996). To construct and under-
stand a new idea requires actively thinking about it. “How
does this fit with what 1 already know?” “}ow can 1 under-
«rand this in the context of my current understanding of this
idea?” Knowledge cannot be “poured into” a leayner. Put
simply, constructing knowledge requires reflective thought,
actively thinking about or mentally working on an idea.

Learners will vary in the number and nature of con-
nections they make between a NEW idea and existing ideas.

Figure 2.8 We use the ideas We already have (blue dots)
to construct a new idea (red dot), developing in the process a
network of connections petween ideas. The more ideas usec
and the more connections made. the better we understand-




The construction of an idea is going to be different for each
learner, even within the same environment or classroom.
"Though learning is constructed within the self, the classroom
culture contributes to learning while the learner contributes
to the culture in the classroom (Yackel & Cobb, 1996). Yackel
and Cobb argue that the learner and the culture of the class-
room are reflexively related—one influencing the other.

Sociocultural Theory

In the same way that the work of Piaget led to construc-
tivism, the work of Lev Vygotsky, a Russian psychologist,
has greatly influenced sociocultural theory. Vygotsky’s work
also emerged in the 1920s and 1930s, though it was not
translated until the late 1970s. There are many concepts
that these theories share (for example the learning pro-
cess as active meaning-seeking on the part of the learner),
but sociocultural theory has several unique foundational
concepts. One is that mental processes exist between and
among people in social learning settings, and that from
these social settings the learner moves ideas into his or her
own psychological realm (Forman, 2003).

Second, the way in which information is internalized
(or learned) depends on whether it was within a learner’s
zone of proximal development (ZPD), which is the dif-
ference between a learner’s assisted and unassisted perfor-
mance on a task (Vygotsky, 1978). Simply put, the ZPD
refers to a “range” of knowledge that may be out of reach
for a person to learn on his or her own, but is accessible if
the learner has support of peers or more knowledgeable
others. “[TThe ZPD is not a physical space, but a symbolic
space created through the interaction of learners with more
knowledgeable others and the culture that precedes them”
(Goos, 2004, p. 262). Both Cobb (1994) and Goos (2004)
suggest that in a true mathematical community of learners
there is something of a common ZPD that emerges across
learners as well as the ZPDs of individual learners.

Another major concept in sociocultural theory is se-
miotic mediation, a term used to describe how information
moves from the social plane to the individual plane. It is
defined as the “mechanism by which individual beliefs, at-
titudes, and goals are simultaneously affected and affect so-
ciocultural practices and institutions” (Forman & McPhail,
1993, p. 134). Semiotic mediation involves interaction
through language but also through diagrams, pictures, and
actions. Language and these other objects and actions are
considered the “tools” of mediation.

Social interaction is essential for mediation. The na-
ture of the community of learners is affected by not just
the culture the teacher creates, but the broader social and
historical culture of the members of the classroom (For-
han, 2003). In summary, from a sociocultural perspective,
arning is dependent on the learners (working within their
“PD), the social interactions in the classroom, and the cul-
tire within and beyond the classroom. ‘

and beyond the ¢
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Implications for Teaching Mathematics

Itis not necessary to choose between a social constructivist
theory that favors the views of Vygotsky and a cognitive
constructivism built on the theories of Piaget (Cobb, 1994).
In fact, when considering classroom practices that maxi-
mize opportunities to construct ideas, or to provide tools
to promote mediation, they are quite similar. Classroom
discussion based on students’ own ideas and solutions to
problems is absolutely “foundational to children’s learning”
(Wood & "Turner-Vorbeck, 2001, p. 186).

It is important to restate that a learning theory is not
a teaching strategy, but the theory informs teaching. In this
section teaching strategies that reflect constructivist and
sociocultural perspectives are briefly discussed. You will
see these strategies revisited in Chapters 3 and 4, where
a problem-based model for instruction is discussed, and
throughout the content chapters, where you learn how to
apply these ideas to specific areas of mathematics.

Build New Knowledge from Prior Knowledge. Con-
sider the following task, posed to a class of fourth graders
who are learning division of whole numbers.

