Perfect Cubes

- Have a factor that can be used three times to result in value of expression
- x^{3}
- $8 y^{3}$
- $125 \mathrm{w}^{3}$

Difference of Cubes

- $x^{3}-64$
- Cube root of each term in binomial
- Use subtraction operation
- (x-4)
- Multiply by
- trinomial that starts with square of first term in binomial
- Add product of binomial terms
- Add square of second term in binomial
- $(x-4)\left(x^{2}+4 x+16\right)$

Sum of Cubes

- $64 x^{3}+27$
- Cube root of each term in binomial
- Use addition operation
- (4x+3)
- Multiply by
- trinomial that starts with square of first term in binomial
- subtract product of binomial terms
- Add square of second term in binomial
- $(4 x+3)\left(16 x^{2}-12 x+9\right)$

Note:!

- You cannot factor sum of squares!
- Can factor difference of squares - $x^{2}-C^{2}=(x-C)(x+C)$
- Can factor difference of cubes - $x^{3}-C^{3}=(x-C)\left(x^{2}+C x+C^{2}\right)$
- Can factor sum of cubes
- $x^{3}+C^{3}=(x+C)\left(x^{2}-C x+C^{2}\right)$
- Note single subtraction sign and that the binomial 'matches' the original cubic expression

Difference of Cubes in higher orders: $x^{6}-\mathrm{y}^{6}$

- Each term in binomial is perfect square - $x^{6}=\left(x^{3}\right)^{2}$, right?
- So binomial is difference of two squares!!
: $\left(x^{3}\right)^{2}-\left(y^{3}\right)^{2}=\left(x^{3}-y^{3}\right)-\left(x^{3}+y^{3}\right)$
- The follow factoring cube rules to get
- $(x-y)\left(x^{2}+x y+y^{2}\right)(x+y)\left(x^{2}-x y+y^{2}\right)$

Sum of Cubes in higher order

- $x^{6}+y^{6}=\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}$
- $=\left(x^{2}\right)^{3}+\left(y^{2}\right)^{3}=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$
- These factors are prime
- Cannot factor sum of squares!!

Remember to factor out GFC!!

- $50 x^{2} y^{2}-8 y^{4}=$
- $2 y^{2}\left(25 x^{2}-4 y^{2}\right)$
- Notice second factor is difference of two squares
- $=2 y^{2}(5 x-2 y)(5 x+2 y)$

Suggestions for success

- Look for GFC
- Notice if there is a difference of two squares: follow method
- Notice if there is a sum or difference of two cubes: follow method
- Try factor by grouping
- Use trial and error if patterns aren't present
- Always factor COMPLETELY!!

