
The WinEdt Hacker’s Guide

Jason Alexander

November 21, 1999

The WinEdt Hacker’s Guide

Macro programming in WinEdt can be frustrating at first. Common sources of frustration for
first-time macro programmers are: not knowing what macro functions are available (or appro-
priate) for the desired task, not understanding the flexibility of the macro functions that are
available, or idiosyncrasies of the WinEdt language.

This chapter discusses all these areas, gives numerous examples of macro programming in
WinEdt, and shows some dirty tricks and some conventions that are beginning to be formed by
the WinEdt community. Please send reports of any errors or inadequacies (or neater examples,
as well!) towebmaster@winedt.org .

This chapter discusses WinEdt’s macro feature on several different levels simultaneously.
I have adopted a “dangerous bend” convention (first used by the computer scientist Donald E.
Knuth) to flag sections which go beyond what a first-time macro programmer would be expected
to know:

� If your reading this on the first time through, didn’t you pay attention to the warning in previous paragraph?
:-) I’ll let it go this time, but you should really try to avoid sections like these in the future until you have

experience with WinEdt’s macro language.

Sections which one might want to defer reading until the second or third time are marked with
two dangerous bend signs. Whenever possible, macro examples will be given following the
“two-column” format employed inThe LATEX Companionby Goossens, Mittelbach, and Samarin.
The actual WinEdt macro code usually appears on the left-hand side with the corresponding
WinEdt output appear on the right. For example,

InsText("Winedt's language");
NewLine;
InsText("...is powerful.");

WinEdt's language
...is powerful.

1

mailto:webmaster@winedt.org

1 BASICS

1 Basics

The simplest macros in WinEdt’s library insert text or additional lines into the current document.

Ins("String to insert");
Inserts a specified string (or the contents of a string register, e.g. “%!9”) using the current wrapping settings.

InsText("String to insert");
Same asIns except WinEdt will not wrap the inserted string if it goes beyond the right margin.

NewLine;
Inserts a new line at the current position.

InsLine;
Inserts a new line at the current position if and only if the current line is not empty. Used judiciously, this macro
can prevent multiple blank lines from appearing in a document.

Ins("This is some text...");
NewLine;
NewLine;
Ins("...and this is some more.");

This is some text...

...and this is some more.

Ins("This is some text...");
InsLine;
InsLine;
Ins("...and this is some more.");

This is some text...
...and this is some more.

If you want to insert several copies of the same thing, useRepeat(n, "...") — where
n is a number (or a register containing a numeric value) and the string parameter contains the
argument to be repeated. The next example demonstrates how to insert multiple line breaks into
a document usingRepeat andNewLine :

Ins("From alpha...");
Repeat(2, "NewLine");
Ins("...to omega.");

From alpha...

...to omega.

Repeat also provides a way to move the cursor to a new position in the document when you
know the offset from the current position. E.g.,

Repeat(20, CMD("Char Left"));
Repeat(5, CMD("Line Down"));

moves the cursor twenty characters left and five lines down from the current position. (Luckily,
more efficient ways of moving the cursor exist since traveling long distances viaRepeat takes
time.)

One important caveat aboutRepeat (which actually applies to many macros in WinEdt’s
library) concerns usingRepeat with macros that take string arguments. Since the second
argument ofRepeat is itself a string, if you attempt to repeat a command that takes a string
argument, you must take care to correctly nest the strings. One correct use ofRepeat to insert
ten copies of the lettera into the document is the following:

2

1 BASICS

Repeat(10, "Ins('a')"); aaaaaaaaaa

1.1 First use of nested strings

One correct way of nesting strings uses different quotation marks to indicate the string inside
the string (as above). Three more ways of writing this macro correctly are:

Repeat(10, 'Ins("a")');
Repeat(10, 'Ins(''a'')');
Repeat(10, "Ins(""a"")");

It really doesn’t matter which convention you adopt, so long as you understand it and can work
with it. See§ 2.1for a greater discussion of this topic.

� Nothing keeps you from putting a lengthy sequence of macros in the second argument ofRepeat : any
valid macro sequence can appear in this second argument, including additional uses ofRepeat . This

allows one to write macros that perform a certain action a fixed number of times. Notice the wordfixedoccurring
in that last sentence. Because the first argument ofRepeat is a numeric constant specifying how many times the
second argument ought to be repeated, you must always know at the time of writing how many times the action must
be repeated. More complicated macros, requiring an action to be repeated until some condition occurs (where it is
not know ahead of time how many times the action will need to be repeated) should use the more powerfulLoop
macro.

Since we’ve already talked about moving the cursor around the screen, we might as well
mention a few more ways to do it. If you just want to automate the kinds of cursor movements
that you can do with the keyboard—i.e., move around the screen, or scroll a bit—you’ll be happy
to know that these operations get handled via the flexibleCMDmacro.

CMD("Char Left");
Move the cursor one character to the left.

CMD("Char Right");
Move the cursor one character to the right.

CMD("Line Up");
Move the cursor up one line.

CMD("Line Down");
Move the cursor down one line.

CMD("Page Up");
Move the cursor up one page.

CMD("Page Down");
Move the cursor down one page.

The CMDmacro provides access to many, many more commands than listed here. Think of
CMDas the macro equivalent of a Swiss-army knife: over 170 different things can be done with
CMD(admittedly, not all of them are ones that you will use frequently, if at all). UsingCMDis
a simple two-step process: (1) look up the name of the desired command in WinEdt’s on-line
documentation, (2) callCMD, giving it the name of the command in quotation marks as above.

� Basically,CMDinvokes commands that are essential to WinEdt’s behavior — like cursor movements, screen
refreshes, inserting bullets, setting bookmarks, and so on. One can also invoke all the dialog boxes used to

customize WinEdt’s behavior, e. g.,CMD("Preferences...") . Notice that there is some overlap with theMenu
macro here, since bothMenuandCMDcan be used to bring up the Preferences dialog box. The need for two different

3

2 VARIABLES/REGISTERS

macros, though, stems from the degree to which WinEdt allows customization of its menus. For example, onecould
delete the Preferences. . . choice from the Options menu, making it impossible to invoke the Preferences dialog box
with theMenu macro. However, the Preferences dialog box will always be available via theCMDmacro.

The real power of WinEdt’s macro language doesn’t begin to emerge until we consider
macros capable of conditional behavior — taking different actions depending upon the current
state of some parameter. But this means that WinEdt must allow for certain parameters to vary
over time. It’s time to considervariablesor registers.

2 Variables/Registers

� The WinEdt documentation uses the terms ‘variable’ and ‘register’ interchangeably, so let’s first note the
difference between the two terms, as traditionally understood, and then see where WinEdt’s macro language

falls. Most (if not all) programming languages allow you to declare variables with names descriptive of their contents,
like mass, number_of_loops , and so on. When you declare a variable, a chunk of memory gets allocated for
storing a certain type of data.1 The important point being that variables havenames. A register, on the other hand,
can’t be given a special name: it’s a chunk of storage that you have to refer to by whatever name the designer gave it.