Four children had 3 bags of M&Ms. They decided to open
all 3 bags of candy and share the M&Ms fairly. There
were 52 M&M candies in each bag. How many M&M
candies did each child get? (Campbell & Johnson, 1995,
pp- 35-36)

Note: You may want to select a nonfood context, such as
decks of cards, or any culturally relevant or interesting item
that would come in similar quantities.

Consider how you might introduce division to fourth
graders and what your expectations might be for this problem
as a teacher grounding your work in constructivist or socio-
cultural learning theory.

The student work samples in Figure 2.9 are from a
classroom that is grounded in constructivist ideas—that
students should develop, or invent, strategies for doing
mathematics using their prior knowledge, therefore mak-
ing connections among mathematics concepts.

Marlena interpreted the task as “How many sets of 4
can be made from 156?” She first used facts that were either
easy or available to her: 10 x 4 and 4 x 4. These totals she
subtracted from 156 until she got to 100. This seemed to
cue her to use 25 fours. She added her sets of 4 and knew
the answer was 39 candies for each child. Marlena is using
an equal subtraction approach and known multiplication
facts. Note the “blue dots” that she is connecting in order to
begin learning about the newer concept of division. While
this is not the most efficient approach, it demonstrates that
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Figure 2.10 This student’s work indicates that she has a
misconception about place value and regrouping.

responses (Ginsburg, 1977; Labinowicz, 1985) gives insight
into addressing student misconceptions and helping stu-
dents accommodate new learning. For example, students
comparing decimals may incorrectly apply “rules” of whole
numbers, such as “the longer the number the bigger” (Mar-
tinie, 2007; Resnick, Nesher, Leonard, Magone, Omanson,
& Peled, 1989).

Figure 2.10 is an example of a student incorrectly ap-
plying what she learned about regrouping. If the teacher
tries to help the student by re-explaining the “right” way
to do the problem, the student loses the opportunity to
reflect on and correct her misconceptions. If the teacher
instead asks the student to explain her regrouping process,
the student must engage her reflective thought and think
about what was regrouped and how to keep the number
equivalent.

Scaffold New Content. The concept of scaffolding, which
comes out of sociocultural theory, is based on the idea that
a task otherwise outside of a student’s ZPD can become ac-
cessible if it is carefully structured. For concepts completely
new to students, the learning requires more structure or
assistance, including the use of tools like manipulatives or
more assistance from peers. As students become more com-
fortable with the content, the scaffolds are removed and the
student becomes more independent. Scaffolding can pro-
vide support for those students who may not have a robust
collection of “blue dots.”

Honor Diversity. Finally, and importantly, these theories
¢mphasize that each learner is unique, with a different col-
lection of prior knowledge and cultural experiences. Since
new knowledge is built on existing knowledge and experi-
ence, effective teaching incorporates and builds on what
the students bring to the classroom, honoring those experi-
“hees. Thus, lessons begin with eliciting prior experiences,
ang understandings and contexts for the lessons are selected
[{z?]‘il:l on students’ knowledge and Ex[)f:l‘i&]lt:t)t’f. Stmmc stu-

5 will not have the “blue dots” they need—it is your job
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to provide experiences where those blue dots are developed
and then connected to the concept being learned.
Classroom culture influences the individual learning
of your students. As stated previously, you should support
a range of approaches and strategies for doing mathematics.
Students’ ideas should be valued and included in classroom
discussion of the mathematics. This shift in practice, away
from the teacher telling one way to do the problem, es-
tablishes a classroom culture where ideas are valued. This
approach values the uniqueness of each individual.

What Does It Mean to
. Understand Mathematics?

' Both constructivist and sociocultural theories em-
phasize the learner building connections (blue dots to the
red dots) among existing and new ideas. So you might be
asking, “What is it they should be learning and connect-
ing?” Or “What are those blue dots?” This section focuses
on mathematics content required in today’s classrooms.

