The Singular Value Decomposition in
Symmetric (Lowdin) Orthogonalization
and Data Compression

The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal
type matrix decompositions

Every matrix, even nonsquare, has an SVD

The SVD contains a great deal of information and is very useful as a theoretical
and practical tool
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1 Preliminaries

Unless otherwise indicated, all vectors are column vectors

Uy

U2
ue R" - u=1| | eRrR™!

Unp



Definition 1.1 Let v € R", so that u = (uy, us, ... u,)’. The (Euclidean) norm
of w is defined as

n 1/2
Julls = \/u%+u§ ol = (Zzﬁ)
j=1

Definition 1.2 A vector u € R" is a unit vector or normalized if

Definition 1.3 Let A = (a;;) € R™*". The transpose AT of A is the matrix
(CLjZ') e R»™,

Example 1.4



Definition 1.5 (Matrix Multiplication) Let A € R™*" B € R"*P. Then the
product AB is defined element-wise as

n

(AB)ij = ) _ ainbr

k=1

and the matrix AB € [Rmxp

Definition 1.6 Let u,v € R". Then the inner product of u and v, written (u, v)
is defined as

Note that this notation permits us to write matrix multiplication as entry-wise
inner products of the rows and columns of the matrices



Example 1.7

2 3
-1 10
( 3 =2 1) g:g
—~1-(2)+1-(0)+0-(6) —1-(3)+1-(=2)+0-(=3)
E 3-(2)+—2-(0)+1-(6) 3-(3)+—2-(=2)+1-(-3)

Definition 1.8 Two vectors u,v € R" are orthogonal if

U1
v
(u,v) = dv = (wr up ) ?
Un
= vy +ugvy + -+ uv, = 0

If u, v are orthogonal and both ||u|s = 1 and ||v||s = 1, then we say w and v
are orthonormal



Recall that the n-dimensional identity matrix is

1 -0
="
0 - 1

This definition means that the columns of an orthogonal matrix A are mutually
orthogonal unit vectors in R"

Now Definition 1.9 shows that Q7 is the left-inverse of Q)



But since matrix multiplication is associative, Q7 is the right-inverse (and hence
the inverse) of () - indeed, let P be a right-inverse of @) (so that QP = I); then

QIQP=Q"(QP) = IP=Q'I = P=Q'

The SVD is applicable to even nonsquare matrices with complex entries, but for
clarity we will restrict our initial treatment to real square matrices
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2 Structure of the SVD

Definition 2.1 Let A € R"*". Then the (full) singular value decomposition of

Alis

\ oo 0 --- 0\
/ S
. : 0 (Va)"
A=UXV" = U1 |Us|---|U, 0 --- On :
0 -+ --- 0 :
: : (V”)T

\ J\ oo o)

where U,V are orthogonal matrices and X is diagonal

The o;'s are the singular values of A, by convention arranged in nonincreasing
order

01209220, 20;
the columns of U are termed left singular vectors of A; the columns of V' are
called right singular vectors of A



Since U and V' are orthogonal matrices, the columns of each form orthonormal
(mutually orthogonal, all of length 1) bases for R”

We can use these bases to illuminate the fundamental property of the SVD:

For the equation Ax = b, the SVD makes every matrix diagonal by
selecting the right bases for the range and domain

Let b,z € R" such that Ax = b, and expand b in the columns of U and x in the
columns of V to get

v =U", o'=V'z



Then we have

b= Ax = Uy = UTAx
= UTuzvhz
= (UT)S (V)
= I
= Y7

or

b= Ax S b =3a’

Let y € R™, then the action of left multiplication of y by A (computing
z = Ay) is decomposed by the SVD into three steps



c = VTy is the analysis step, in which the components of vy, in the basis of R"
given by the columns of V., are computed

w = XY.c is the scaling step in which the components ¢;, i € {1,2,... ,n} are
dilated

z = Uw is the synthesis step, in which z is assembled by scaling each of the
R"-basis vectors u; by w; and summing



So how do we find the matrices U, 32, and V' in the SVD of some A € R"*"?

Since VIV =I=UTU, A=UZVT yields

AV = UX and (1)

ura = vt or, taking transposes

AU = Vs (2)
Or, for each j € {1,2,... ,n},

Av; = oju;j from Equation 1 (3)

Alu; = ojv; from Equation 2 (4)

Now we multiply Equation 3 by AT to get
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ATAUj = ATO'jUj

Note that (ATA)U = ZAAJ or
(1AA1 1AA 1AAn\
JAA, 9 AA, :
AT A = (5)
\nAA; - JAA, )

AT A is a matrix of inner products of columns of A - often called the Gram
matrix of A

We'll see the Gram matrix again when considering applications
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Let's do an example:

10 —1 11 -1
A= 11 0 — AT = 01 0
~1 0 -1 ~1 0 -1

To find the eigenvectors v and the corresponding eigenvalues \ for B := AT A,
we solve

Bx = Az = (B—X)x=0

for AN and =z
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The standard technique for finding such A\ and v is to first note that we are
looking for the A that make the matrix

