# Formal Logic

Mathematical Structures for Computer Science Chapter 1



# Logic: The foundation of reasoning

 What is formal logic? Multiple definitions
 Foundation for organized and careful method of thinking that characterizes reasoned activity

The study of reasoning : specifically concerned with whether something is true or false

- Formal logic focuses on the *relationship* between *statements* as opposed to the content of any particular statement.
- Applications of formal logic in computer science:
  - Prolog: programming languages based on logic.
  - Circuit Logic: logic governing computer circuitry.

### Statement

• Definition of a statement:

A *statement*, also called a *proposition*, is a sentence that is either *true* or *false*, but not both.

- Hence the truth value of a statement is T (1) or F (0)
- Examples: Which ones are statements?
  - All mathematicians wear sandals.
  - 5 is greater than −2.
  - Where do you live?
  - You are a cool person.
  - Anyone who wears sandals is an algebraist.

- An example to illustrate how logic really helps us (3 statements written below):
  - All mathematicians wear sandals.
  - Anyone who wears sandals is an algebraist.
  - Therefore, all mathematicians are algebraists.
- Logic is of no help in determining the individual truth of these statements.
- However, if the first two statements are true, logic assures the truth of the third statement.
- Logical methods are used in mathematics to prove theorems and in computer science to prove that programs do what they are supposed to do.

## Statements and Logical Connectives

- Usually, letters like A, B, C, D, etc. are used to represent statements.
- Logical connectives are symbols such as  $\land$ , V,  $\leftrightarrow$ ,  $\rightarrow$ 
  - A represents and
  - $\rightarrow$  represents *implication*
  - $\leftrightarrow$  represents *equivalence*
- A <u>statement form</u> or <u>propositional form</u> is an expression made up of statement variables (such as A and B) and logical connectives (such as ∧, V, ↔, →) that becomes a statement when actual statements are substituted for the component statement variables.
  - Example:  $(A V A') \rightarrow (B \land B')$

- <u>Connective # 1</u>: Conjunction (symbol ∧)
  - If A and B are statement variables, the conjunction of A and B is A ∧ B, which is read "A and B".
  - $A \land B$  is true when both A and B are true.
  - $A \land B$  is false when at least one of A or B is false.
  - A and B are called the conjuncts of  $A \land B$ .
- <u>Connective # 2</u>: Disjunction (symbol V)
  - If A and B are statement variables, the disjunction of A and B is A V B, which is read "A or B".
  - A V B is true when at least one of A or B is true.
  - A V B is false when both A and B are false.
  - A and B are called the disjuncts of A V B.

- <u>Connective # 3</u>: Implication (symbol  $\rightarrow$ )
- If A and B are statement variables, the symbolic form of "if A then B" is A → B. This may also be read "A implies B" or "A only if B."Here A is called the hypothesis/antecedent statement and B is called the conclusion/consequent statement.
- "If A then B" is false when A is true and B is false, and it is true otherwise.
- Note:  $A \rightarrow B$  is true if A is false, regardless of the truth of B
- Example: If Ms. X passes the exam, then she will get the job
- Here B is *She will get the job* and A is *Ms. X passes the exam.* 
  - The statement states that Ms. X will get the job **if** a certain condition (passing the exam) is met; it says nothing about what will happen if the condition is not met. If the condition is not met, the truth of the conclusion cannot be determined; the conditional statement is therefore considered to be vacuously true, or true by default.

## Another form of *implication*

- Representation of *If-Then* as **Or**
- Let A' be "You do your homework" and B be "You will flunk."
- The given statement is "Either you do your homework or you will flunk," which is A' V B.
- In *if-then* form, A → B means that "If you do not do your homework, then you will flunk," where A (which is equivalent to A") is "You do not do your homework."