It is possible to say that we know something or we do
not. That is, an idea is something that we either have or
don’t have. Understanding is another matter. For example,
most fifth graders know something about fractions. Given
the fraction £, they likely know how to read the fraction and
can identify the 6 and 8 as the numerator and denominator,
respectively. They know it is equivalent to 2 and that it is
more than 3.

Students will have different understandings, however, of
such concepts as what it means to be equivalent. They may
know that £ can be simplified to 2 but not understand that
2 and ¢ represent identical quantities. Some may think that
simplifying £ to 2 makes it a smaller number. Some students
will be able to create pictures or models to illustrate equiva-
lent fractions or will have many examples of how ¢ is used
outside of class. In summary, there is a range of ideas that
students often connect to their individualized understanding
of a fraction—each student brings a different set of blue
dots to his or her knowledge of what a fraction is.

Understanding can be defined as a measure of the qual-
ity and quantity of connections thatan idea has with existing
ideas. Understanding is not an all-or-nothing proposition. It
depends on the existence of appropriate ideas and on the
creation of new connections, varying with each person
(Backhouse, Haggarty, Pirie, & Stratton, 1992; Davis, 1986;
Hiebert & Carpenter, 1992; Janvier, 1987; Schroeder &
Lester, 1989).

One way that we can think about understanding is that
it exists along a continuum from a relational understand-
ing—knowing what to do and why—to an instrumental
understanding—doing without understanding (see Figure
2.11). The two ends of this continuum were named by
Richard Skemp (1978), an educational psychologist who
has had a major influence on mathematics education.
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Relational
Understanding

Sm—

Figure 2.11 Understandingis a measure of the quality and guan

Continuum of Understanding

Instrumental
:b Understanding

T T

tity of connections that a new idea has

with existing ideas. The greater the number of connections to 2 network of ideas, the better the understanding.

In the § example, the student who can draw diagraims,
give examples, fin d equivalencies, and approximate the size
of § has an understanding toward the relational end of the
continuum, while a srudent who only knows the names and
a procedure for simplifying ¢ to > has an understanding
more on the instrumental end of the continuvnil.

Mathematics Proficiency

Much work has emerged since Skemp's classic work on re-
lational and instrumental understanding focusing on what
mathematics should be learned, all of it based on the need
to include more than learning procedures.

Conceptual and Procedural Understanding. Concep-
rual understanding . knowledge about the relationships
or foundational ideas of a topic. Procedural understanding
is knowledge of the rules and procedures ased in carrying
out mathematical processes and also the symbolism used
to represent mathematics. Consider the cask of multiply-
ing 47 x 21. “The conceptual understanding of this prob-
lem includes such ideas as that multiplication is repeated
addition and that the problem could represent the area of
a rectangle with dimensions of 47 inches and 21 inches.
The procedural knowledge could include the standard al-

orithm or invented algorithms (e.g+ multiplying 47 by
10, doubling it, then adding one More 47). The ability to
employ invented strategies, such as the one described here,
requires 2 conceptual understanding of place value and
multiplication.

Tn fact, it is well established in research on mathemat-
ics learning that conceptual anderstanding is an important
component of pl'ocud\.n'a'u proficiency (Bransfm'd, Brown,
& Cocking, 2000; National Mathematics Advisory Panel,
2008; NCTM, 2000). The Principles and Standards Learning
Principle states it well:

«“The alliance of factual knowledge, procedural
proficiency, and conceptual understanding
makes all three components usable in powerful
ways” (p- 19). @

Recall the two students who used their own invented
procedure 10 solve 156 + 4 (see Figure 2.9)- Clearly, there
was an active and useful interaction berween the procedures
the children invented and the concepts they knew about
muluplication and were constructing about division.

The common practice of teaching procedures in
the absence of conceptual anderstanding leads to €rrors
and a dislike of mathematics, One way to help your stu-
Jents (and you) chink about all the interrelated ideas for
a concept is 1O create a network or web of associations,
as Jemonstrated in Figure 2.12 for the concept of ratio.
Note how much is involved in having 2 relational under-
standing of ratio. Compare that 1o the instrumental treat-
ment of ratio in sOMe textbooks that have a single lesson
on the topic with prompts such as “If the ratio of girls t©
hoys is 3 tO 4. then how many girls are there if there are
24 boys?”