So what does WinEdt have? WinEdt has registers—so you can’t give them custom names—but WinEdt’s regis-
ters are more flexible than variables in languages likeC. WinEdt will automatically allocate memory on an as-need
basis for each of its registers—you don’t have to worry about that at all (if you were the sort of person who would
worry about it in the first place). If you want, you can copy several pages of a document into a register that was
previously used to hold a number, and WinEdt won’t complain. So even if you don’t like not being able to declare
named variables to make your macros easier to understand, WinEdt’s registers can be quite powerful.

We can distinguish between four different types of registers:local, global, editor anddoc-
ument. There are eleven local registers, eleven global registers, and numerous document and
editor registers. Luckily, though, one can usually identify the type of a register by looking at
its name alone (though there are some exceptions). Identifying registers is easy: all WinEdt
registers have a%-sign in front of them.

Both editor and document registers consist of a single letter, upper or lower. The difference
between these types of registers is primarily semantic rather than syntactic: editor registers
contain values specifying the current state of WinEdt (current line position, column position,
and so forth) and document registers contain values identifying properties of the active file type,
file name, path, etc.). One cannot directly change the value of a document register, but macro
functions exist for changing the value of editor registers.

For example,%n, %p, and%t are all document registers;%ncontains the name of the active
file (the file currently having focus in the editor),%pcontains the path of the active file, and%t
contains the extension of the current file. So, if the active file is:

c:\My Documents\Sundials-R-Us\Gnomon Sales\data.foo

then%pequalsc:\My Documents\Sundials-R-Us\Gnomon Sales , %nequalsdata ,
and%t equals.foo . Changing the active file causes the values of these registers to change.

Examples of editor registers are:%c, containing the column position of the cursor and%l ,
containing the line position of the cursor. Note that certain editor registers eliminate the need for

1With some exceptions.C’s union type allows you to store different types of data in the same (approximately)
chunk of memory.

4

2 VARIABLES/REGISTERS 2.1 Strings and things

certain macros. Need the word the cursor is currently positioned on? Use%W, which contains
the word located at the current cursor position (%Lgives you the contents of the entireline). As
I said above, editor registers can be changed: to change the value of%c, you have to move the
cursor (manually or via theGotoCol or GotoCL macros).

Local registers are the easiest to spot:%!0,. . . ,%!9, and%!? are the eleven local registers.
Global registers differ by lacking an exclamation point:%0,. . . ,%9are global registers (so is%I,
but it has a special function we’ll return to later). From the point of view of a macro programmer
local registers are no different than global registers save thatglobal registers retain their values
between WinEdt sessions and should not have multi-line values. The prohibition on multi-line
values arises because global registers have their values stored in thewinedt.ini file and
multi-line values can corrupt thewinedt.ini file.

�� So what? Well, most of the time you will probably want to use local registers when writing WinEdt macros
(especially ones that just save on some typing). But using global registers can allow you to createstate-

sensitivemacros that respond differently depending upon the current state of the editor, where the editor remembers
it’s current state from time to time.

Take a look at the macros located in%B\Macros\math . These macros employ the method of global registers
to toggle between two modes: a LATEX math mode, and a LATEX normal text mode. A number of macros are provided
to hook to active strings. When done so,‘a gets translated to\alpha when math mode is on, but gets left as‘a in
normal text mode.

2.1 Strings and things

Most of the macros in WinEdt’s standard library take arguments, some several. When reading
arguments there are two differenttypesof arguments WinEdt may expect to find:numericand
string. A numeric argument can be a constant — e.g., 17 — a register (local or global) currently
set to a numeric value, or an integer expression using the standard arithmetic operators+-*/ .
An “integer expression” means any well-formed expression using those operators, registers con-
taining well-formed integer expressions, and constants (with parentheses used for grouping. The
following are examples of valid integer expressions:

2+3
((2+3)/16)

%!1+%!2
((%!1*%!2)/12)*(-17/%!3)

The following macro illustrates a simple use of integer expressions:

1 LetRegNum(1,1);
2 LetRegNum(2, "((12+%!1)/4)");
3 LetRegNum(3, "%!2 + %!2");
4 InsText("Reg. %%!1 = %!1"); NewLine;
5 InsText("Reg. %%!2 = %!2"); NewLine;
6 InsText("Reg. %%!3 = %!3");

Reg. %!1 = 1
Reg. %!2 = 3
Reg. %!3 = 6

2.2 Using integer expressions

Line 1 stores the numerical value 1 in register%!1. In line 2, register%!2 receives the numerical
value 3 because the result returned by WinEdt when performing arithmetic division truncates

5

2 VARIABLES/REGISTERS 2.1 Strings and things

decimals. Finally, line 3 assigns to register%!3 the value 6 because when WinEdt processes the
second argument ofLetRegNum, register%!2 expands to the value 3 and3 + 3 = 6 (in case
you didn’t know).

Note the use of repeated%-signs in lines 4–6. Since WinEdt uses percent signs in the names
of registers, you must tell WinEdt when you really want a percent sign instead of a register
name. This is done by including two percent signs (%%) at the appropriate place. People familiar
with other macro languages, such as TEX, are probably already familiar with the need to repeat
certain “special” characters; if you are not such a person, just remember to type%%whenever
you want%to appear in the text and you will get by fine.2

One occasionally needs to nest strings when writing simple macros (see example1.1) and
almost always when writing more complicated macros (see examples2.3, and2.4). Mastering
nested strings is essential to becoming a real pro at WinEdt’s macro language. WinEdt recog-
nizes several different ways to nest strings:

Correct:
"this is a 'string' inside a String"
'this is a "string" inside a String'
"this is a ""string"" inside a String"
'this is a ''string'' inside a String'

Incorrect:
'this is NOT a 'string' inside a String'
"this is NOT a "string" inside a String"

� Although2.2usedLetRegNum three times, that wasn’t necessary. You might have a complicated integer
expression that you want to evaluate several times, allowing the values stored in the registers appearing

within that expression to change between evaluations. UsingLetRegNum like we did above will give you headaches,
sinceLetRegNum immediately evaluates its second argument to obtain an integer value for the assignment.

The way around this problem is to store the complicated integer expression in a local register as astring. This
allows one to suppress expansion of the named registers until you actually want to evaluate the expression. Here’s an
example:

2Until you start working with nested strings. Then things become considerably more complicated even though
the rules stay the same. Working with registers and percent signs inside nested strings will be dealt with in a later
section, but see2.3and2.4for a taste of what will come.