• Hence, 
$$A \rightarrow B \equiv A' \vee B$$

| Α | В | А→В |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | Т   |
| F | F | Т   |

| Α | A' | В | A' V B |
|---|----|---|--------|
| Т | F  | Т | Т      |
| Т | F  | F | F      |
| F | Т  | Т | Т      |
| F | Т  | F | Т      |

- <u>Connective # 4</u>: Equivalence (symbol  $\leftrightarrow$ )
- If A and B are statement variables, the symbolic form of "A if, and only if, B" and is denoted  $A \leftrightarrow B$ .
- It is true if both A and B have the same truth values.
- It is false if A and B have opposite truth values.
- The truth table is as follows:
- Note:  $A \leftrightarrow B$  is a short form for  $(A \rightarrow B) \land (B \rightarrow A)$

| Α | В | А→В | В→А | $(\mathbf{A} \to \mathbf{B}) \land (\mathbf{B} \to \mathbf{A})$ |
|---|---|-----|-----|-----------------------------------------------------------------|
| Т | Т | Т   | Т   | Т                                                               |
| Т | F | F   | Т   | F                                                               |
| F | Т | Т   | F   | F                                                               |
| F | F | Т   | Т   | Т                                                               |

- <u>Connective #5: Negation</u> (symbol ')
- If A is a statement variable, the negation of A is "not A" and is denoted A'.
- It has the opposite truth value from A: if A is true, then A' is false; if A is false, then A' is true.
- Example of a negation:
- A: 5 is greater than –2
  - A': 5 is less than -2
- B: She likes butter
  - B' : She dislikes butter / She hates butter
- A: She hates butter but likes cream / She hates butter and likes cream
- A' : She likes butter or hates cream
- Hence, in a negation, **and** becomes **or** and vice versa

### Truth Tables

• A truth table is a table that displays the truth values of a statement form which correspond to the different combinations of truth values for the variables.

| Α | В | $A \land B$ |
|---|---|-------------|
| Т | Т | Т           |
| Т | F | F           |
| F | Т | F           |
| F | F | F           |

| A | В | A V B |
|---|---|-------|
| Т | Т | Т     |
| Т | F | Т     |
| F | Т | Т     |
| F | F | F     |

| Α | В | A→B |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | Т   |
| F | F | Т   |

| Α | В | A↔B |
|---|---|-----|
| Т | Т | Т   |
| Т | F | F   |
| F | Т | F   |
| F | F | Т   |



## Well Formed Formula (wff)

- Combining letters, connectives, and parentheses can generate an expression which is meaningful, called a wff.
  - e.g.  $(A \rightarrow B) \vee (B \rightarrow A)$  is a wff but A ))  $\vee B (\rightarrow C)$  is not
- To reduce the number of parentheses, an order is stipulated in which the connectives can be applied, called the order of precedence, which is as follows:
  - Connectives within innermost parentheses first and then progress outwards
  - Negation (')
  - Conjunction (A), Disjunction (V)
  - Implication  $(\rightarrow)$
  - Equivalence  $(\leftrightarrow)$
  - Hence,  $A \lor B \to C$  is the same as  $(A \lor B) \to C$

#### Truth Tables for some wffs

 The truth table for the wff A V B' → (A V B)' shown below. The main connective, according to the rules of precedence, is implication.

| А | В | B' | A V B' | A V B | (A V B)' | $A V B' \rightarrow (A V B)'$ |
|---|---|----|--------|-------|----------|-------------------------------|
| Т | Т | F  | Т      | Т     | F        | F                             |
| Т | F | Т  | Т      | Т     | F        | F                             |
| F | Т | F  | F      | Т     | F        | Т                             |
| F | F | Т  | Т      | F     | Т        | Т                             |

## Wff with n statement letters

• The total number of rows in a truth table for *n* statement letters is  $2^n$ .





(a)



## Tautology and Contradiction

- Letters like P, Q, R, S etc. are used for representing wffs
  - $[(A V B) \land C'] \rightarrow A' V C$  can be represented by  $P \rightarrow Q$  where
  - P is the wff  $[(A V B) \land C']$  and Q represents A' V C
- <u>Definition of tautology</u>:
- A wff that is intrinsically true, i.e. no matter what the truth value of the statements that comprise the wff.
  - e.g. It will rain today or it will not rain today ( A V A' )
  - $P \leftrightarrow Q$  where P is  $A \rightarrow B$  and Q is A' V B
- <u>Definition of a contradiction</u>:
- A wff that is intrinsically false, i.e. no matter what the truth value of the statements that comprise the wff.
  - e.g. It will rain today and it will not rain today (  $A \land A'$  )
  - (A ∧ B) ∧ A'
- Usually, tautology is represented by 1 and contradiction by 0