Five Strands of Miathematical Proficiency. While con-
ceptual and procedurnl anderstanding of any concept are
essential, they are ot sufficient. Being 0 1athematically pro-
ficient means that people exhibit behaviors and dispositions
as they are “doing maﬂ'lf:matics." Adding 1t Up (NRC, 2001),
an influential report on how students learn mathematics,
describes five strands involved in being mathematically
proficient: ) conceptual understanding, @) prncudura\
fluency, (3) gtrategic comperence, (4) adaptive reasoning,
and (5) productive disposition. Figure 2.13 illustrates these
interrelated and ingerwoven strands, providing a definition
of each.

Recall the problems that you solved in the “Let's Do
Some Mathematics” section. In approaching each problem:
if you felt like you could design a strategy to solve it (or &Y
new appruachuﬁ if one didn’t work), then that is evidence of
serategic COmpetence: In each of the problems selected, you
were asked 10 explain or justify solutions. 1f you were able
to reason about a pattern and tell how you knew it woult
work, this is evidence of adaptive reasoning. Finally, if yo!
were committed tO making sense of and solving those asks:
knowing that if you kept at it, you would get toa solution
then you have 2 productive disposition.
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Scale: The scale on the map
shows 1 inch per 50 miles.

Division: The ratio 3 is to
4 is the same as 3 + 4.

Trigonometry: All trig
functions are ratios.

Comparisons: The ratio of sunny
days to rainy days is greater in the
South than in the North.

Unit prices: 12 0z./ $1.79.
That's about 60¢ for 4 oz.
or $2.40 for a pound.

Geometry: The ratio of
circumference to diameter is
always m, or about 22 to 7.
Any two similar figures have
corresponding measurements
that are proportional (in the
same ratio).

Slopes of lines (algebra) and slopes of roofs
(carpentry): The ratio of the rise to the run is %.

Business: Profit and loss are figured

as ratios of income to total cost.

Figure 2.12 Potential web of ideas that could contribute to the understanding of “ratio.”

The last three of the five strands develop only when
students have experiences that involve these processes. We
hope you have noticed that the terms used here are very
similar to the ones in the previous learning theory discus-
sion. Reflection, using prior knowledge, social interaction,

Conceptual understanding:
comprehension of mathematical
concepts, operations, and
relations.

Strategic competence:
ability to formulate,
represent, and solve
mathematics problems.

Procedural fluency:
skill in carrying out
procedures flexibly,
accurately, efficiently,
and appropriately.

Adaptive reasoning:
capacity for logical
thought, reflection,
explanation, and
justification

Productive disposition:
habitual inclination to

I see mathematics as
' sensible, useful, and

worthwhile, coupled
with a belief in diligence
and one's own efficacy.

Intertwined strands of proficiency

Figure 2,13 Adding It Up describes five strands of mathe-
Matical proficiency.
SWTI:H::': Adding It Up: Helping Children Learn Mathematics, p. 5. Reprinted
' Permission from the National Acadenles Press, copyright @ 2001,
ation;| Academy of Sclences.

and solving problems in a variety of ways, among other
strategies, are essential to learning and therefore becoming
mathematically proficient.

Implications for Teaching Mathematics

If we accept the notion that understanding has both qualita-
tive and quantitative differences from knowing, the ques-
tion “Does she know it?” must be replaced with “How does
she understand it? What ideas does she connect with it?” In
the following examples, you will see how different children
may well develop different ideas about the same knowledge
and, thus, have different understandings.

Early Number Concepts. Consider the concept of “7”
as constructed by a child in the first grade. A first grader
most likely connects “7” to the counting procedure and the
construct of “more than,” probably understanding it as less
than 10 and more than 2. What else will this child eventu-
ally connect to the concept of 7? Itis 1 more than 6; it is 2
less than 9; it is the combination of 3 and 4 or 2 and 5; it is
odd; it is small compared to 73 and large compared to ;
it is the number of days in a week; it is “lucky”; it is prime;
and on and on. The web of potential ideas connected to a
number can grow large and involved.