6

2 VARIABLES/REGISTERS 2.1 Strings and things

1 BeginGroup;
2 LetReg(1,'((100*%%!2)+(10*%%!3)+(%%!2*%%!3)');
3 LetRegNum(2,0);
4 LetRegNum(3,0);
5 Loop('>
6 Loop(">
7 LetRegNum(4, ''%%!1'');>
8 InsText(''%%%%%%%%!2 = %%%%!2, %%%%%%%%!3 = %%%%!3, %%%%%%%%!4 = %%%%!4'');>
9 NewLine;>

10 LetRegNum(3, %%%%!3+1);>
11 IfNum(%%%%!3,3,''='',''Stop'','''');>
12 ");>
13 LetRegNum(2, %%!2+1);>
14 LetRegNum(3,0);>
15 IfNum(%%!2,3,"=","Stop","");>
16 ');
17 EndGroup;
18 End;

2.3 Storing integer expressions for later use

This macro produces the following output:

%!2 = 0, %!3 = 0, %!4 = 0
%!2 = 0, %!3 = 1, %!4 = 10
%!2 = 0, %!3 = 2, %!4 = 20
%!2 = 1, %!3 = 0, %!4 = 100
%!2 = 1, %!3 = 1, %!4 = 111
%!2 = 1, %!3 = 2, %!4 = 122
%!2 = 2, %!3 = 0, %!4 = 200
%!2 = 2, %!3 = 1, %!4 = 212
%!2 = 2, %!3 = 2, %!4 = 224

How? First, the integer expression((100*%!2)+(10*%!3)+(%!2*%!3) gets stored in%!1 (note the use of
double parentheses to suppress expansion). Then%!2 and%!3 are initialized to 0. We then enter a doubly-nested
loop. We take advantage of some expansion trickery in the first line of the double loop. Here,LetRegNum is at
level 2 since it appears in a string inside a string; if we wanted to suppress expansion of%!1, we would have to
use at least four percent signs%%%%!1to raise that occurrence of that register to level 3 (or higher). However, we
don’t want to suppress expansion since we want to use the contents of%!1 — the complicated integer expression
— when assigning a value to%!4. Thus%%!1gets expandedbeforeWinEdt begins processing theLetRegNum
call. When WinEdt begins processing theLetRegNum call, it first expands the second argument of this macro —
the complicated integer expression we want to use! Thus,%!4 gets assigned the value 0 the first time through the
double loop, since both%!2 and%!3 equal 0.

String arguments can be explicitly specified — e.g.,"This is a string" — or they
can use registers (local or global) whose contents “make sense” when expanded. Make sense?
Here’s what I mean. Consider the macroInsText . It takes a single string argument and inserts
it at the current cursor position. Clearly any string you specify makes sense here, for WinEdt will
expand all registers present in the string and then insert the expanded string into the document.
However, consider the macroLoop . Here, the only strings which make sense are those which
expand into a sequence of macros WinEdt can execute. Giving"This is a string" as an
argument toInsText won’t result in an error, but giving it as an argument toLoop will cause
WinEdt to complain.

7

2 VARIABLES/REGISTERS 2.1 Strings and things

� Defining the notion of a string “making sense” more precisely would require that we introduce the notion
of a valid string, where the validity of a string depends upon the macro we are speaking of. (Exercise:

prove that no string is valid for every macro.) I leave this to the hands of those more capable at theoretical computer
science than myself.

New users often find the way WinEdt handles string arguments one of the more puzzling
aspects of WinEdt’s macro language. Here’s an example:

LetReg(1, "This is some text.");
Ins("%!1");

This is some text

LetReg takes two arguments, a numeric argument telling which one of the local registers
(%!0,. . . ,%!9) to set and a string argument containing the soon-to-be value of the register.

�� Registers can also be used in places where WinEdt expects a numeric argument and, by using registers with
theDo macro, one can use registers to access string registers. The following example shows how to exploit

this primitive type of pointer.

1 BeginGroup;
2 LetRegNum(0,4);
3 LetRegNum(1,5);
4 LetRegNum(2,6);
5 LetRegNum(3,7);
6 LetReg(%!0,"Jellical cats come out tonight,")
7 LetReg(%!1,"Jellical cats come one, come all,");
8 LetReg(%!2,"The Jellical moon is shining bright,");
9 LetReg(%!3,"Jellicals come to the Jellical ball.");

10 LetRegNum(8,4);
11 Loop(">
12 InsText('Reg. #%%!8: ');>
13 Do('>
14 InsText(""%%%%!%%!8"");>
15 NewLine;>
16 ');>
17 LetRegNum(8,%%!8+1);>
18 IfNum(%%!8, 7, '>', 'Stop','');>
19 ");
20 EndGroup;

%!4: Jellical cats come out tonight,
%!5: Jellical cats come one, come all,
%!6: The Jellical moon is shining bright,
%!7: Jellicals come to the Jellical ball.

2.4 Using registers as “pointers”

Registers 0,. . . ,3 point to registers 4,. . . ,7 and are used to assign values to registers 4,. . . ,7 viaLetReg . After
assigning values to these registers, we loop four times, printing out the contents of one register (plus aNewLine) on
each pass. Note how in theLoop macro we use register%!8 not only to control the number of iterations we perform,
but also to determine the contents of which register we insert.

Omitting quotation marks inIns("%!1") generates the WinEdt warning:String Para-
meter Expected . Why? BecauseIns requires a string argument and%!1 isn’t a string —
it’s the nameof a local registercontaininga string. One might wonder whyIns("%!1")
works, then. After all, why doesn’t WinEdt interpret"%!1" as a string containing the sequence
of characters%, ! , and1, causing the text%!1 to appear in the document?

The answer lies in WinEdt’s treatment of strings parameters. Whenever WinEdt executes a
macro requiring a string parameter, it first expands the string parameterbeforeusing it. When the
parameter gets expanded, all registers at the bottom level (i.e., registers that aren’t suppressed)
get replaced by their values, and every register of a higher level gets its level lowered by one.
When WinEdt processes the macroIns("%!1") , WinEdt replaces the register%!1 by its

8

2 VARIABLES/REGISTERS 2.1 Strings and things

value because it occurs at the bottom level. WinEdt then inserts the translated expression into
the document.

� Strictly speaking, WinEdt doesn’t keep track of levels at all; as far as WinEdt is concerned, all it works with
are strings (or nested strings) and registers. My reason for introducing the concept of alevelof a register is

to make it easier to keep track of how many %-signs are needed at any given point.
If you prefer not to think in terms of levels, here’s how WinEdt actually handles strings and registers inside

nested strings.%!1 is the name of a string register and gets replaced by its contents whenever WinEdt expands%!1.
WinEdt also expands%%to a single percent sign:%. If you write a macro that has a register appearing inside a nested
string, you can control when that register gets replaced by its value by the number of percent signs you stick in front
of it.

Consider the following macro:

LetReg(1, "The best of all possible strings");
LetRegNum(2,1);
IfNum(%!2, 1, "=",>

"Repeat(3, 'InsText(""%%%%!1"");
NewLine;')",>

"Exit">
);

This macro is a convoluted way of inserting three copies of"The best of all possible strings" into
the document (with line breaks appearing between each copy). However, it illustrates how WinEdt expands strings.

When WinEdt begins executing this macro, it begins on the first line withLetReg . WinEdt takes the string
argument, expands it, and assigns the expanded string to register%!1. Since there were no register expressions
occurring in the string argument,%!1 now containsThe best of all possible strings . WinEdt then
processes the second line and assigns%!2 the numeric value 1.

When WinEdt begins to process the third line, it first concatenates all the lines ending with> (this allows us to
use line breaks to increase the readability of macros, since, technically, all WinEdt macros must lie on a single line).
Once that has been done, WinEdt checks to see whether%!2 equals1 or not. Since it does, WinEdt will execute the
fourth argument ofIfNum .

