

Temperature

- Measure of hotness
- Celsius
 - >0° freezing point of pure water at standard pressure
 - ≻100° boiling point at standard pressure
- Fahrenheit
 >0° was lowest attained
 - >32 was his age when he performed experiments
 - >212 is boiling point in those increments

Temperature

- Kelvin same size as degree Celsius
- 'Absolute Zero' is 0 K
 >(notice no degree symbol on K)
- 0° C = 273 K
- Molecular motion ceases at absolute zero

Heat

- Calorie
 - Amount of heat required to raise the temperature of 1 gram of pure water 1° C
 Food 'Calories' are kilocalories
- Joule ~ ¼ of calorie
 - 1 cal. = 4.184 J

Laws of Thermodynamics

- Heat added = increase in thermal energy + external work done by the system
- 2. Heat never spontaneously flows from a cold substance to a hot substance
- 3. No system can reach absolute zero

Entropy Natura randon Energy disorda Does r sponta gasolir dioxida

Natural increase of randomness in system

- Energy spreads to disorder in the system
- Does not spontaneously reform gasoline from carbon dioxide and water

Specific Heat Capacity

- Quantity of heat needed to change the temperature of given amount of a substance 1° C
- Water-very high specific heat capacity
 - Maritime areas more mild temperature than continental areas
 - Takes 1/8 calorie to raise temperature of iron 1° C

Heat Expansion

- Random motion causes substance to be bigger
- Liquids usually have greater heat expansion than solids
- Thermostats use different expansion of different type of metals

Radiant Energy

- · All objects emit thermal energy
 - Visible light above ~500°C
 - Re-emit absorbed radiation at wavelength according to temperature
- Good absorbers are good emitters
- Poor absorbers are poor emitters

Heat Transfer

- Conduction
 - Direct molecule interaction
 - Transferring energy to next molecule
- Convection
 - Movement of fluid: liquid or gas
- Radiation
 - Through open space
 - Electromagnetic radiation

Condensation

- Opposite of evaporation
- Kinetic energy of molecules running into surface of liquid and joining it
- Heats environment

Atmosphere

- Evaporation
 - Energy goes into air
 - Cools remaining water
- Condensation
 - Energy goes from air to surface
 - Warms local environment

Atmosphere

- Warm air has greater capacity for holding water in the vapor phase
- Saturation = at capacity
- Relative Humidity—percent of water contained compared to saturated amount at that temperature