Computation. Computation is much more than memo-
rizing a procedure; analyzing a student’s strategy provides a
good opportunity to see how understanding can differ from
one child to another. For addition and subtraction with two-
or three-digit numbers, a flexible and rich understanding of
numbers and place value is very helpful. How might differ-
ent children approach the task of finding the sum of 37 and
28?2 For children whose understanding of 37 is based only
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on counting, the us¢ of counters and a count-all procedure
is likely (see Figure 7.14(a)). A student may use the tradi-
tional algorithm, Jining up the digits and adding the ones
and then the tens, butnot understand why they are carrying
the one. When procedures aré not connected o concepts
(in this case place-vah\c concepts), errors and un reasonable
answers are more common (see Figure 2 14(b)).

Srudents can solve the problem using an invented ap-
proach (see Figure 7.14(c) & () The strategies used here
show that the srudents know that n gmbers can be broken
apart in many different ways and that the sum of two num-

a
(@) - Count 37
..... L) Count 28
— o.. ‘0. @ ..oo &
......... = ae oS
, ..‘. - .=.=.== -

Count all: 1,2.3s 4, .., 64,65

(b) | v
27 2
+ 2% +29
il //
L5 515
Traditional algorithm Errors are often made
©
Take LProm the 37 Fland 30 isbl
ond put it with but yowhave +)p
Hhe 19 4o moXe 30 raKe 7 away,(og_
30 L5
““igg‘é"" 27+20=0"T
~ 17-7 =L5
36( % (0
£39 f%O;l‘,g
(d)

37 and 20 more—47, 57, 58, 59, 60, 61, 62, 63, 64,65

(counting on fingers)
g4 €0 ¢ 465
< s

62 Ch
237,47,57

Figure 2. 14 Arange of computational examples showing
different levels of understanding.

bers remains the same if you add something to one number
and subtract an equal amount from the other. These stu-
dents can add in flexible ways.

Benefits of a Relational
Understanding

To teach for a rich or relational understanding requires a
Jot of work and effort. Concepts and connections develop
over time, not in 2 day. Tasks must be selected that help
students build connections. The important penefits to be
derived from relational understanding make the effort not
only worthwhile but also essential.

Effective Learning of New Concepts and Procedures.
Recall what learning theory tells us—students are actively
puilding on their existing knowledge. The more robust their
understanding of a concept, the more con nections students
are building, and the more likely it is they can connect new
ideas to the existing conceptual webs they have. Fraction
knowledge and place-value knowledge come together t©
make decimal learning easier, and decimal concepts directly
enhance an anderstanding of percentage concepts and pro-
cedures. Without these and many other connections, chil-
dren will need to learn cach new piece of in formation they
encounter as a separate, unrelated idea.

Less to Remember. When students learn in an instru-
mental manner, mathematics can seem like endless lists of
isolated skills, concepts, rules, and symbols that often seem
overwhelming to keep straight. Constructivists talk about
teaching “big ideas” (Brooks & Brooks, 1993; Hiebert et
al., 1996; Schifter & Fosnot, 1993). Big ideas are really just
large networks of interrelated concepts. Frequently, the
networl is 0 well constructed that whole chunks of in-
formation are stored and cetrieved as single entities rather
than isolated bits. For example, Linowledge of place value
subsumes rules about lining up decimal points, ordering
decimal numbers, moving decimal points to the right or left
in decimal-percent conversions, rounding and estimating,
and a host of other ideas.

Increased Retention and Recall. Memory is a process
of retrieving information. Retrieval of information is MO*e
likely when you have the concept connected to an entire
web of ideas. If what you need to recall doesn’t come 10
ind, reflecting on ideas that are related can usually Jead
you to the Jesived idea eventually. For example, if you forget
the formula for surface area of a rectangular solid, reflecting
on what it would look like if unfolded and spread out flat
can help you remember that there are six rectangular faces
in three pairs that are cach the same size.