Before WinEdt executes this fourth argument, it expands the string. After expansion, WinEdt faces the sequence
of macros:

Repeat(3, 'InsText("%%!1"); NewLine;')

Notice how the four%-signs was reduced to two. Why? As WinEdt expanded the fourth argument ofIfNum , it
encountered the expression%%which it replaced by%. WinEdt then found another occurrence of the expression%%
which also was replaced by%%. WinEdt left !1 alone since this was not part of any register. (WinEdt also adjusts
the quotation marks so that the strings are nested correctly.)

WinEdt then executes theRepeat macro. In doing so, WinEdt first expands the second argument ofRepeat .
The sequence of commands after expansion is:

InsText("%!1"); NewLine;

which gets repeated three times. As WinEdt executes theInsText macro, it first expands the string argument. In
the process of expansion, WinEdt finally finds an occurrence of the register%!1 and replaces it by the textThe
best of all possible strings which WinEdt finally inserts into the document.

� One might want to suppress WinEdt’s automatic replacement of registers (this happens most frequently
when writing complicated macros containing nested loops). WinEdt provides two ways to suppress register

replacement: (1) doubling the number of%-signs at the register’s name raises its level by one (thus delaying its
replacement), or (2) adding a! before the string parameter prevents the entire string from being translated, effectively
raising the level of every register inside the string by one.

Suppressing translation of the entire string can be used to eliminate the need to include horribly long streams of
parenthesis in deeply nested macros, but it doesn’t provide the same level of control that method (1) has.

9

2 VARIABLES/REGISTERS 2.2 Setting the values of registers

LetReg(1, "It was...");
LetReg(2, "the best of times.");
Ins("%!1 %!2");

It was... the best of times

LetReg(1, "It was...");
LetReg(2, "the best of times.");
Ins("%!1 %%!2");

It was... %!2

LetReg(1, "It was...");
LetReg(2, "the best of times.");
Ins(!"%!1 %!2");

%!1 %!2

2.2 Setting the values of registers

First of all, what registers have values one can modify from within a macro? Certainly the local
string registers (%!0,. . . ,%!9), since these registers are intended to be the macro writer’s main
temporary storage area. You can also modify the value of the global string registers (%0,. . . ,%9)
but, if you do so, you must keep in mind the following very important restriction:

Do not attempt to place an expression spanning multiple lines inside any global
string register. Since the values of these registers are stored permanently in your
winedt.ini file, this file can become corrupted if one assigns multi-line values
to the global string registers.

This restriction does not usually present a problem since one rarely is tempted to use a global
register. And, in the cases where one does need a global register, there is either no need to use
multi-line values, or this limitation can be easily circumvented.

WinEdt provides several ways to modify the values of the local string registers. Modifi-
cations which do not require any input from the user can be done usingLetReg (assigning
string values to local registers) orLetRegNum (assigning numerical values to a local register).
WinEdt also provides a way to write interactive macros that collect input from the user, but
discussion of these macro methods won’t appear until§ 5.

LetRegNum(StrRegister: 0..9, Num_Expression: -999999999..999999999);
This function can be used to assign the result of a numeric expression to the string Register (eg.%!0).

LetReg(StrRegister: 0..9, "Value");
Assigns the specified value to the String Register (eg.%!0).

If you really want to fly in the face of danger, you can assign values to the global registers (but
do heedthe above warning) viaLetStr —the global register equivalent ofLetReg . LetStr
assumes you know what you’re doing when you make assignments and it will not check to see
if you attempt to assign a multi-line value to a global register. As said before, unless you are
careful this is a really easy way to irreversibly damage yourwinedt.ini file.

LetStr(StrRegister: 0..9, "Value");
Assigns the specified value to the Global String Register (eg.%0).

10

2 VARIABLES/REGISTERS 2.2 Setting the values of registers

� WinEdt provides another way to set the value of local string registers which often comes in handy.GetSel
copies the currently selected block of text into the specified string register, if the active file has selected

text. If no text is selected, the behavior ofGetSel depends on the value of its first parameter: if0, the specified
string register receives the empty string; if1, the specified string register receives the entire document. Obviously,
one should exercise caution when using the latter case: you probably don’t want to select the entire document if the
next command isCMD('Delete') or CMD('Sort Lines...') !

Occasionally, the need arises to check the character to the immediate left or right of the cursor, performing some
conditional action based on what you find there.GetSel provides a way to do this. Note, though, that this technique
should only be used for isolated tests; using this technique inside a loop can cause the macro to run slowly because
CMD('Select Char Left') andCMD('Select Char Right') do not execute quickly. The following
macro demonstrates how to useGetSel in this way. Can you guess what this macro might be useful for?

1 CMD('Backspace');
2 CMD('Select Char Left');
3 GetSel(0,9);
4 CMD('Char Right');
5 IfStr('%!9',' ','=','InsText("‘‘");End','');
6 IfStr('%!9','.','=','InsText("''''");End','');
7 IfStr('%!9',',','=','InsText("''''");End','');
8 IfStr('%!9','!','=','InsText("''''");End','');
9 IfStr('%!9','?','=','InsText("''''");End','InsText(''"'')');

2.5 Conditional insertion of characters based on surrounding text

Let’s walk through this macro to see what, exactly, it does. First of all, line 1 shows I lied when I said the macro
checks the character to the left of the cursor; the macro begins bydeletingthe character to the left of the cursor. Once
that’s done, lines 2–4 copy the character to the left of the cursor into register%!9 and then move right. (We need to
move right in line 4 because the command in line 2 causes the cursor to move one character to the left. If we did not
move right one character, the text inserted in lines 5–9 would appear in the wrong place.)

Lines 5–9 demonstrate one way of performing a multiple-way branch—that is, a conditional operation likeC’s
switch statement or TEX’s \ifcase . Since WinEdt doesn’t have command providing a multiple-way branch
outright, we need to manufacture one by using multipleIf... statements. Simply use oneIf... test for each
possible branch, where eachIf... test (they need not all be the same) has an empty else-clause. If you want to
specify a default branch, that is, a sequence of commands to be executed when none of your explicitIf... tests
succeed (always a good idea), put this sequence of commands in the else-clause of thelast If... test. The above
macro uses this construction: notice the use ofEnd; to terminate macro execution after a successfulIfStr test and
how theIfStr s of lines 5–8 all have empty else-clauses.

Lines 5–9 check the character in register%!9 to see whether it’s a space, period, comma, exclamation point,
question mark, or other (that’s the default case). If it’s a space, WinEdt inserts‘‘ into the text at the current cursor
position. If it’s one of the four punctuation symbols, WinEdt inserts'' into the text. In all other cases, a single"
gets inserted. Note howfour ' -marks were needed in lines 6–9 to gettwo ' -marks in the text.

When would such a macro be needed? Consider what would happen if" were made an active string with this
macro bound to it. Then whenever a" was typed, WinEdt would replacing the" with one of three possibilities
depending upon the character preceding the" . In other words, this macro would create “smart quote” behavior
inside WinEdt, similar to that available in Emacs or word processors like Microsoft Word.

�� Macro 2.5 runs slowly, so slowly it might frustrate some users. If you need to write macros that test
surrounding text in order to decide what type of action to take, a faster way needs to be found. The author

has found that, when speed is of the essence, avoidingCMD("Select Char Left") entirely gives the best
results.