310 A 00 3—A 1 0
B-X=|110]|-10XO0]= 1 1=A 0
00 2 00 A 0 0 2—2X

singular

This is most easily done by solving det(B—AI)=0:

A 0
11—\ 0] = GB-N1-N2-)\-2+2
0 A

= N 4+6N—-100+4 = 0
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Now (for a gentle first step) we'll find a vector vy so that AT Avy = 2uy

3—2 1 0 1 10
ATA -2 = 1 1-2 0 = 1 —-10
0 0 2-2 0 00
0
Certainly any vector of the form | 0|, ¢ € R, is mapped to zero by
t
ATA 21

So we can set vy =

— o O
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To find v; we find a basis for the nullspace of

1 -2 1 0
ATA— (24+V2)I = 1 —1-v2 0
0 0 —v2

which row-reduces ( R2 «— (1++/2)R1 + R2, then R3 «— R2)to

1-v2 1 0
00 —V2
00 0
s
So any vector of the form | (—1++/2)s | is mapped to zero by

0
ATA— (24+V2)I

sov) = | —1++/2 | spans the nullspace of ATA — A\ I, but ||v}]| # 1
0
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/
1
So we set v] = HU}H = G —1++V2
] 4 — 242

We could find v3 in a similar manner, but in this particular case there's a
quicker way...

vs=1 () |=-—F—= 1

Certainly v3 L v9 and by construction v3 L vy - recall the theorem from linear
algebra symmetric matrices must have orthogonal eigenvectors
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We've found V = | vy |va|vs | = —1+v?2 0 1

And of course

Now, how do we find U?
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If o, > 0, X is invertible and

U=AVx!

So we have

o0 21N [T 0\}%\(;&

>

U = 1 1 0 —14V2 0 1 0
4-2/2 4-2

S

10 -1 3 0 ~3
—1+2 1
— 1 1 O 2 0 2(\/5_1)
_ _ 1
1 0 —1 0 7 0
1 _ 1 _1
2 V2 2
1 1
— 7 0 >
_1 _ 1 1
2 V2 2
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Figure 1: The columns of A in the unit sphere
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Figure 2: The columns of U in the unit sphere
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Figure 3: The columns of V' in the unit sphere
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Figure 4: The columns of X in the ellipse formed by ¥ acting on the unit sphere by left-multiplication

Figure 5: The columns of AV = UX in the ellipse formed by A acting on the unit sphere by left-multiplication

Note that the columns of U and V' are orthogonal (as are, of course, the
columns of X)
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Note that in practice, the SVD is computed more efficiently than by the direct
method we used here; usually by (OK, get ready for the gratuitous mathspeak)

reducing A to bidiagonal form U; BV/! by elementary reflectors or Givens ro-
tations and

directly computing the SVD of B (= U,XV4)

then the SVD of Ais (U Uy) X (Vi Vi)

If 0, =0, then A is singular and the entire process above must be modified
slightly but carefully.

If r is the rank of A (the number of nonzero rows of the row-echelon form of A)
then

n — r singular values of A are zero (equivalently if there are n — r zero rows in
the row-echelon form of A), so

¥~ is not defined, and we define the pseudo-inverse ¥ of ¥ as

Y = diag(oyt, o5t ... 00t 0, ..., 0)
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Thus we can define the first r columns of U via AVX™ and to complete U we
choose any n — r orthonormal vectors which are also orthogonal to
span{uy, us, ..., u,}, via, for example, Gram-Schmidt

sizes

If A € R™ ", then

U E Rmxm
E E Rmxn

V e RV
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(uH Uys

U21 U2

\uml

In the case m > n :

[ann ay
az1 Aa22
A=
\aml
Uln ulm\
Uon Uom
Umn umm/

(v

0

o

aln\

Ao

Qmn /

0
02

V11 V12

V21 V22

Unl

or, in another incarnation of the SVD (the reduced SVD)

(uH

Uu21

\uml

ui2

U22

uln\

Umn /

01 0
0 09
0

Uln

Uln

where the matrix U is no longer square (so it can't be orthogonal) but still has
orthonormal columns
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a1y
a21

a12
a22

U1l

Uu21

Unp1

A1m

ui2

U22

If m <n:

Ain
A2

Uln

unn

01 0
0 09
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00 ---0
00 ---0
o, 0 - 0
(vn Uiz ccc Ui
V21 V22 -+ U2y
Unl Un2 *°° Unn
\Uml Umn

Unm

Umm /



In which case the reduced SVD is

uip U2 - Ulp 01 0O --- 0 Vi1 V12 -+ Ulp " Uim
g | v w : 0 o9 -+ O U1 Vg U2y ottt Uy
Upy - Unpn 0 .- On Unl Up2 """ Unppn - Unm
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3 Properties of the SVD

Recall r is the rank of A; the number of nonzero singular values of A

range (A) = span {uy, us, ..., u;}

range (A”) = span {vy, vo, ..., v, }
null (A) = span {v,41, Vpio, ..., U}
null (AT) = span {Upi1, Upso, -, Uy}
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The SVD of an m x n matrix A leads to an easy proof that the image of the
unit sphere S”~1 under left-multiplication by A is a hyperellipse with semimajor
axes of length o1, 09, ..., 0,