Enhanced Problem-Solving Abilities. The solutior of
novel problems requires transferring ideas learned in 0%




context to new situations. When concepts are embedded in
a rich network, transferability is significantly enhanced and,
thus, so is problem solving (Schoenfeld, 1992). When stu-
dents understand the relationship between a situation and
a context, they are going to know when to use a particular
approach to solve a problem. While many students may
be able to do this with whole-number computation, once
problems increase in difficulty and numbers move to ra-
tional numbers or unknowns, students without a relational
understanding are not able to apply the skills they learned
to solve new problems.

Improved Attitudes and Beliefs. Relational understand-
ing has an affective as well as a cognitive effect. When ideas
are well understood and make sense, the learner tends to de-
velop a positive self-concept about his or her ability to learn
and understand mathematics. There is a definite feeling of
“T can do this! I understand!” There is no reason to fear or
to be in awe of knowledge learned relationally. At the other
end of the continuum, instrumental understanding has the
potential of producing mathematics anxiety, a real phenom-
enon that involves fear and avoidance behavior.

Multiple Representations to Support
Relational Understanding

The more ways that children are given to think about and
test an emerging idea, the better chance they will correctly
form and integrate it into a rich web of concepts and there-
fore develop a relational understanding. Lesh, Post, and
Behr (1987) offer five “representations” for concepts (see
Figure 2.15). Their research has found that children who
have difficulty translating a concept from one representa-
tion to another also have difficulty solving problems and
understanding computations. Strengthening the ability to
move between and among these representations improves
student understanding and retention. Discussion of oral
language, real-world situations, and written symbols is
woven into this chapter, but it is important that you have
a good perspective on how manipulatives and models can
help or fail to help children construct ideas.

Models and Manipulatives. A model for a mathematical
concept refers to any object, picture, or drawing that repre-
sents the concept or onto which the relationship for that
concept can be imposed. In this sense, any group of 100
objects can be a model of the concept “hundred” because
We can impose the 100-to-1 relationship on the group and
a single element of the group. Manipulatives are physical
Objects that students and teachers can use to illustrate and
discover mathematical concepts, whether made specifically
for mathematics, like connecting cubes, or objects that were
¢reated for other purposes.

It is incorrect to say that a mode] “illustrates” a con-
ept. To illustrate implies showing. Technically, all that you
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Figure 2.15 Five different representations of mathemati-
cal ideas. Translations between and within each can help de-
velop new concepts.

actually see with your eyes is the physical object; only your
mind can impose the mathematical relationship on the ob-
ject (Suh, 2007; Thompson, 1994).

Models can be a testing ground for emerging ideas. It is
sometimes difficult for students (of all ages) to think about
and test abstract relationships using only words or symbols.
For example, to explore the idea of area of a triangle, know-
ing the area of a parallelogram, requires the use of pictures
and/or manipulatives to build the connections. A variety of
models should be accessible for students to select and use
freely. You will undoubtedly encounter situations in which
you use a model that you think clearly illustrates an idea
but a student just doesn’t get it, whereas a different model
is very helpful.

Examples of Models. Physical materials or manipula-
tives in mathematics abound—{rom common objects such
as lima beans and string to commercially produced materi-
als such as wooden rods (e.g., Cuisenaire rods) and blocks
(e.g., Pattern Blocks). Figure 2.16 shows six models, each
representing a different concept, giving only a glimpse into
the many ways each manipulative can be used to support the
development of mathematics concepts and procedures.

Consider each of the concepts and the corresponding
model in Figure 2.16. Try to separate the physical model from
the relationship that you mustimpose on the model in order to
"see” the concept.
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comes. The spinner can be used to create relative fre-
quencies. These can be predicted by observing
relationships of sections of the spinner.

f. The concept of a “negative integer” is based on the
relationships of “magnitude” and “is the opposite of.”
Negative quantities exist only in relation to positive
quantities. Arrows on the number line model the op-
posite of relationship in terms of direction and size or
magnitude relationship in terms of length.