UsingCMD("Select Char Left") (or its sister commandCMD("Select Char Right")) slows macro
execution down because they use Windows messaging commands to perform the indicated actions—internally, es-
sentially the same sorts of procedures as if you move the cursor into position, held the Shift key down, and then

11

2 VARIABLES/REGISTERS 2.2 Setting the values of registers

moved either left or right. I.e., a Windows message is generated, sent through the message loop, dispatched, and
processed.

All that involves unnecessary computational overhead. This overhead can be avoided by usingGotoCol ,
GotoLin , or GotoCL to move the cursor into the correct position,SetSel(0) to first deselect everything, and
thenSetSel(1) (some other nonzero number may also be used) to begin the selection process. At this point, using
GotoCol , etc. moves the cursor to the specified position, selecting all the text in between the cursor position when
SetSel(1) was called at the new position. At this point,GetSel may be used to copy the selected text into the
desired register.

Macro2.5, rewritten using these techniques, will then look like:

1 CMD('Backspace');
2 Mark(0);
3 IfNum('%c',1,'=','InsText("‘‘");End','');
4 SetSel(1);
5 GotoCol('(%c-1)');
6 GetSel(0,9);
7 SetSel(0);
8 Goto(0);
9 IfStr('%!9',' ','=','InsText("‘‘");End','');

10 IfStr('%!9','.','=','InsText("''''");End','');
11 IfStr('%!9',',','=','InsText("''''");End','');
12 IfStr('%!9','!','=','InsText("''''");End','');
13 IfStr('%!9','?','=','InsText("''''");End',>
14 'InsText(''"'')');
15 End;

2.6 Faster conditional insertion of characters based on surrounding text

After deleting the undesired" character in line 1, the cursor is correctly positioned for inserting the desired charac-
ter(s) (either‘‘ or '' or "). However, selecting the text requires that we move the cursor to the right by one, once
the text has been selected. The use ofMark(0) in line 2, following byGoto(0) in line 8, performs these needed
movements. If you try both forms of the macro on a fast (but not blazingly so) computer, you may detect the speed
difference between the two versions.

Aside from the local and global string registers, most of WinEdt’s other registers have their
values changed indirectly through the use of other macro commands. For example, the editor
registers%cand%l contain, respectively, the current column and line number (the current col-
umn and line number identifies the position of the cursor in the active document). You cannot
useLetRegNum to change the value of these registers. To change the value of%cor %l , you
must either manually move the cursor (the changes are automatically reflected in the values of
%cand%l) or useGotoCol , GotoLin or GotoCL to jump the cursor to a particular spot in
the document.

GotoLin(LineNum: 1..16000000);
Go to the specified line and track the Caret’s position.

GotoCol(ColumnNum: 1..99999999);
Go to the specified column and track the Caret’s position.

GotoCL(ColumnNum: 1..99999999, LineNum: 1..16000000);
Go to the specified text position and track the Caret.

12

3 PROCEDURES ANDFUNCTIONS

However, WinEdt does allows the user to change a few document registers directly through
the commandsSetFileName andSetFileMode . These commands will probably be used
rather infrequently, but they are there in the event you need to use them.

SetFileName("File Name");
Changes the file name of the current document.

SetFileMode("File Mode");
Changes the ”Mode” of the current document and resets certain properties. Check WinEdt’s documentation on
modes for more information.

3 Procedures and Functions

Macro languages can save time and reduce errors by automating repeated tasks. As people
become more familiar with the flexibility of a macro language, they tend to write longer macros
to perform more complicated tasks. As macros grow in length, it becomes important (from the
programmer’s point of view—the macro interpreter couldn’t care less!) to impose some sort of
structure upon the macros, making them easier to follow and to write. This structure usually
involves the creation of subroutines and procedures, so that a single subroutine can be called
every time it’s needed, obviating the need to include that code at every point it’s used.

As a trivial example, suppose we want a macro to automatically create a new LATEX docu-
ment, configuring the document by adding text at various places. In particular, suppose we want
the document to look like this when the macro completes operation:

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{verbatim}

\begin{document}

*

\bibliography{mybibliography}
\bibliographystyle{plain}
\end{document}

(Note: The bullet character which is now represented by a red asterisk, had in previous versions
of WinEdt been represented by� .)
One way to code the macro without using subroutines (or procedures) would be:

13

3 PROCEDURES ANDFUNCTIONS

1 CMD("New");
2 Mark(0);
3 Ins("\documentclass[12pt]{article}"); NewLine;
4 Ins("\usepackage{amsmath}"); NewLine;
5 Ins("\usepackage(verbatim}"); NewLine; NewLine;
6 Ins("\begin{document}"); NewLine; NewLine;
7 Ins(" * "); NewLine; NewLine;
8 CMD("Go To Beginning Of Line");
9 Ins("\bibliography{mybibliography}"); NewLine;

10 Ins("\bibliographystyle{plain}"); NewLine;
11 Ins("\end{document}");
12 Goto(0);
13 CMD("Next Bullet");

3.7 Macro without subroutines

Without explicitly instructing WinEdt, in line 8, to go to the beginning of the line, the text of lines
9–11 would be inserted in the wrong column. Note how we usedMark in line 2 to “memorize”
a cursor position andGoto in line 12 to return to that position. (The only reason for returning
to that position is that it moved the cursor before the bullet, thus guaranteeing that the call to
CMD("Next Bullet") would snap the cursor to the desired point.)

This macro works perfectly well and most people would stop here. One problem, though, is
that LATEX documents have a certain structure to them: apreamble(everything appearing before
the \begin{document}) and what I’ll call a “postamble” (everything appearing after the
\end{document}). This macro assumes the postamble to be empty—a reasonable assump-
tion since LATEX ignores anything in the postamble—but, conceivably, there may be instances
where the postamble would not be empty: version control information might be placed there, in-
formation about the author, etc. Since the preamble and postamble constitute logically separate
parts of a LATEX document, let’s rewrite the macro using subroutines to reflect this fact. While
we’re at it, let’s include a subroutine for all the middle stuff not appearing in either the preamble
or postamble. (Although further enhancement of this macro might seem an unnecessary exercise
in obfuscation, it illustrates how to use subroutines. In the future we’ll see many cases where
using subroutines clarify the operation of a macro.)

� Strictly speaking, WinEdt doesn’t provide for subroutines. WinEdt provides theExe macro, which looks
for a specified macro file; if the file exists, WinEdt executes the sequence of commands contained within

that file. But this allows us to write code that behavesas if WinEdt allowed one to define subroutines: simply write
your code for the function, but save it to a file with a descriptive name and useExe("...") to call the subroutine.

Rewriting macro3.7 so it uses subroutines as described means we must create two macro
files on disk, one for the preamble and one for the postamble. You can save your macro files
wherever you want to, just make sure you remember where they are. The author finds it conve-
nient to prefix the name of macro files containing subroutines with two underscore characters,
__ , so he can tell just by looking at the file name that they aren’t stand-alone macro files (and
that he might get into trouble if he deletes them!).