The condition number of an m x n matrix A, with m > n, is

k(A) = il

On

Used in numerics, xk(A) is a measure of how close A is to being singular with
respect to floating-point computation

The 2-norm of A is | Al|2 := sup {HASUHz |z]|2 = }

1/2

The Frobenius norm of A is |A|lF = (Z Z a?j\

i=1 j=1
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We have

JAle=r and  [Alr = \Jo2+0}+ - +02

since both matrix norms are invariant under orthogonal transformations
(multiplication by orthogonal matrices)

Note that although the singular values of A are uniquely determined, the left
and right singular vectors are only determined up to a sequence of sign choices
for the columns of either U or V

So the SVD is not generally unique, there are 2(@x™:7) nossible SVD's for a
given matrix A

If we fix signs for, say, column 1 of V| then the sign for column 1 of U is
determined - recall AV = UX.
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4 Symmetric Orthogonalization

For nonsingular A, the matrix L := UV is called the symmetric
orthogonalization of the matrix A

L is unique since any sequence of sign choices for the columns of V' determines
a sequence of signs for the columns of U

Ly = U, (VT)U + UiZ(VT)Zj + Ui3(VT)3j + -+ Um(VT)m'

Like Gram-Schmidt orthogonalization, it takes as input a linearly independent
set (the columns of A) and outputs an orthonormal set
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(Classical) Gram-Schmidt is unstable due to repeated subtractions; Modifed
Gram-Schmidt remedies this

But occasionally we want to disturb the original set of vectors as little as
possible

Theorem 4.1 Over all orthogonal matrices Q, ,||A — Q|| is minimized when

Q=1L
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Figure 6: The columns of L := UV” and the columns of A
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5 Applications of the SVD

Symmetric Orthogonalization was invented by a Swedish chemist, Per-Olov
Lowdin, for the purpose of orthogonalizing hybrid electron orbitals

Also has application in 4G wireless communication standard, Orthogonal
Frequency-Division Multiplexing (OFDM)

Nonorthogonal carrier waves with ideal properties, good time-frequency
localization, orthogonalized in this manner have maximal TF-localization among
all orthogonal carriers

Carrier waves are continuous (complex-valued) functions and not matrices, but
there is an inner product defined for pairs of carrier waves via integration

With that inner product, the Gram matrix of the set of carrier waves can be
computed
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The symmetrically orthogonalized Gram matrix is then used to provide
coefficients for linear combinations of the carrier waves

These linear combinations are orthogonal (hence suitable for OFDM) and
optimally TF-localized

The SVD also has a natural application to finding the least squares solution to
Az = b (i.e., a vector z with minimal ||Ax — b||2) where Az = b is inconsistent
(eg, AcR™" m>n,r=n)

But perhaps the most visually striking property of the SVD comes from an
application in image compression
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We can rewrite X as

01 0 0
0 09 .
0 o
o; 0 0 0 0 0 0 0 0
0 0 0 o9
_ + L+
0 0 0 0 0 o
o 5 S
= X1 + X9 + + X2,
Now consider the SVD
(V)"
(Vo)"
A = Uy \Us|--- U, X1+ X9 4+ -+ X, :
(V)"
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and focus on, say, the first term

(V)"
(Va)"
Ui | Uy U, ( 2 ) :
(Va)"
(V)"
(Va)"
— | sy l0]---]0 :
(Va)"
(V)"
0
— | sy lo]---]0 ;
0
= oU)(Vh)"
In general U,V = o Up (Vi) t
So A= oU(V)"
=1

which is an expression of A as a sum of rank-one matrices
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In this representation of A, we can consider partial sums

This amounts to discarding the smallest n — k singular values and their
corresponding singular vectors, and storing only the V;'s and the s;U;'s

Theorem 5.1 says that the k" partial sum of A™ captures as much of the
“energy” of A as possible
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Example Consider the 320-by-200-pixel image below

This is stored as a 320 x 200 matrix of grayscale values, between 0 (black) and
1 (white), denoted by Agjown

We can take the SVD of Agown
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By Theorem 5.1, Ai@wn is the best rank-k approximation to Acown, measured by
the Frobenius norm

Storage required for A®) s 3 total of (320 + 200) - k bytes for storing oy

clown

through oju; and vy through vy

320 - 200 = 64, 000 bytes required to store Aqown explicitly

Now consider the rank-20 approximation to the original image, and the
difference between the images
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Figure 7: Rank-20 approximation ACY gnd A AR

clown clown
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The original image took 64 kb, while the low-rank approximation required
(320 +200) - 20 = 10.4 kb, a compression ratio of .1625

For further investigation, see

“Numerical Linear Algebra” by Trefethen
“Applied Numerical Linear Algebra” by Demmel
“Matrix Analysis” by Horn and Johnson

“Matrix Computations” by Golub and van Loan
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