Ineffective Use of Models and Manipulatives. In addi-
tion to not making the distinction between the model and
the concept, there are other ways that models or manipula-
tives can be used ineffectively. One of the most widespread
misuses occurs when the teacher tells students, “Do as [
do.” There is a natural temptation to get out the materials
and show children exactly how to use them. Children mimic
the teacher’s directions, and it may even look as if they un-
derstand, but they could be just mindlessly following what
they see. It is just as possible to get students to move blocks
around mindlessly as it is to teach them to “invert and mul-
tiply” mindlessly. Neither promotes thinking or aids in the
development of concepts (Ball, 1992; Clements & Battista,
1990; Stein & Bovalino, 2001).

A natural result of overly directing the use of models is
that children begin to use them as answer-getting devices
rather than as tools used to explore a concept. For example,
if you have carefully shown and explained to children how
to get an answer to a multiplication problem with a set of
base-ten blocks, then students may set up the blocks to get
the answer but not focus on the patterns or processes that
can be seen in modeling the problem with the blocks. A
mindless procedure with a good manipulative is still just a
mindless procedure.

Conversely, leaving students with insufficient focus
or guidance results in nonproductive and unsystematic
investigation (Stein & Bovalino, 2001). Students may be
engaged in conversations about the model they are using,
but if they do not know what the mathematical goal is, the
manipulative is not serving as a tool for developing the
concept.

Technology-Based Models. Technology provides an-
other source of models and manipulatives. There are web-
sites, such as the Utah State University National Library
({f Virtual Manipulatives, that have a range of manipula-
tives available (e.g., geoboards, base-ten blocks, spinners,
humber lines). Virtual manipulatives are a good addition to
Physical models, as some students will prefer the electronic
Version; moreover, they may have access to these tools out-
side of the classroom.

Connectingthe Dots 29

It is important to include calculators as a tool.

The calculator models a wide variety of numeric

relationships by quickly and easily demonstrating
the effects of these ideas. For example, you can skip-count
by hundredths from 0.01 (press 0.01 (+].01 [=], (=], [=]...)
or from another beginning number such as 3 (press [+ 0.01
=), (=], (=] ...). How many presses of (=] are required to
get from 3 to 4?7 Many more similar ideas are presented in
Chapter 7.

*Connecting the Dots

Tt seems appropriate to close
this chapter by connecting some
dots, especially because the ideas
represented here are the founda-
tion for the approach to each topic
in the content chapters. This chap-
ter began with discussing what do-
ing mathematics is and challenging
you to do some mathematics. Each
of these tasks offered opportuni-
ties to make connections among
mathematics concepts—connecting the blue dots.

Second, you read about learning theory—the impor-
tance of having opportunities to connect the dots. The
best learning opportunities, according to constructivism
and sociocultural theories, are those that engage learn-
ers in using their own knowledge and experience to solve
problems through social interactions and reflection. This is
what you were asked to do in the four tasks. Did you learn
something new about mathematics? Did you connect an
idea that you had not previously connected?

Finally, you read about understanding—that to have
the relational knowledge (knowledge where blue dots are
well connected) requires conceptual and procedural un-
derstanding, as well as other proficiencies. The problems
that you solved in the first section included a focus on con-
cepts and procedures while placing you in a position to use
strategic competence, adaptive reasoning, and productive
disposition.

This chapter focused on connecting the dots between
theory and practice—building a case that your teaching
must focus on opportunities for students to develop their
own networks of blue dots. As you plan and design instruc-
tion, you should constantly reflect on how to elicit prior
knowledge by designing tasks that reflect the social and
cultural backgrounds of students, to challenge students to
think critically and creatively, and to include a comprehen-
sive treatment of mathematics.

]
myeducationlaD

Go to the Activities and Ap-
plication section of Chap-
ter 2 of MyEducationLab.
Click on Videos and watch
the video entitled “John
Van de Walle on Connect-
ing the Dots” to see him
talk with teachers about
understanding students’
thinking.