Since the postamble subroutine is the easiest to write, let’s start with it:

14

3 PROCEDURES ANDFUNCTIONS

Relax;

3.8 Postamble subroutine for macro3.7

Assume the postamble subroutine is saved as%B\Macros__Postamble.edt , where the
%Bregister stands for the WinEdt base directory.

The preamble subroutine isn’t much longer:

Ins("\documentclass[12pt]{article}"); NewLine;
Ins("\usepackage{amsmath}"); NewLine;
Ins("\usepackage(verbatim}"); NewLine; NewLine;

3.9 Preamble subroutine for macro3.7

(Assume the preamble subroutine is saved as%B\Macros__Preamble.edt .)
And for the middle stuff subroutine we have:

Ins("\begin{document}"); NewLine; NewLine;
Ins(" * "); NewLine; NewLine;
CMD("Go To Beginning Of Line");
Ins("\bibliography{mybibliography}"); NewLine;
Ins("\bibliographystyle{plain}"); NewLine;
Ins("\end{document}");

3.10 Middle stuff subroutine for macro3.7

(Assume it was saved as%B\Macros__MiddleStuff.edt .)
When rewritten using subroutines, macro3.7 looks like:

1 CMD("New");
2 Mark(0);
3 Exe("%B\Macros__Preamble.edt");
4 Exe("%B\Macros__MiddleStuff.edt");
5 Exe("%B\Macros__Postamble.edt");
6 Goto(0);
7 CMD("Next Bullet");

3.11 Macro with subroutines

Compare macro3.11 to 3.7. Trivially, we see that3.11 is shorter, but not so much so that
this should convince us to use subroutines whenever possible. The author believes that the
logical structure of3.11 is clearer than3.7 but this, too, may be disputed. However, three
advantages of using subroutines are as follows: (1) future modifications of macro code become
easier since the code has been broken down into bite-size chunks, and (2) debugging macros
becomes easier since one can (usually) debug the subroutines in isolation from the main code,
and (3) the need to use strings containing strings containing strings. . . disappears. Judicious use
of subroutines should enable you to avoid working with nested strings of level greater than two.
If you find WinEdt’s conventions for nested strings and repeated%-signs confusing, this alone
might convince you to use subroutines.

15

4 RECURSION

� Using subroutines can makewriting complicated macros easier, too. You can defineExe to be an active
string so that when you double-click on it, WinEdt will automatically try to open the specified macro file.

Simply go toOptions Settings... Active Strings and bind the macro[Do('Open(%?)')] to a double-click of
Exe(?) .

4 Recursion

Good macro languages allow for recursive programming, and WinEdt’s language does not prove
exception to the rule. Recursive programming in WinEdt requires that we use the method of
subroutines sketched in§ 3. Since writing recursive functions often requires several macro files
to be saved to disk, we need to indicate in our examples what macro code belongs to which macro
file. The convention that shall be adopted is to surround macro code by comments indicating the
file name and where the file ends. This allows us to include the code for several files in the same
display. E.g.,

// Filename: _MyMacro.edt
...
// Endfile

// Filename: _MyOtherMacro.edt
...
// Endfile

Consider the following simple example:

// Filename: %B\Macros\guide_recursion.edt
InsText("a");
IfNum(%c,10,'<',‘Exe("%B\Macros\guide_recursion.edt")','');
InsText("b");
// Endfile

4.12 A simple recursive macro

When started at the beginning of a line, WinEdt produces

aaaaaaaaabbbbbbbbb

If started five spaces in, we get

aaaabbbb

(Only four as appear when started five spaces in because column numbering starts at 1. When
at the beginning of a line, the cursor is in column 1. Five spaces in, the cursor is at column 6, so
WinEdt can only insert fouras until the test fails.)

4.1 A lengthy example

Consider the following problem, posed by Heiner Richter: can WinEdt be customized so that it
will automatically convert any string of digits (such as1235678) to the form1.235.678 ?

16

4 RECURSION 4.1 A lengthy example

Before starting, let’s generalize the problem to the following: customize WinEdt so that it will
take a string of digits and insert the contents of a string register after every three digits (counting
from the right). This generalization makes the macro more useful since conventions vary on
whether to use a period, comma, raised dot, or space when separating digits.

First off, let’s consider how this macro will be invoked. We don’t want to invoke the macro
until the digit string has been fully entered, but how do we postpone execution of the macro
until the string has been completed? One natural way of doing this is to use active strings. But
what active string? We can’t makeeverydigit active because WinEdt will then invoke the macro
each time we type a digit. We could require that the user wrap the digit string will an identifier
unlikely to occur in ordinary text, say@digits{...} , but this solution is clumsy: we want
the macro to make it easier to type a string of digits, and typing@digits{12345} when you
want12,345 just makes more work for yourself.

One solution recognizes that a digit string has, as a natural delimiter, a digit followed by a
space. Thus we can make the strings ‘0 ’ (zero followed by a space),. . . , ‘9 ’ (nine followed by
a space) active. This guarantees that the macro gets invoked only at the end of a digit string.

Second, we note that the macro will need to do some initialization: we need to place the
desired delimiter into a string register and set a counter to 0 so that we can count off three digits
at a time. Now, we can write the macro using eitherLoop or recursion. The problem using
Loop is that it requires us to nest strings and—if the macro is long—this can be a headache.
However, if we use recursion, we have to be careful of how we set the initial conditions. We
cannot set the initial conditions inside the same subroutine used for the recursion because each
time the recursion occurs the initial conditions will be re-established! Consequently, we will put
the initialization code in a macro called_APstartup.edt , calling the recursive subroutine at
the very end.

1 // Filename: %B\Macros\ap_APstartup.edt
2 BeginGroup;
3 StartWorking("Adding separators...");
4 LetReg(5,','); // <--- Change this if you want commas instead of periods
5 LetRegNum(6,0); // Stop indicator
6 LetRegNum(7,%c); // Original column position
7 LetRegNum(8,0); // Found digit indicator
8 GotoCol('%c-1'); // Backup behind the space delimiter
9 Exe('%B\Macros\AddPeriods_APchew.edt');

10 // Endfile

4.13 Initialization routine for the “add periods” macro

Line 1 containsBeginGroup so that the separator addition can be undone with a single Undo.
We callStartWorking in line 2 out of courtesy for the user since the macro might take some
time to complete. Register%!5 contains the delimiter string (here we use a comma). Register
%!6 contains a binary flag indicating whether the macro has completed (we’ll see later why
this is necessary). Register%!7 contains the column that the cursor will return to when macro
execution finishes. Finally, register%!8 contains the number of digits we’ve found so far.