# Tautological Equivalences

- Two statement forms are called *logically equivalent* if, and only if, they have identical truth values for each possible substitution of statements for their statement variables.
- The logical equivalence of statement forms P and Q is denoted by writing  $P \Leftrightarrow Q$  or  $P \equiv Q$ .
- Truth table for  $(A V B) V C \Leftrightarrow A V (B V C)$

| А | В | C | A V B | B V C | (A V B) V C | A V (B V C) |
|---|---|---|-------|-------|-------------|-------------|
| Т | Т | Т | Т     | Т     | Т           | Т           |
| Т | Т | F | Т     | Т     | Т           | Т           |
| Т | F | Т | Т     | Т     | Т           | Т           |
| Т | F | F | Т     | F     | Т           | Т           |
| F | Т | Т | Т     | Т     | Т           | Т           |
| F | Т | F | Т     | Т     | Т           | Т           |
| F | F | Т | F     | Т     | Т           | Т           |
| F | F | F | F     | F     | F           | F           |

## Some Common Equivalences

- The equivalences are listed in pairs, hence they are called duals of each other.
- One equivalence can be obtained from another by replacing V with  $\Lambda$  and 0 with 1 or vice versa.

| Commutative  | $A \lor B \Leftrightarrow B \lor A$                     | $A \land B \Leftrightarrow B \land A$                             |
|--------------|---------------------------------------------------------|-------------------------------------------------------------------|
| Associative  | $(A V B) V C \Leftrightarrow A V (B V C)$               | $(A \land B) \land C \Leftrightarrow A \land (B \land C)$         |
| Distributive | $A V (B \land C) \Leftrightarrow (A V B) \land (A V C)$ | $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ |
| Identity     | $A \lor 0 \Leftrightarrow A$                            | $A \land 1 \Leftrightarrow A$                                     |
| Complement   | $A V A' \Leftrightarrow 1$                              | $A \land A' \Leftrightarrow 0$                                    |

• Prove the distributive property using truth tables.

#### De Morgan's Laws

- 1.  $(A V B)' \Leftrightarrow A' \land B'$
- 2.  $(A \land B)' \Leftrightarrow A' \lor B'$

| A | В | A' | B′ | A V B | (A V B)' | $A' \wedge B'$ |
|---|---|----|----|-------|----------|----------------|
| Т | Т | F  | F  | Т     | F        | F              |
| Т | F | F  | Т  | Т     | F        | F              |
| F | Т | Т  | F  | Т     | F        | F              |
| F | F | Т  | Т  | F     | Т        | Т              |

- Conditional Statements in programming use logical connectives with statements.
- Example

if((outflow inflow) and not(pressure 1000))

do something;

else

do something else;

• <u>Definition of an algorithm:</u>

A set of instructions that can be mechanically executed in a finite amount of time in order to solve a problem unambiguously.

- Algorithms are the stage in between the verbal form of a problem and the computer program.
- Algorithms are usually represented by pseudocode.
- Pseudocode should be easy to understand even if you have no idea of programming.

j = 1 // initial value

#### Repeat

```
read a value for k

if ((j < 5) \text{ AND } (2*j < 10) \text{ OR } ((3*j)^{1/2} > 4)) then

write the value of j

otherwise

write the value of 4*j

end if statement

increase j by 1

Until j > 6
```

# Tautology Test Algorithm

This algorithm applies only when the main connective is Implication (→)

TautologyTest(wff P; wff Q)

//Given wffs *P* and *Q*, decides whether the wff  $P \rightarrow Q$  is a tautology.

//Assume  $P \rightarrow Q$  is not a tautology

P =true // assign T to P

Q =false // assign F to Q

#### repeat

for each compound wff already assigned a truth value, assign the truth values determined for its components

until all occurrences of statements letters have truth values

if some letter has two truth values

then //contradiction, assumption false

```
write ("P \rightarrow Q is a tautology.")
```

```
else //found a way to make P \rightarrow Q false
```

```
write ("P \rightarrow Q is not a tautology.")
```

#### end if

end TautologyTest