After initialization, WinEdt calls the macro_APchew.edt . This subroutine decides where
to place the separators. Consider part of it:

17

4 RECURSION 4.1 A lengthy example

1 SetSel(0); SetSel(1);
2 IfNum(%c,1,'=',>
3 'Exe("%B\Macros\AddPeriods_APend.edt")',>
4 '');
5 GotoCol('(%c-1)'); GetSel(0,9);
6 IfStr('%!9','0','=',>
7 'LetRegNum(8,"%%!8+1");>
8 IfNum("%%!8","4","=",>
9 "SetSel(0);>

10 GotoCol(''%%%%c+1'');>
11 InsText(''%%%%!5'');>
12 GotoCol(''%%%%c-1'');>
13 LetRegNum(8,0);>
14 LetRegNum(7,''%%%%!7+1'')",>
15 "">
16);>
17 Exe("%B\Macros\AddPeriods_APchew.edt")',>
18 ''>
19);
20 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods_APend.edt")','');

4.14 Part of the recursive subroutine called in4.13

Lines 1–5 copy the character to the left of the cursor (if there is one) into register%!9. The
test in line 2 checks to see if we at the beginning of a line (callingGotoCol with a negative
argument generates an error message). If the character to the left of the cursoris a digit, one
of two possible actions can occur. If we have counted four digits, insert a separator, since three
digits have passed since the end of the digit string or the last separator inserted, and then set the
digit counter (register%!8) to zero again. If we have not yet encounter four digits, add one to
the digit counter and move left one space.

Now, the trick is telling whether the character copied into register%!9 is a digit or not.
Recall the discussion on page11about how to get the logical equivalent of aswitch statement
in WinEdt’s language. We use that technique here: we have ten differentIfStr tests to see
whether the copied character is0,. . . ,9. In 4.14, we have only listed the code for the firstIfStr
test (the complete code can be found in the Appendix).

Line 7 of 4.14increments register%!8 by 1. Line 8 checks to see if this is the fourth digit
found. If it is, all text is deselected by a call toSetSel . (At this point we have not yet deselected
the character copied into register%!9. Without deselecting it, theInsText of line 11 would
delete that digit!) Finally, we move the cursor to the left one column, reset the digit counter,
and increment the counter tracking the number of separators inserted. Nothing is done if the
character stored in%!9 was not the fourth digit found.

When the character in%!9 is not a digit, the tenIfStr tests in_APchew fail. Then%!6
gets assigned the value 1 (this occurs at line 155 in the full listing of the macro in the appendix).
The IfNum test of macro4.14, line 20, calls the shutdown routine. The complete listing of this
macro is listed below:

18

5 INTERACTIVE MACROS

// Filename: %B\Macros\ap_APend.edt
GotoCol(%!7);
SetSel(0);
EndGroup;
StopWorking;
Exit;
// Endfile

The shutdown routine moves the cursor to the correct final position, deselects all text, ends
the group started in_APstart.edt , and returns the cursor to its normal mode.

� You might wonder why we hassle with the%!6 flag indicating when the processing of the digit string
has completed. The reason has to do out of concern for speed.Exit causes the macro to prematurely

terminate, preventing it from backing out of the recursiveExe calls properly. Ordinarily, one wouldn’t need to do
this, but the multiple-way branching used in this macro results in a significant speed decrease.

5 Interactive Macros

WinEdt provides several macros that can be used to make your macros a little more user-friendly.
The macros listed below fall into three types: getting data from the user (either numeric or
string), prompting the user to make a choice at a certain key point in macro processing, or
displaying the notorious Windows hourglass cursor (with an explanatory message in the WinEdt
message area). The particular macros are:

EnterLongReg(StrRegister: 0..9, "Prompt","Caption")
Prompts you to enter the value of the specified string register (%!0. . .%!9). Allows multi-line values.

EnterReg(StrRegister: 0..9, "Prompt","Caption")
Prompts you to enter the value of the specified string register (%!0. . .%!9). The value is a one-line string.

GetLongString("Prompt","Caption")
Same as EnterLongReg except that the value is stored in a special%!? string register (an extension of%!0. . .%!9)

GetString("Prompt","Caption")
Same as EnterReg except that the value is stored in a special%!? string register (an extension of%!0. . .%!9)

GetDim
Displays the dialog allowing you to enter the values of%!x and%!y numeric registers. Their values are used in
Macros that insertn×m environments (such as Array.edt).

GetCounter
Displays the dialog that allows you to enter the values of%!z numeric register. Its value can be used for repeat
loop and such. . .

Prompt("Prompt",Type,Buttons: 0..3, "Macro 1","Macro 2")
Displays the dialog box with the specified prompt. Macro execution is resumed after the user closes the dialog
box. ‘Type’ and ‘Buttons’ above can be any number in the range 0,1,2, or 3. These numbers alter the dialog
boxes appearance and behavior in the following way: Types 0, 1, 2, or 3 tell the dialog box to appear as either a
Information, Confirmation, Warning, or Error box, respectively. Button values 0, 1, 2, or 3 cause the dialog box
to have OK/Cancel buttons (where clicking on Cancel terminates macro execution), an OK button, OK/Cancel
buttons (where clicking on Cancel will invoke a special user macro), or Yes/No buttons.

StartWorking("Message")
Changes the cursor to the Hour Glass form and displays the specified message in the last field of the Status Line.
Intended to indicate time-consuming macros,

19

5 INTERACTIVE MACROS 5.1 Getting data from the user

StopWorking
Restores the cursor and removes the message from the status line.

With the exception of the last two macros (whose function should, hopefully, be more-or-
less clear), all of these macros cause a dialog box to be displayed, allowing the user to enter a
certain kind of data. If you’ve never done any Windows programming before, you might feel a
certain rush of power at the ability to create a dialog box with such ease.

5.1 Getting data from the user

Close inspection will reveal some apparent redundancy between some of the above macros. For
example, the macrosGetLongString andGetString seem to be two ways of doing the
same thing (sticking a string in the register%!?), and the difference betweenEnterLongReg
andEnterReg also might not be immediately clear. The basic difference between them con-
cerns the form of the dialog box that gets created. If you use eitherGetLongString or
EnterLongReg the dialog box that appears has a large multi-line edit box allowing the user
to type in whole paragraphs of text. On the other hand,GetString andEnterReg only use
a single-line edit box, which (I suppose) implicitly tells the user to be concise. WinEdt doesn’t
perform any length checking on the argument for either of the short entry commands, so nothing
prevents the user from typing an entire paragraph into the single-line edit box if they want.

The following macro illustrates one possible use of theGetString command:

1 BeginGroup;
2 GetString("What environment do you want to create?","Insert Environment");
3 LetRegNum(9,%c); // Store current column number
4 Mark(0);
5 InsText("\begin{%!?}");
6 NewLine;
7 GotoCol(%!9);
8 InsText(" * "); NewLine;
9 GotoCol(%!9);

10 InsText("\end{%!?}");
11 Goto(0);
12 CMD("Next Bullet");
13 EndGroup;

5.15 The Insert Environment macro

Line 1 begins a group so that the entire macro operation can be undone by a single undo op-
eration. Line 2 contains the call toGetString that asks the user to type in the name of the
environment that they want to insert. Line 3 stores the current column position of the cursor in
the register%!9 so that we can correctly position the rest of the lines.

For example, suppose the user wants to use this macro to insert acases environment inside
of an equation. Typically, this macro will be invoked when the user has typed only the following:

and so we define the incredibly important function as follows:
\[

f(x) = *

where the cursor is at the point indicated by ‘* ’. Now, withoutkeeping track of the column that

20

5 INTERACTIVE MACROS 5.1 Getting data from the user

the Insert Environment macro was invoked from (and consequently without including lines 3, 7,
and 9 in the macro definition), the macro output would look like:

and so we define the incredibly important function as follows:
\[

f(x) = \begin{cases}

*
\end{cases}

which is probably not what the user wanted. TheNewline macro creates a new line and moves
the cursor beneath thef , the InsText(" * ") macro inserts the box directly beneath the
x , and the secondNewline macro creates a new line and moves the cursor directly beneath
the * (assuming that WinEdt’s default line wrapping conventions are on). Including lines 3, 7,
and 9 causes the macro to insert the environment so that the\begin and\end have the correct
vertical alignment like so:

and so we define the incredibly important function as follows:
\[

f(x) = \begin{cases}

*
\end{cases}

21

A A N EXAMPLE

A An Example

1 SetSel(0); SetSel(1);
2 // Check to see if we are at the beginning of a line. If so,
3 // invoke __APend.
4 IfNum(%c,1,'=',>
5 'Exe("%B\Macros\AddPeriods__APend.edt")',>
6 '');
7 GotoCol('(%c-1)'); GetSel(0,9);
8 IfStr('%!9','0','=',>
9 'LetRegNum(8,"%%!8+1");>

10 IfNum("%%!8","4","=",>
11 "SetSel(0);>
12 GotoCol(''%%%%c+1'');>
13 InsText(''%%%%!5'');>
14 GotoCol(''%%%%c-1'');>
15 LetRegNum(8,0);>
16 LetRegNum(7,''%%%%!7+1'')",>
17 "">
18);>
19 Exe("%B\Macros\AddPeriods__APchew.edt")',>
20 ''>
21);
22 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
23 IfStr('%!9','1','=',>
24 'LetRegNum(8,"%%!8+1");>
25 IfNum("%%!8","4","=",>
26 "SetSel(0);>
27 GotoCol(''%%%%c+1'');>
28 InsText(''%%%%!5'');>
29 GotoCol(''%%%%c-1'');>
30 LetRegNum(8,0);>
31 LetRegNum(7,''%%%%!7+1'')",>
32 "">
33);>
34 Exe("%B\Macros\AddPeriods__APchew.edt")',>
35 ''>
36);
37 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
38 IfStr('%!9','2','=',>
39 'LetRegNum(8,"%%!8+1");>
40 IfNum("%%!8","4","=",>
41 "SetSel(0);>
42 GotoCol(''%%%%c+1'');>
43 InsText(''%%%%!5'');>
44 GotoCol(''%%%%c-1'');>
45 LetRegNum(8,0);>
46 LetRegNum(7,''%%%%!7+1'')",>
47 "">
48);>
49 Exe("%B\Macros\AddPeriods__APchew.edt")',>
50 ''>
51);
52 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
53 IfStr('%!9','3','=',>
54 'LetRegNum(8,"%%!8+1");>
55 IfNum("%%!8","4","=",>
56 "SetSel(0);>
57 GotoCol(''%%%%c+1'');>

22

A A N EXAMPLE

58 InsText(''%%%%!5'');>
59 GotoCol(''%%%%c-1'');>
60 LetRegNum(8,0);>
61 LetRegNum(7,''%%%%!7+1'')",>
62 "">
63);>
64 Exe("%B\Macros\AddPeriods__APchew.edt")',>
65 ''>
66);
67 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
68 IfStr('%!9','4','=',>
69 'LetRegNum(8,"%%!8+1");>
70 IfNum("%%!8","4","=",>
71 "SetSel(0);>
72 GotoCol(''%%%%c+1'');>
73 InsText(''%%%%!5'');>
74 GotoCol(''%%%%c-1'');>
75 LetRegNum(8,0);>
76 LetRegNum(7,''%%%%!7+1'')",>
77 "">
78);>
79 Exe("%B\Macros\AddPeriods__APchew.edt")',>
80 ''>
81);
82 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
83 IfStr('%!9','5','=',>
84 'LetRegNum(8,"%%!8+1");>
85 IfNum("%%!8","4","=",>
86 "SetSel(0);>
87 GotoCol(''%%%%c+1'');>
88 InsText(''%%%%!5'');>
89 GotoCol(''%%%%c-1'');>
90 LetRegNum(8,0);>
91 LetRegNum(7,''%%%%!7+1'')",>
92 "">
93);>
94 Exe("%B\Macros\AddPeriods__APchew.edt")',>
95 ''>
96);
97 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
98 IfStr('%!9','6','=',>
99 'LetRegNum(8,"%%!8+1");>

100 IfNum("%%!8","4","=",>
101 "SetSel(0);>
102 GotoCol(''%%%%c+1'');>
103 InsText(''%%%%!5'');>
104 GotoCol(''%%%%c-1'');>
105 LetRegNum(8,0);>
106 LetRegNum(7,''%%%%!7+1'')",>
107 "">
108);>
109 Exe("%B\Macros\AddPeriods__APchew.edt")',>
110 ''>
111);
112 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
113 IfStr('%!9','7','=',>
114 'LetRegNum(8,"%%!8+1");>
115 IfNum("%%!8","4","=",>
116 "SetSel(0);>
117 GotoCol(''%%%%c+1'');>
118 InsText(''%%%%!5'');>
119 GotoCol(''%%%%c-1'');>

23

A A N EXAMPLE

120 LetRegNum(8,0);>
121 LetRegNum(7,''%%%%!7+1'')",>
122 "">
123);>
124 Exe("%B\Macros\AddPeriods__APchew.edt")',>
125 ''>
126);
127 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
128 IfStr('%!9','8','=',>
129 'LetRegNum(8,"%%!8+1");>
130 IfNum("%%!8","4","=",>
131 "SetSel(0);>
132 GotoCol(''%%%%c+1'');>
133 InsText(''%%%%!5'');>
134 GotoCol(''%%%%c-1'');>
135 LetRegNum(8,0);>
136 LetRegNum(7,''%%%%!7+1'')",>
137 "">
138);>
139 Exe("%B\Macros\AddPeriods__APchew.edt")',>
140 ''>
141);
142 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');
143 IfStr('%!9','9','=',>
144 'LetRegNum(8,"%%!8+1");>
145 IfNum("%%!8","4","=",>
146 "SetSel(0);>
147 GotoCol(''%%%%c+1'');>
148 InsText(''%%%%!5'');>
149 GotoCol(''%%%%c-1'');>
150 LetRegNum(8,0);>
151 LetRegNum(7,''%%%%!7+1'')",>
152 "">
153);>
154 Exe("%B\Macros\AddPeriods__APchew.edt")',>
155 'LetRegNum(6,1)'>
156);
157 IfNum(%!6,1,'=','Exe("%B\Macros\AddPeriods__APend.edt")','');

24

CONTENTS

Contents

1 Basics 2

2 Variables/Registers 4
2.1 Strings and things. 5
2.2 Setting the values of registers. 10

3 Procedures and Functions 13

4 Recursion 16
4.1 A lengthy example . 16

5 Interactive Macros 19
5.1 Getting data from the user. 20

A An Example 22

25

	Basics
	Variables/Registers
	Strings and things
	Setting the values of registers

	Procedures and Functions
	Recursion
	A lengthy example

	Interactive Macros
	Getting data from the user

	An Example

